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ABSTRACT 

 

Monoglycerides are valuable compounds with wide applications as emulsifiers in food, 

pharmaceutical and cosmetic industries. They can be produced by esterification of glycerols 

with fatty acids. Traditional homogeneous catalysts are usually used in the reaction for 

commercial scale productions. The processes utilizing homogeneous catalysts   possess some 

drawbacks due to environmental aspect, such as corrosiveness, hazards of waste catalysts, etc.  

Because of simplicity in catalysts removal and minimization of the amount of waste formed, 

the utilization of heterogeneous or solid acid catalysts, as an alternative for this process,  is an 

emerging topic on the aspect of the green–chemical processes.  However, diffusion limitation 

of liquids within porous solids dictates that the use of mesoporous materials with pore 

diameter ranging from 20
o
A to 100

o
A is expected to be successful in liquid-phase reactions. 

The discovery of a family of ordered mesoporous silicas opens up new possibilities for 

preparing heterogeneous catalysts for liquid phase reactions.  This review highlights on recent 

developments in the synthesis of mesoporous functionalized acid catalysts, for esterification 

of glycerols by fatty acids to produce monoglycerides. 
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INTRODUCTION 

Monoglycerides are valuable compounds that are used as emulsifiers in food, 

pharmaceutical and cosmetic industries.  Monoglycerides are composed of a hydrophilic head 

and hydrophobic tail. This composition gives them detergency characteristics. They increase 

permeability of skin and thus make drug absorptions easy [1]. 

Currently, the commercial scale production of monoglyceride is through direct   

esterification of glycerols with fatty acids [Fig. 1] that generally relies on traditional 

homogeneous catalysts using  strong  mineral  acids, such as sulfuric acid and phosphoric acid 

[1, 2, 3].  However, this technology possesses   severe drawbacks, such as   the generation 

 

 
Figure 1:  Direct Esterification of Glycerols and Fatty Acid [1] 

 

of large amount of  by products, high energy demand and environmental aspects. Techniques 

for the purification of monoglycerides e.g., distillation are limited to food applications as such 

process steps are expensive [4]. The replacement of homogeneous catalysts by heterogeneous 
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catalysts can offer advantages in process design and may improve yield and selectivity to the 

desired product by designing specific solid catalysts for the particular process [5]. There are 

several intrinsic advantages offered  by heterogeneous catalysts over  their homogeneous 

counterparts  i.e., ease of product   separation and catalysts reuse ; bifunctional phenomena 

involving reactant activation/spillover between support and active phases; and process 

advantages through reactor operation in continuous flow versus batch configuration. 

Therefore, the development of new processes based on more selective solid acid catalysts has 

a great economical interest [6].   

Acidic resins have been used as solid acid catalysts in this application [7]. Although 

these resins have good catalytic activity, they are also highly susceptible to swelling in 

organic solvents and will be unstable at elevated reaction temperatures (>150°C), causing 

them to be unfavorable for the esterification reactions. Attempts to use zeolites have also been 

made for monoglyceride production [8, 9]. Zeolite may exhibit a high monoglyceride 

selectivity, but the activity and consequently monoglyceride yield are low [10]. This is due to 

the small pore diameter of around <8
o
A, which makes them unsuitable for liquid phase 

reactions and reactions involving bulky molecules like monoglycerides [11].   

The discovery of the M41S family of mesoporous molecular sieves [12] offering pore 

sizes in the range from 20
o
A  to 100

o
 A  opens up new possibilities for liquid-phase reactions 

using solid catalysts. This basic structural chemical feature of the mesoporous materials 

would allow processing of large molecules and the eventual accommodation of intermediate 

transition states which are too bulky to exist within the cavities and voids of zeolites [13]. 

This article focuses on recent developments in the synthesis of mesoporous functionalized 

acid catalysts used in esterification of glycerols and fatty acids for monoglyceride production.  

 

SYNTHESIS OF MESOPOROUS MOLECULAR SIEVES (MMSs)  

In catalytic application, there are three kinds of relevant materials of mesoporous 

molecular sieves (MMSs) obtained by using different synthetic procedures[14].The first type 

is the so-called M41S family of silica and aluminosilicates introduced by the Mobil group [15] 

which consists of hexagonal MCM-41, cubic MCM-48 and lamellar MCM-50 phases. The 

preparation of M41S materials is based on charge matching between ionic surfactants and 

ionic inorganic reagents. The original preparation of the materials involves direct co- 

condensation of a cationic surfactant (S
+
) and anionic species (I

-
) to produce assembled ion 

pairs (S
+
I
-
). Depending on the synthesis conditions, and principally the surfactant/SiO2 ratio, 

different phases could be obtained, like the hexagonal phase MCM-41, the cubic one MCM-

48 as well as the lamellar compound MCM-50, as shown in Fig. 2.  In 1994, Stucky and co-

worker extended this mechanism including the charge reversal situation i.e., an anionic 

template (S
-
) was used to direct the self-assembly of cationic inorganic species (I

+
) through   

S
-
I
+
 ion pairs. The next mechanisms involved counterion (X

-
 or M

+
) mediated assemblies of 

surfactants and inorganic species of similar charge, These counterion-mediated mechanisms  

produces assembled solution species of the type  S
+
 X

- 
I
+
 (where X

-
 = Cl

-
 or Br

-
)  or  S

-
 M

+ 
I
- 

(where M
+
 = Na

+
 or K

+
), respectively. The ionic surfactant or template is recovered by ion- 

exchange in cation donor solutions [16].  

 

Figure 2:  Structures of Mesoporous M41S Family:  

a. MCM-41 (2D hexagonal, space group p6mm); b. MCM-48 (cubic, space group Ia3¯ d);  

c. MCM-50 (lamellar, space group p2) [27] 
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           The second group of mesoporous materials was introduced by Pinnavaia and co-

workers who created MMSs using two neutral routes based on hydrogen bonding and self 

assembly between neutral primary amine micelles (S
o
) and neutral or inorganic precursors (I

o
) 

[17-25]. This mechanism produces neutral S
o
 I

o 
templating route. MMS’s produced by this 

technique are hexagonal mesoporous silica (HMS and MSU). These materials are less ordered 

than MMS’s produced with ionic surfactants. One of the most important advantages of HMS 

compared with MCM-41 is that the organic phase can be totally removed from as-synthesized 

samples by solvent extraction.  

Finally, a new synthesis route involving amphiphilic di- and tri-block copolymers as 

the organic structure directing agents was introduced by Stucky and co-workers [26]. These 

materials, exemplified by SBA-15, have long range order, large monodispersed mesopores 

(up to 50 nm) and thicker   walls (typically between 3 and 9 nm) which make them more 

thermally and hydrothermally stable than previous materials. The surfactant separation from 

the composite, either by calcination or solvent extraction, is easier than in the case of ionic 

surfactants.  

Interactions between the inorganic species and the head group of the surfactant with 

consideration of the possible synthetic pathway in acidic, basic, or neutral media, are depicted 

in Fig.3 [27]. Based on the template used for synthesis and the interaction of inorganic species 

and organic surfactant molecule, the mesoporous molecular sieves might be grouped as listed 

in Table 1 [28]. 

 

 
 

Figure 3: Interactions Between the Inorganic Species and the Head group of the 

Surfactant with Consideration of the Possible Synthetic Pathway in Acidic, Basic, or 

Neutral Media. Electrostatic: S
+
I

-
, S

+
X

-
I

+
, S

-
M

+
I

-
, S

-
I

+
; through Hydrogen Bonds: 

S
0
I

0
/N

0
I

0
, S

0
(XI)

0
, [27] 

 

Table 1: Possible Pathways for the Synthesis of Mesoporous Molecular Sieves [28] 

 
Template                     Interaction                           Sinthesis         Example 

conditions 
Ionic surfactant                           Direct interaction             I-S+^^^^       Basic                        MCM-41, MCM-48, MCM-50  FSM-16  

                                                    (Ionic)                               I+S-^^^^^     Neutral-basic           (Aluminum, iron, lead oxides, etc.)AMS  

                                                    Intermediated interaction I+X-S+^^^     Acidic                      SBA-1, SBA-2, SBA-3 , HMS , TLCT 

                                                    (Ionic)                               I-X+S-^^       Basic                        (Aluminum, zinc oxides etc) 

Non-ionic surfactant                  (Non-ionic)                       IoSo^^^^                                         HMS  

Co-polymer                                                                          IoNo^^^^      Acidic                        MSU, SBA-15 , TLCT 

(Ligand assisted)                         (Co-valent bonding)        I–S^^^^^                                        Nb-TMS , Ta-TMS  

Nanocasting                                         –                                        –                     –                     CMK-n  

 

S+I- 
S+X-I+ 

S-M+I-, S-I+ 

S0I0/N0I0 S0(XI)0 
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MESOPOROUS FUNCTIONALIZED ACID CATALYSTS 

The incorporation of active sites in the silica walls or deposition of active species on 

the inner surface of the mesoporous materials was more frequently applied to convert the 

MMS’s into a mesoporous functionalized acid catalyst. First attempts were focused on 

incorporation of Al atoms tetrahedrally coordinated within the framework through 

hydrothermal methods analogous to those used in the preparation of zeolites. The trivalent 

cations, Al
3+

, substitute for silicon in the walls of the mesoporous silica, the framework 

possesses negative charges. This negative charge is balanced by a metal cation or a proton that 

constitutes a Lewis- or a Bronsted-acid site, respectively.   The Si MAS NMR results 

indicated the amorphous nature of the pore walls [29]. Since the O–Al–O angle is less flexible 

than the O–Si–O angle, the mesoporous silicas of Al-MCM-41 are commonly less well 

ordered on the mesoscale and show a broader pore size distribution than their pure silica 

analogues. Therefore, their catalytic properties are closer to a mildly acidic amorphous silica-

alumina than to a strongly acidic zeolite, which limit their potential catalytic applications [29]. 

Recently, considerable efforts have been undertaken to incorporate organic components 

within an inorganic silica framework to tune the acid strength and control the hydrophobic 

microenvironment of the sulfonic-acid sites and subsequent improvements of the catalytic 

performance. There are three fundamental principles for the preparation of organically 

modified or functionalized silica phases [27]. They are post synthetic functionalization of 

silicas, the direct methods of co-condensation and periodic mesoporous organosilicas (PMOs).  

 

Post synthetic Functionalization of Silicas  

Grafting. Grafting refers to the modification of a pre-fabricated mesoporous support by 

attachment of functional molecules to the surface of the mesopores, usually after surfactant 

removal (Fig. 3) [42]. Mesoporous silicates possess surface silanol (Si-OH) groups that act as  

convenient  anchoring points  for  organic functionalization. Surface modification  with 

organic groups is most commonly carried out by silylation. Typically, silylation is 

accomplished by one of the following procedures: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3:   Functionalization of Mesoporous Silicates by Grafting [42] 
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Coating. Coating refers to formation a monolayer on the pore surface by utilizing just enough 

water in the process.  More continuous coats of organosilanes may be obtained, leading to a 

high concentration of organics in the product (Fig. 4). This technique is different from the 

grafting processes in which the organosilanes typically are added under dry conditions to 

avoid hydrolysis and condensation away from the pore walls [1, 42]. 

 

 
 

 

 

Figure 4: Comparison of Coating and Grafting Processes [42] 

 

Under the synthetic conditions used, the advantage of post synthetic method is that the 

mesostructure of the starting silica phase is usually retained, whereas the lining of the walls is 

accompanied by a reduction in the porosity of the hybrid material [27]. 

 

Co-Condensation method (Direct Synthesis). The co-condensation method (direct synthesis) 

involves the preparation of mesostructured silica phases by the co-condensation of 

tetraalkoxysilanes [(RO)4Si (TEOS or TMOS)] with terminal trialkoxyorganosilanes of the 

type (R’O)3SiR in the presence of structure-directing agents that bring about materials with 

organic residues anchored covalently to the pore walls (Fig. 5). By using structure-directing 

agents known from the synthesis of pure mesoporous silica phases (e.g., MCM or SBA silica 

phases), organically modified silicas can be prepared in such a way that the organic 

functionalities present into the pores. 

 The organic units are generally more homogeneously distributed than in materials 

synthesized with the post synthesis process. However, the cocondensation method also has a 

number of disadvantages. In general, the degree of mesoscopic order of the products 

decreases with increasing concentration of (R’O)3SiR in the reaction mixture, which 

ultimately   leads  to  totally  disordered  products. Moreover, an increase in loading of the 

incorporated organic groups can lead to a reduction in the pore diameter, pore volume, and 

specific surface areas. A further, purely methodological disadvantage that is  associated  with    

 

.  

Figure 5: Co-condensation Method (direct synthesis) for the Organic Modification of 

Mesoporous Pure Silica Phases. R=organic functionalgroup [27] 
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the    co-condensation    method  is  that  care  must be taken not  to destroy the organic 

functionality during  removal of  the surfactant, which  is  why commonly  only  extractive  

methods can be used, and  calcinations  is not  suitable in most cases. 

 

Preparation of Periodic Mesoporous Organosilicas (PMOs). In contrast to the organically 

functionalized silica phases, which are obtained by post synthesis or direct synthesis, the 

organic units in periodic mesoporous organosilicas (PMOs) are incorporated in the three-

dimensional network structure of the silica matrix through two covalent bonds and thus 

distributed homogeneously in the pore walls. 

The transfer of the concept of the structure-directed synthesis of pure silica 

mesophases by surfactants to the bissilylated organosilica precursors described above allows 

the construction of a new class of mesostructured organic– inorganic hybrid materials— 

(PMOs)—in  which  the  organic  bridges  are  integral  components  of  the  silica network 

(Fig. 6). PMOs are characterized by a periodically organized pore system and a very narrow 

pore radius distribution.  The first PMO was synthesized in 1999 by three research groups 

working independently [30, 31, 32]. 

 

 
 

Figure 6: General Synthetic Pathway to PMOs that are Constructed from Bissilylated 

Organic bridging units. R=organic bridge [27] 

 

 

RECENT APPLICATION OF MESOPOROUS FUNCTIONALIZED ACID 

CATALYSTS IN ESTERIFICATION OF GLYCEROL BY FATTY ACIDS FOR 

MONOGLYCERIDE   PRODUCTION 

Bossaert et al., (1999) investigated the synthesis of monoglycerides  via direct 

esterification of glycerols with lauric acid over propylsulfonic- acid MCM-41 and HMS 

materials prepared by means of different strategies of synthesis, i.e.: co-condensation and post 

synthesis methods.  In co-condensation method, the alkylthiol molecules are introduced in the 

synthesis gels, and the hybrid materials are obtained directly. The template was eliminated by 

solvent extraction. It was reported that this synthesis method permits to incorporate higher 

content of 3-Mercaptopropyl TriMethoxy Silane (MPTMS). Moreover, the post synthesis 

methods comprised the silylation calcined MCM support with MPTMS in dry toluene and the 

coating of a partially hydrated support with an MPTMS layer (Fig.7). 

They reported that the most active solid catalyst among the propylsulfonic acid-

functionalized mesoporous materials was a coated silica gel-SO3H. The HMS-SO3H 

synthesized by the co-condensation method was the second most active, while the silylated 

MCM-41-SO3H  and  coated  MCM-41-SO3H were the least active.  They also observed that 

extraction/calcination 
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Figure 7: Mercaptopropyl Encapsulation into Mesoporous Materials by Direct 

Synthesis or Post-Synthesis Methods [43] 

 

propylsulfonic acid-functionalized mesoporous silica catalysts were slightly better than 

Amberlyst-15 resins but significantly more active than H-USY, a commercial zeolite-type 

acidic catalyst. These mesoporous silica catalysts gave a maximum acid conversion of 80% 

with selectivity to the monoglycerides of 52% after 10.2 h of reaction, while Amberlysts-15 

gave  a maximum acid conversion of about 75% with  the selectivity of about 44% after 11.5 

h of reaction. Then the H-USY showed a maximum acid conversion and the selectivity of 

about 55% and 36% respectively, after 23.5 h of reaction. The H-USY had both a surface area 

and a number of acidic sites that were higher than those of the acid-functionalized 

mesoporous silica, which implied that the esterification reaction catalyzed by the zeolite 

catalyst was likely diffusion limited.  

Diaz et al., (2001) have extensively observed the same esterification reaction over 

optimized propylsulfonic-modified mesoporous materials by direct synthesis [33,34], They 

reported that the selectivity toward monoglycerides in the esterification of glycerols with fatty 

acids was improved by propyl-SO3H-MCM-41 materials synthesized using mixtures of 

cationic surfactants  as compared with standard materials due to the better pore arrangement 

of these catalysts [33]. Moreover, the same research group examined the catalytic activity of 

propylsulfonic-modified MCM-41 materials synthesized using mixtures of cationic and 

neutral surfactants in the esterification of glycerol with lauric acid [34]. The catalyst showed 

an acid conversion of 90% with selectivity to the monoglycerides of 75% after 24 h of 

reaction. On the contrary, the propyl-SO3H MCM-41 synthesized in the absence of amine 

gave selectivity as low as 40% with an acid conversion of 96%. Both works clearly explained 

that a wise mixture of surfactants provides sulfonic-acid-bearing MCM-41 catalysts with clear 

improved catalytic properties for the esterification reaction as compared with the conventional 

single-surfactant synthesis process.  

By reason of the relatively bulky molecules involved in the esterification process, Diaz 

et al., (2001)  examined   direct synthesis of   SBA-15 and SBA12 mesostructured 

materials ,with a larger pore size than MCM-type materials,  functionalized with propylthiol 

moieties for this esterification [35,36].  The catalysts exhibited a maximum acid conversion of 

80% and the selectivity of 20% after 8 h of reaction. Moreover, the catalytic results showed 

that the turnover number (TON) for MCM-41 materials is higher than those materials. For 

SO3HSBA-15, the low TON value was attributed to the presence of sulfonic groups located in 

structural micropores of the silica walls. In this case, the esterification reaction would be 

extremely hindered as it occurs when using zeolites, influencing on the overall TON. Low 

activity in SO3HSBA- 12, even lower than that observed in SBA-15 material, was related to 

the small size of the windows that interconnect the large cavities. This result was consistent 

with the severe pore blocking of the structure as a consequence of the high population of 

stacking faults detected in this material [37, 38]. Besides, the pore size of SBA-15 and SBA-

12 seems to be too large for significant shape-selectivity effects in the esterification reactions. 
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In order to increase the efficiency of the oxidation of thiol to sulfonic acid, Diaz et al., 

(2003) studied direct synthesis of different MCM-41 materials functionalised with 3-

mercaptopropiyl(methyl)dimethoxy silane (MPMDS) in presence of the amino acid leucine , 

used as co-structuring agent. The [CH3,SO3H]-MCM-41 catalysts, containing different 

amounts of [CH3, SO3], obtained upon oxidation of the thiol precursors have been tested in 

the esterification of glycerol with lauric and oleic acids. The turnover number (TON) of these 

catalysts containing both functional groups attached to the same Si atom is higher than that of 

the conventional samples containing methyl and sulfonic groups on independent Si atoms, 

The catalyst with the highest TON value is the most selective to monoglycerides. In this case, 

the catalyst showed a maximum acid conversion of 85% with corresponding selectivity to the 

monoglycerides of 59% after 8 h of reaction. 

With the aim of improving both activity and selectivity, furthermore, Diaz et al., (2005)  

reported the new one-step hydrothermal syntheses of MCM-41 materials bearing materials 

which contain two functionalities, vinyl and methyl moieties, as well as a new material, 

chloromethyl-MCM-41. The corresponding sulfonated forms HSO3-ethyl-MCM-41, HSO3-

ethyl/methyl-MCM-41 and HSO3-methyl-MCM- 41 were tested in the same reaction of 

esterification. The catalysts gave  a maximum acid conversion and the selectivity  of 97% and 

55% respectively, after 8 h reaction. In addition,   the hydrophilic character of the surface of 

the catalyst pores decreased when methyl groups are incorporated in addition to the active 

functional groups .This effect of the higher hydrophobic character of the catalysts containing 

methyl moieties was also noted in the selectivity to the monoglycerides, at the same acid 

conversion, which was higher for the catalysts with the methyl groups.  

 In 2002 , Mohino et al., [41]  studied   the synthesis and characterisation of phenyl 

and combined methyl/phenyl functionalised MCM-41 materials using by co-condensation 

method  and the sulfonation procedure,using chlorosulfonic acid in liquid phase or SO3 , to 

obtain the corresponding SO3H-phenyl- MCM-41 catalysts. The catalysts were also tested in 

esterification of glycerols with lauric and oleic acids. The most active catalysts the were 

combined methyl/phenyl functionalised MCM-41 materials with sulfonation procedure using  

the chlorosulfonic acid (SO3-Ph-(Me)-MCM-41). These catalysts gave the a maximum acid 

conversion of 98% with selectivity to the monoglycerides of 35% after 24 h of reaction.  

 

CONCLUSION 

Until recently several researchers had  shown that mesoporous materials of MCM-41, 

SBA-15 and SBA-12 had good catalytic properties compared with other solid acid catalysts in 

the direct esterification of glycerols by fatty acids for monoglyceride production. The 

mesoporous materials of MCM-41 were functionalized with organic sulfonic group by post 

synthesis and direct synthesis, while those of SBA-15 and SBA-12 were functionalized with 

organic sulfonic group by direct synthesis. Further insights into reaction mechanisms 

catalyzed by mesoporous materials would further bolster the ability to design functionalized 

mesoporous materials with the goal of enhancing reaction rates and selectivity to the desired 

products. The application of functionalized mesoporous catalysts has the possibility for 

simplifying reaction systems, reducing production costs, and eliminating environmental 

hazards posed by wastes generated in homogeneous catalyzed reactions. As synthesis 

techniques and the characterization of functionalized mesoporous catalyst are grown-up, one 

would expect more applications of these nanostructured materials for the direct esterification.  
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