
3D Virtual Simulation Software for Underwater Application

Mohd Salzahrin Mohd Hamzah, Muzammer Zakaria, Mohd Fazli Izwan Abd Jalil,
Kamal Zuhairi Zamli

USM Robotics Research Group, School of Electrical and Electronic Engineering
Universiti Sains Malaysia, Engineering Campus,

14300 Nibong Tebal, Seberang Perai Selatan, Pulau Pinang, Malaysia
Tel: +604-5937788 ext. 6009, Fax: +604-5941023,

E-mail:moh_salzahrin83@yahoo.com, rizal@eng.usm.my

Abstract

This paper shows the use of 3D virtual simulation,
representing the actual object movement
underwater. The 3D virtual environment allows a
combination of real and virtual robots to work
together for a system-wide study and measurement.
The digital signal from controller and sensors
which is mounted on the underwater vehicle
generates 3D animation on the monitor. The 3D
model is design by using the 3D design software
with simple 3D objects such as boxes, cylinders,
extrusion node etc. Each basic object can be
combined to generate complex structures. This
paper presents a simulation-based approach that
allows a cooperative robotic system to be
effectively evaluated in a virtual environment with
combined real and virtual robots.

Keywords

3D, Virtual Environment, Software, Underwater,
Close Loop

Introduction

The 3D virtual world is an unreal environment
represented in 3D. The concept is to link both
digital technology and computer vision and become
a tool to carry out engineering studies, design
analysis and architectural projects.

Virtual world or VR application is used to create
visual effect for advertisement, video games,
animation, simulator etc. The concept of virtual
environment has been largely used by the
technology of virtual reality (VR), which has been
applied to various areas such as simulation of
manufacturing plants, the planning of robotic
workcells and robot operation system. The research
of the VR mainly focuses on the interaction
between robots and the virtual environment.

According to Xiaolin Hu and Bernand P. Ziegler
[1], different configurations can be easily applied
to experiment and measure the performance of the
system under development. To allow simulation of
robotic systems that actively interacts with an
external environment, an environment model needs
to be created. This environment model serves as a
virtual environment to provide sensory input to
robot models and to response to robots actuation.
For example, a virtual obstacle that can be sensed
by robot models and it responds to robot’s
movements by updating new sensory information
to robot models.

This paper tries to emphasize the idea of using the
3D virtual world to represent the actual robot in
order to monitor and inspect the movement and the
condition of the robot. This paper will also describe
the use of Webots software to develop a virtual
simulation for underwater robot application.

Approach and Method

Webots Software

The software being use for designing the 3D virtual
simulation is WEBOTSTM software. Webots is a
professional mobile robot simulation software
package. It contains a rapid prototyping tool,
allowing user to create 3D virtual worlds. Webots
runs on Windows, Linux and Mac OS X and is
suitable for researchers and designers interested in
mobile robotics.

A world in Webots is a 3D virtual environment in
which we can create objects and robots. A world is
a hierarchical structure where objects can contain
other objects. As to run the simulation, we need a
controller. A controller in Webots is an executable
binary file which is used to control a robot
described in world file. The control may be native
executable files (.exe in Windows) or Java binary
files (.class).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository@USM

https://core.ac.uk/display/11936609?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Figure 1 – Webots main window.

The main window for Webots are divided into two,
on the right is the design field. The design can be
view in this window. The left window is the scene
tree window. This is where the designing took
place. The method being used is the same like
VRML methods where the object is being choose
from the basic objects such as boxes, cylinders,
extrusion node etc. Then by the combination of
these simple objects will become a very complex
3D objects. The object can vary in sizes and shapes
as it can change the values for x-axis, y-axis and z-
axis for that particular object.

Simulation Controller

Inside Webots, there is a program that can help
user to make a controller for their design. The
controller can be either in C, C++ or Java language.
For the ROV design, the controllers are in C and
C++ language. At the beginning of the code, it
needs to declare every component that being used
in the design in order to make it work. As example,
the camera must be declared first in order the
camera to display its function inside the simulation.

In the main part of the code where the controller of
the simulation will take place. Here, the code must
be written accordingly so that the simulation will
run smoothly. To connect the joystick with the
controller program, a certain source code or header
file for the joystick must be called into the
program. This header file will make the program to
detect and determine joystick that is attached to the
computer. Then it will configure the joystick as to
declare on how many buttons and axes that the
joystick has.

For example, when the joystick is moved forward,
the code will read the data sent by the joystick and
put it into a memory. Next, the data needs to be
declared also. So as if the data for forward is from
0 to +1, the 3D ROV simulation will show forward
movement when it receive data or value that is
between 0 and +1.

Results

Figure 2 shows the result of the ROV design using
Webots. As it can be seen, the design is the
combination of those simple objects with different

sizes. The thrusters are being represented by
cylinders. The body of the ROV is the combination
of boxes and the frame is the combination of
extrusion node.

Figure 2 - 3D ROV visualization using Webots.

Figure 3 shows the design of the virtual
environment as the condition is underwater. The
design for the sea-bottom is made from extrusion
node. Then there are some boulders made from the
combination of objects. It can be seen in the figure,
where the ROV is doing some inspection on the
pipeline. The pipeline is made from different sizes
of cylinders.

Figure 3 – 3D virtual environment design

The 3D design has 5 DOF (Degree of Freedom),
same with the real ROV design. The simulation can
move forward, backward, sway left and right,
heave up and down and it can rotate or yaw to left
or right and roll.

The “differential_wheel” node can make the
simulation to move forward, backward and it can
show the rotation of the simulation. The
differential_wheel robot will automatically search
for and take control wheel objects within its
children. That is why the robot can do movements
just like a differential two-wheel steering even
though the ROV design doesn’t have wheels. The
speed for both the wheel; “right wheel” and “left
wheel” can be specified by the
differential_wheel_set_speed() function. When
moving forward, the speed for both wheels are

having the same positive values. While moving
backward, the speeds are negative values. Then to
make the sway movements, I used the “servo”
node. A servo node is used to add one (active of
passive) degree of freedom in a mechanical
simulation. The DOF is created between the
parents and children nodes (VRML hierarchy). The
servo node is the children of the differential_wheel
node, therefore it allow moving the servo children
with the respect to the parents. The servo can be
linear or rotational. I used this servo to show sway
movements, so it is better to choose the linear servo
as it is used to simulate a sliding motion.

Figure 4 – Linear Servo.

Next, I use another servo node to show heave
movement. The method is similar with the first
servo and I make the second servo becomes the
children to the first servo. The 3D simulation also
display the view from the camera attached on the
ROV. The use of this camera is to show the
condition of the ROV. One camera will show the
front of the ROV and one more will show the side
view of the ROV.

Figure 5 – camera display of the ROV

Camera 1 will display the view from the ROV
camera. Camera 2 will display the left view of the
ROV and camera 3 will display the front view of
the ROV. The ‘roll’ data from the sensor will be
use to display the roll condition for the ROV.

Controller

As in ROV, digital control is used to control the
thruster driver which is being used to control the
ROV position and heading. For now, the vehicle is
controlled using joystick and SIMULINK software.
For the computers communication, the data are sent
and receive through Power Line Carrier (PLC)
using User Datagram Protocol to communicate.

Figure 6 - Communication line diagram

The 3D simulation simulates according to joystick
control, so the 3D simulation program and digital
control program will run at the same time. This is
an open loop system.

Table 1 – ROV Condition Table

Legend:
+1 = clockwise turn (forward force)
 -1 = counterclockwise turn (reverse force)

Table 1 shows the ROV condition table shows the
movement of the ROV and thrusters activation for
each condition. Compass-gyro sensors are used to
sense the actual condition of the ROV in the water.
The sensors data will be sending from the ROV to
the surface computer through UDP communication.
Sensors data are displayed on the Guide User
Interface (GUI) to verify the 3D animation. The
data are compass (heading), pitch, roll and depth.

ROV
CONDITION T1 T2 T3 T4 T5 T6
Stop (initial) 0 0 0 0 0 0

Forward +1 +1 -1 -1 0 0
Backward -1 -1 +1 +1 0 0

Shift-L (sway) +1 -1 -1 +1 0 0
Shift-R(sway) -1 +1 +1 -1 0 0
Spin-L (yaw) +1 -1 +1 -1 0 0
Spin-R (yaw) -1 +1 -1 +1 0 0

Up 0 0 0 0 +1 +1
Down 0 0 0 0 -1 -1

Comparison

There are many simulations software being builds
especially for the underwater application such as
the simulation from Marine Simulation [4]. The
company has developed the ROVsim Undersea
Pilot Series. The system uses the latest technology
in real-time 3D visualization software. It is able to
simulate a various missions.

The system features accurate physics simulation
with good visualization and almost realistic
environment.

Figure 7 – ROVsim mission window.

As can be seen, there are differences if compared to
this simulation where the simulation have a several
of useful information plus it also display sonar. The
video monitor 1 is the main window where this is
the view from the ROV camera. The video monitor
2 is the view of the sonar and camera 3 will display
the view of the ROV from behind. The Vehicle
Main Operational Controls is at the bottom of the
main window. In the panel contains the ROV data
such as heading, depth, altitude and speed.

The software that I build will show the movement
of the ROV in real-time. This is because I used the
close-loop control application in the design. The
main controller is the joystick but in the same time,
the software also receives data from the sensors on
the ROV such as roll, pitch, heading etc. These
data will alter the condition and movement of the
ROV in the simulation.

JOYSTICK
ROV

3D VIRTUAL
SIMULATION

Joystick data Sensors data

Figure 8 – Close Loop Control

Discussion

The connection between Webots software and
sensor is by using the serial port. The compiler of
the Webots needs a header file for the serial port.
After the header file is included and all the
declarations have been made, then we can receive
the data from the sensors.

Serial Port Communication

The protocol of serial port communication can be
done by certain procedure. The serial port can be
called in order the user to read/write data from/to
the serial port. By using C/C++ programming in
Webots, calling serial port can be done.

First of all, the compiler for the programmer must
recognize the coding for serial port. This can be
done by adding some information in the ‘makefile’.
This file is the main compiler for a Webots C++
controller.

Here how it should been written:

SOURCE_INCLUDES = js.h, Tserial.h
CPP_SOURCES = Joystick.cpp

“Tserial.h” is the header file for recognizing the
RS232 serial port. Next, in the main controller
programming part, the “Tserial.h” file must be
defined so that the controller will make a link with
the file. This is not the only file that we must
define. One more is the “tserial.cpp” file. These
two files are related to each other. Here how it
should be written in the controller programming
part.

#include "Tserial.h"
#include "tserial.cpp"

After we include the file with the main controller,
next we need to manually define the definition that
we need to use for calling the serial data from the
port.

Tserial *com;

“Tserial” is the header file that we defined earlier.
“com” will be the definition that we will use in the
entire code to represent the COM1 of the serial
port. Next we will connect the serial port and call
the data from the serial port.

com = new Tserial ();
com->connect ("COM1", 19200, spNONE);

“COM1” is the port argument and “COM1” is the
default connection for serial port. The value 19200
is the rate argument of the serial port. The spNONE
is the serial parity of that port.

As for the device is concern, the sensor data is in a
string of characters, which is mean the data is send
in a set of data. So if we try to call one bit at a time,
we will only get only one bit of the entire string.
For example, one string of data can have at almost
50 single bits of data. So here, we need to call for
the entire set of data or we called it as a string.
com->getArray(buffer,50);

 for(int i=0; i<50; i++)
 {
 robot_console_printf("%c",buffer[i]);
 }
 robot_console_printf("\n");

“getArray” is used to get a set of data that have
been placed in a buffer. A buffer can have a set of
data, like in this case; our string data produces up
to 48 to 50 bits of data. So the value 50 in the
bracket after the “getArray” is the value of bits of
data that we wanted to get from the serial port. The
‘for’ loop is use to get the whole data in one set
and then it will be displayed in the log window of
the Webots. If we wanted the log window to
display the data continuously, so we need an
infinity loop.

So after the data have been displayed continuously,
we can use these data as for data logging. The data
will differ according to the movement of our sensor
and it will be update for every milliseconds.

The data from the sensor is a series of string data,
which is mean it is not a numerical value. First it
needs to be separate into five sets of data. The data
for heading, depth, roll, pitch and temperature.
Next the data must be converted into an integer so
that the values can be use in the simulation.

Close Loop Control

The communication for close loop control must
meet in real time. The real time communication
avoiding the controller loses control and easy to
avoid the underwater vehicle hitting unexpected
object under water especially fish and rock.

The virtual 3D animation was easily control by the
joystick because it generates binary data rather than
compass-gyro sensor which it generates string data
in NMEA code. Binary data transfer is much faster
than NMEA data transfer. The NMEA data need to
be separated to five kinds of data. The five data’s
are heading, pitch, roll, temperature and depth.
Each data delimited by an alphabet. Example:
$C328.3P28.4R-12.4T21.1D21.01. Between ‘C’
and ‘P’ is the value of heading, between ‘P’ and
‘R’ is the value of pitch and so on. This separation
made the process slower and cannot meet the real
time communication.

Conclusion

This paper has shown how the 3D virtual software
can be used to simulate the underwater vehicle. The
3D virtual software is showing real condition of the
underwater vehicle even cannot be seen in real
world. Furthermore, this kind of virtual simulator
allows the user to interact with the underwater
vehicle comfortably. It also allows the user to
check the best equipment to carry out future
projects.

Acknowledgments

This project is sponsored by National
Oceanographic Directorate (NOD) which is from
Ministry of Science and Innovation (MOSTI).

References

[1] Hu, X., and Ziegler, B.P., ”Measuring
Cooperative Robotic Systems Using Simulation-
Based Virtual Environment”, Computer Science
Department, Georgia State University, Atlanta
GA, USA 30303

[2] Michel, O. / Cyberbotics Ltd – WebotsTM:
Professional Mobile Robot Simulation, pp. 39-
42, International Journal of Advanced Robotic
Systems, Volume 1 Number 1 (2004)

[3] Cyberbotics, October 8th, 2007, WebotsTM 5 User
Guide. URL: http://www.cyberbotics.com

[4] Marine Simulation LLC (2008) – ROVsim®
Underwater Pilot SeriesTM. URL:
http://marinesimulation.com

