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We found some general exact static multimonopole solutions that satisfy
the first order Bogomol'nyi equations and possess infinite energy. These
multimonopole solutions can be categorized into two classes, namely the A2
and B2 solutions. The A2 solution is a multimonopole solution with all the
magnetic charges superimposed at the origin. The B2 solution corresponds
to a configuration of even number of isolated I-monopoles located on a circle,
symmetrically about the z-axis.

1 INTRODUCTION

The SU(2) Yang-Mills-Higgs theory, with the Higgs field in the adjoint represen­
tation, can possess both the magnetic monopole and multimonopole solutions.
The 't Hooft-Polyakov magnetic monopole was discovered [2] in the mid-seventies.
Solutions of a unit magnetic charge are spherically symmetric [2, 3]. However,
multimonopole solutions possess at most axial symmetry [4]. In the limit of van­
ishing Higgs potential, monopole and multimonopole solutions had been shown
to exist. Solutions that satisfy the Bogomol'nyi condition or the Bogomol'nyi­
Prasad-Sommerfield (BPS) limit have minimal energies.

In this paper, we used the extended and generalized ansatz of re£.[l]. We
work on the SU(2) Yang-Mills-Higgs model with a vanishing Higgs potential. The
scalar Higgs field in our work is then taken to have no mass or self-interaction.
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We found that the SU(2) Yang-Mills-Higgs theory do possess some exact static
multimonopole solutions. They satisfy the first order Bogomol'nyi equations and
possess infinite energies at the origin. These multimonopole solutions are catego­
rized into two classes, namely the A2 and B2 solutions. The two classes possess
very different characteristic which we shall discuss in later section. The A2 solu­
tion represents configuration with all the magnetic charges superimposed at the
origin. There are no zeros of Higgs field at finite r. The B2 solution corresponds
to even number of equally spaced 1-monopoles located on a circle in the equatorial
plane.

The SU(2) Yang-Mills-Higgs model consist of the Yang-Mills vector fields A~

and the Higgs scalar field <pa in 3+1 dimensions. The index a is the SU (2) internal
space index. For a given a, <pa is a scalar whereas A~ is a vector under the Lorentz
transformation. The SU(2) Yang-Mills-Higgs Lagrangian in 3+1 dimensions is

L = _!Fa FaJ.tv + !DJ.t<PaD <p _!>. (<pawa _ f-L2)2 (1)
4J.tv 2 J.ta 4 >.'

where f-L is the mass of the Higgs field, and (3 is the strength of the Higgs potential.
The vacuum expectation value of the Higgs field is then f-L/"';>'" The Lagrangian
from Eq.(l) is invariant under the set of independent SU(2) gauge transformations
at each space-time point.

The covariant derivative of the Higgs field is

where A~ is the gauge potential and the gauge field strength tensor is

F:v = 0J.tA~ - ovA~ + Eabc
AtA~.

(2)

(3)

(6)

The gauge field coupling constant 9 is set to one here. The metric used is 9J.tv =
(- + ++). The SU(2) group indices a, b, c run from 1 to 3 whereas the spatial
indices f-L, 1/, a run from 0 to 3 in Minkowski space.

The equations of motion obtained from Eq.(l) are

DJ.t Fa = oJ.tFa + EabcAbJ.t FC = Eabc<pbD <pc (4)J.tV J.tV J.tV v ,

DJ.t DJ.twa = O. (5)

We will examine only the static solutions with Ag = O. The conserved energy of
the static system which is obtained from the Lagrangian is

E = Jd3x (!B?-B?- +!D'<I>a D·<I>a + !>.(<pa<I>a _ f-L2 )2) .
2~t 2 t t 4 >.

The indices i, j and k are purely spatial indices where i, j, k run from 1 to 3. This
energy vanishes when the gauge potential, Af is zero or a pure gauge, wa<I>a = f.-L2 / >.
and Di<I>a = O. The tensor -

(7)
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introduced by 't Hooft [2] can be identified with the electromagnetic field tensor.
This tensor can also be written in a more transparent form [4]

(8)

where A~ = <j>aA~, the unit vector <j>a = (l)a /!(l)1 and the Higgs field magnitude

1(l)1= V(l)a(l)a. The Abelian electric field is Ei = FOi and the Abelian magnetic
field is Bi = - ~CijkFjk' The topological magnetic current k~ [4] is defined to be

k 1 ov,T..a Op,T..b OU,T..C
~ = Srr c/-LVPU Cabc ':l!'. ':l!' ':l!' , (9)

(13)

and the corresponding conserved topological magnetic charge is

M - Jd3xko = 8~JCijkCabcOi (<j>aOj<j>bOk<j>c) d3x

- 8~fd2(Ji (CijkCabc<j>aOj <j>bOk <j>c)

- 4~ f d
2

(Ji Bi. (10)

2 THE MULTIMONOPOLE SOLUTIONS

In this paper, the Higgs field is taken to have no mass and hence the self-interaction
vanishes. The magnitude of the Higgs field vanishes as l/r at infinity. It is in
this limit that we are able to obtain explicit and exact multimonopole solutions.
These solutions are solved from the Yang-Mills-Higgs equations by using both the
second order Euler-Lagrange equations and the first order Bogomol'nyi equations
Bf ± D/pa = 0 with the positive sign. There is no solution to the Bogomol'nyi
equations with the negative sign. A multimonopoleof magnetic charge M with
all its magnetic charges superimposed at one point in space is denoted by a M­
monopole.

We used the ansatzof Ref.[l] with the gauge fields and the Higgs field given
by

A~ - -~VJ(r) (oaJy~ + JyaOJL ) + ~R(e) (JyafJL + faJy/-L)

+ ;G(e, ep) (fae~ - eafJL ) , (11)

(l)a = (l)I fa + (l)2 ea + (l)3 Jya. (12)

with(l)I = ~VJ(r), (l)2 = ~R(e), (l)3 = ~G(e, ep). The spherical coordinate orthonor-
mal unit vectors are defined by .

fa _ sine cos¢ 6f + sin e sin ¢ 6~ + cos e6~,

ea
_ cos e cos ¢ 6f + cos e sin ¢ 6~ - sin e 6~,

epa _ _ sin¢ 61+ cos¢ 6~,
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With the ansatz, Eqs.(ll) and (12), the equations of motion (4) and (5) can
be simplified and reduced to four ordinary differential equations of first order:

G+ Gcot B= 0, Gr/J csc(J +G2 = _b2 csc2 B, (14)

nl/ + 7jJ- 7jJ2 = -p, (15)

R+RcotB - R2=p - b2csC2B, (16)

where p and b2 are arbitrary constants. Prime means the partial derivative %r' dot
means the partial derivative go ' superscript ¢ means the partial derivative ttl>.

The two classes of solutions obtained from Eq.(13) to Eq.(15) are the A2 and
B2 solutions. The A2 solution is

R = tan B+(m + 2) cos B, G = (m +2) csc e tan(m + 2)B,
(m + 1) - mr2m+1

'Ij; = 1 +r2m+1 . ' p = m(m + 1), b = -,-{m + 2). (17)

The B2 solution is

R = (m + 1) cot B, G = (m +1) csc Btan(m + l)B,
(m + 1) - mr2m+1

'Ij;= 1+r2m+1 .. , p=m(m+l),b=m+l. (18)

The parameter m in Eq.(17) and (18) is a positive integer.
The ansatz, Eqs.(ll) and (12), has vanishing gauge potential, AIL - <t>aA~.

Hence the Abelian electric field is zero and the Abelian magnetic field is indepen­
dent of the gauge field A~. To calculate the Abelian magnetic field B i , we rewrite
the Higgs field of Eq.(12) from the spherical coordinate system to the Cartesian
coordinate system,

where

<1> a _ <1>1 fa + <1>2 ea + <1>3 J;a

_ <l?1 6a1 + <1>2 6a2 + <1>3 6a3 (19)

<1>1 - sin Bcos ¢ <1>1 + cos Bcos ¢ <1>2 - sin ¢ <1>3 = Iwl cos a sin {3

<I>2 - sin Bsin ¢ <1>1 + cos Bsin ¢ <1>2 + cos ¢ <1>3 = I<1>Icos a cos {3

<1>3 - cosB <1>1 - sine <1>2 = 1<1>1 sina. (20)

The Higgs field unit vector is then simplified to

4a = cos a sin{3 6a1 + cos a cos {3 6a2 + sin a c5a3 (21)

The Abelian magnetic field is found to be

B- _ 1 {osinaoj3_ OSinaoj3}~.
t - r2 sin e oe o¢ o¢ oB rt

+_1_ {a sin a a{3 _ asin a O(3} e.
. Tsin e o¢ or or o¢ t

+~ {a sin a oj3 _ asin a Oj3} J...
r or oB oB or 'f't (22)
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where

. _ 'I/J cos e - R sin e (3 _ _ '" _ -1 .( 'I/J sin e +R cos e)
sma- -J'l/J2+R2+G2' -i 'fI,i- tan G .

The Abelian field magnetic flux is

n 471"M =f d2
0"iBi

- JBi (r2 sin e)ri de d¢,

The magnetic charge M is given by

M = ~ {27r r (8 sin a 8(3 _ 8 sin a 8(3) ded¢
471" Jo Jo 8e 8¢ 8¢ 8e

(23)

(24)

(25)

The magnetic charges of the A2 solution at the origin can be exactly integrated
to· be m + 3. The net magnetic charges of the configuration when r tends to infinity
can be obtained by using approximate integration and it is found also to be (m+3).
Hence the A2 solution consists of a (m+3)-monopole sitting at the origin of the
coordinate axes. Therefore, when m = 0, we have a3-monopole at the origin and
when m = 1, we obtain a configuration of 4-monopole at the origin.

The B2 solution is different from the A2 solution in that the positive mag­
netic charges are not superimposed at one point in space. The B2 solution has
isolated I-monopoles located on a circle in the equatorial plane with rotational
symmetry about the z-axis. The I-monopoles here are finitely separated and these
I-monopoles are located at the zeros of the Higgs field. There is no multimonopole
at the origin.

The case when m = 0 is a special case of the B2 solution, the zeros of Higgs
field are located at infinity and there are no zeros of Higgs field at finite r. The
configuration has no monopole at finite r. For m = 1, there are 2(m + 1) equally
separated I-monopoles. Hence when m = 1, we have a configuration offour
isolated I-monopoles, each being located at the four zeros of the Higgs field. When
m = 2, we have six isolated I-monopoles at the six zeros of the Higgs field, and so
on.

3 COMMENTS AND OUTLOOKS

The B2 solution with m = 0 does not have any zero of Higgs field at finite r.
Hence instead of the two I-monopole solution, we only obtain a solution that has
no monopoles at finite r. The B2 solution contains only even number of finitely
separated I-monopoles. Hence it will be interesting if one can find solutions with
odd number of isolated I-monopoles to complement the B2 solution.

The two classes of solutions in this paper possess singularity at the origin.
This singularity either corresponds to multimonopole as in the A2 solution or no
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monopole at all as in the B2 solution. The zeros of the Higgs field correspond to
a I-monopole in the B2 solution. In the A2 solution, there are no zeros of Higgs
field at finite r.

A third multimonopole solution is the C solution which will be reported sep­
arately. Work can still be done to find different solutions to the Riccati equation
of Eq.(14).

4 ACKNOWLEDGEMENT

The author would like to thank Universiti Sains Malaysia for the short term grant
(Account No: 304/PFIZIK/634039).

References

[1] Rosy Teh, 2002, J. Fiz. Mal. 23: 196; 2001, Int. J. Mod. Phys. A 16: 3479.

[2] G.'t Hooft, 1974, Nucl. Phy. B 79: 276; A.M. Polyakov, 1975, Sov. Phys. ­
JETP 41: 988; 1975, Phys. Lett. B 59: 82; 1974, JETP Lett. 20: 194.

[3] M.K. Prasad and C.M. Sommerfield, 1975, Phys. Rev. Lett. 35: 760; E.B.
Bogomol'nyi and M.S. Marinov , 1976, Sov. J. Nucl. Phys. 23: 357.

[4] C. Rebbi and P. Rossi, 1980, Phys. Rev. D 22: 2010; R.B. Ward, 1981,
Commun. Math. Phys. 79: 317; P. Forgacs, Z. Horvarth and L. Palla, 1981,
Phys. Lett. B 99: 232; 1981, Nucl. Phys. B 192: 141; M.K. Prasad, 1981,
Math. Phys. 80: 137; M.K. Prasad and P. Rossi, 1981, Phys Rev. D 24: 2182.

6


