Semester I Examination
Academic Session 2008/2009
November 2008

EEE 510 - ANALOG CIRCUIT DESIGN

Time : 3 hours

INSTRUCTION TO CANDIDATE:

Please ensure that this examination paper contains NINE (9) printed pages and SIX (6) questions before answering.

Answer FIVE (5) questions.

Distribution of marks for each question is given accordingly.

All questions must be answered in English.

Figure 1

1. Given in Figure 1 a common source amplifier with source degeneration. Assuming negligible output impedance, r_{0}, ignoring the gate-to-drain capacitance, and occurring at low enough frequency that you can ignore gate-to-source capacitance C_{gs},
(a) draw the equivalent small signal model (5 marks)
(b) derive the gain to yield the following expression.

$$
\begin{aligned}
& A_{v}(s)=\frac{V_{o}(s)}{V_{I}(s)}=A_{\text {mid }} F_{L}(s) \\
& =\left[-g_{m}\left(R_{3} \| R_{D}\right) \frac{R_{G}}{R_{I}+R_{G}}\right] \frac{s^{2}\left[s+\frac{1}{C_{2} R_{s}}\right]}{\left[s+\frac{1}{C_{1}\left(R_{1}+R_{G}\right)}\right]\left[s+\frac{1}{C_{2}\left(\frac{1}{g_{m}} \| R_{s}\right)}\right]\left[s+\frac{1}{C_{3}\left(R_{D}+R_{3}\right)}\right]}
\end{aligned}
$$

(15 marks)
2. Given a BJT circuit as shown in Figure 2 and it has the following I-V characteristic:

$$
I_{C}=I_{S} \times p\left(\frac{V_{B P}}{V_{T}}\right)\left(1+\frac{V_{P_{P}}}{V_{A}}\right)
$$

Figure 2 : BJT Circuit

Using a 2-port y-network, we also have the following relation:

$$
\begin{align*}
& i_{b}=\gamma_{11} v_{b f}+\gamma_{12} v_{\mathrm{Ge}} \tag{1}\\
& i_{\mathrm{c}}=\gamma_{01} v_{b f}+\gamma_{22} v_{\mathrm{ce}} \tag{2}
\end{align*}
$$

The hybrid-pi model is as shown in Figure 3 below:

Figure 3 : Hybrid-pi model for BJT circuit
(a) Convert equations (1) and (2) to the h-parameter network. Draw the corresponding h-parameter hybrid-pi model.
(b) Find the input resistance using h-parameter that we have defined in part (a).
(c) Find the output resistance using h-parameter that we have defined in part (a).
(d) Find the forward current gain using h-parameter that we have defined in part (a).
3. Given a common-source circuit as shown in Figure 4 and it has the following I-V characteristic:

$$
I_{R}=\frac{k_{\mathrm{m}}}{2}\left(V_{Q S}-V_{T W}\right)^{2}\left(1+\pi V_{Q S}\right)
$$

Figure 4 : MOSFET Circuit

Using a 2-port y-network, we also have the following relation:

$$
\begin{aligned}
& t_{g}=\gamma_{1} v_{g s}+y_{12} v_{d} \\
& t_{6}=\gamma_{21} v_{g s}+y_{s q} v_{d x}
\end{aligned}
$$

The solutions for the above equalities are as follows:

$$
\begin{aligned}
& y_{11}=\left.\frac{t_{Q}}{v_{g R}}\right|_{v_{d S}=0}=0 \\
& y_{12}=\left.\frac{l_{g}}{v_{d s}}\right|_{v_{g S}=0}=0 \\
& y_{21}=\left.\frac{t_{d}}{v_{g s}}\right|_{v_{d S}=0}=\frac{2 I_{D}}{V_{G S}-V_{T W}} \\
& y_{22}=\left.\frac{t_{d}}{v_{d i}}\right|_{v_{g s}=0}=\frac{I_{R}}{\frac{2}{\lambda}+V_{D S}}
\end{aligned}
$$

(a) From the above expression, convert the small signal hybrid-pi model showing g-parameter.
(b) Derive the forward current gain from the g-parameter as in part (a).
(c) Derive the forward voltage gain from the g-parameter as in part (a).
(5 marks)
(d) Derive the output resistance from the g-parameter as in part (a).
4. Given a class A emitter-follower as shown in Figure 5. Transistor Q_{1} is the emitter follower with $Q_{2} R_{1}, R_{2}$, and R_{3} set up the biasing. Find the efficiency of the class A circuit using the following methodologies:

Figure 5 : Emitter-Follower Class A Output Stage
(a) Using the Kirchoff's voltage law (KVL), find the voltage transfer characteristic (VTC) relating between the output voltage ${ }_{i} V_{Q}$ to the input voltage, V_{i}.
(b) Draw the voltage transfer characteristics (VTC) with proper labelling.
(c) Express the load power, P_{L} and the power due to DC power supply, P_{DG}. (5 marks)
(d) Find the efficiency, η which is the ratio between the load power to the power due to DC supply. Show that the maximum efficiency is approximately 25 \%.
(5 marks)
5.

Figure 6 : Inverting Amplifier as a Bandpass Filter

Figure 6 shows the diagram of a bandpass filter built from an inverting op-amp. Prove that the following expression holds true:

Prove the above expression by the following methodology:
(a) Express $V_{\mathbb{E}}, R_{1}$, and R_{S} as a function of Thevenin's voltage, $V_{T K}$ and Thevenin's resistor, $\boldsymbol{R}_{\text {TH. }}$. Then, write Kirchoff's current law (KCL) at both nodes 1 and 2. Prove that the ratio of V_{Q} to $V_{T E}$ is

$$
\frac{V_{Q}}{V_{4}}=\frac{\frac{-g}{B_{2} C_{1}}}{s^{2}+\frac{g}{R_{2}}\left(\frac{1}{C_{1}}+\frac{1}{C_{2}}\right)+\frac{1}{R_{2} A_{2 H} C_{1} C_{2}}}
$$

(10 marks)
(b) Using $\tilde{R}_{T A}=R_{1} \| R_{2}$, and $V_{T H} \oplus \frac{R_{1}}{R_{G}+R_{5}} V_{S}$, prove that $\frac{V_{O}}{V_{S}}$ is given by

$$
\frac{V_{Q}}{V_{2}}=\frac{\frac{-g}{B_{1} C_{1}}}{g^{2}+\frac{g}{R_{2}}\left(\frac{1}{C_{1}}+\frac{1}{C_{2}}\right)+\frac{R_{1}+R_{2}}{R_{2} C_{1} C_{2} R_{1} R_{2}}}
$$

(c) From the following relation

$$
\frac{V_{Q}}{V_{s}}=K \frac{s \omega_{Q}}{s^{2}+s \frac{\omega_{Q}}{Q}+\omega Q^{2}}
$$

Find K, ω_{0} and Q.
6. Estimate ω_{L} for the common-collector (CC) and and the common-drain amplifier as shown in Figure 7 and 8.
(20 marks)

Figure 7 : Common-collector (CC) amplifier

Figure 8 : Common-drain (CD) amplifier

