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Abstract

Water extracts of Eurvcoma Longifolia(Tongkat Ali) were

analysed by artificial-taste sensor emploving 4 mm diameter
and 20 wm thickness lipid membrane technology. The

sensing element which comprises of 8 sensing channels and
1 reference channel was attached to high impedance

differential - voltmeter forming the data acquisition and
capturing system. Measurements were  performed on

extracts of four concentration levels: 0.001%, 0.025%,

0.05% and 0.075%.. Altogether 384 measurements were .
performed comprising of 24 potentials per concentration

level. These data were treated with direct and principal

component  based discriminant analyses and  resulls

compared. It was discovered that direct application of
dicriminant analvsis produced an overalll accuracy of
22.9% compared to 92.7% of principle component based

discriminant analvsis. Results obtained confirmed our

prediction that the data set produced by the multichannel

taste sensing svstem were highly correlated, and selecting

the best subset -containing variables with highest

discrimination  powers could significantly improved the

separation betwveen groups.
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Introduction

The nutritional and commercial importance of Eurveoma
Longifolia have long been reconised, particularly its
aphrodisiac property. To-date this material forms one of the
major constituents in many health-based agricultural and
food products. Determining and assessing the authenticity of
the Furvcoma Longifolia based foodstutts has been studied
extensively by conventional chromatographic methods(1].
These methods are very accurate but also costly and time
consuming, and they require the use of toxic, flammable
pollutants reagents and gases. This has prompted scientists
and engineers into desigming instrumentation capable of
broad-band chemical detection and quantification. One such
example 1s the development of electronic or
artificial-tongue[2-3]. In this system, arrays of cross-reactive
chemical sensors are coupled to pattern recognition
programs, paralleling the biological gustatory system, in
which semi selective gustatory receptors are combined with
higher order or neural processing. Recent studies have
demonstrated the potential of qualitative and quantitative
analysis based on artificial-tongue spectra to discruminate
between mineral water from different manufacturers[4-5].
Most of these studies were based on the application of
neural-network on the complete data information. This
method is rather complex and require extensive computing
facilities and complicated interfacing hardware. However,
Abdullah er. al. [6] tollowed approach based on multivariate
analysis for solving pattern recognition problems. Instead of
using all available data, thev have selected best variables for




classification using the Wilk’s Lambda analysis. Reducing
the dimensionality of data is preferred in this case since it
minimises errors due to redundancy and interdependence
among variables. They concluded that discriminant analysis
after Wilk’s Lambda analysis is more precise In
classification than direct application of discrimination
analysis. The same procedures can be applied to
electronically solve pattern classification problems in
artificial taste sensor. Here, dimensionality reduction was
achieved via principal component analysis which performed
linear combinations of data instead of deleting a given
variable or subset of variables:

Approach and Methods
Electronic taste sensing system

The data acquisition system for electronic taste sensor used
in this study 1s similar to the one reported in [4]. Therefore,
interested readers are referred to this paper for further
technical details. Here, a summarised version of this system
is presented in order to facilitate discussion on algorithm for
pattern recognition. The block diagram of"the taste sensing
system is shown in Figure 1. -
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Figure 1 Schematic block diagram of electronic taste sensing
instrument . .

The electrodes depicted in Figure 1 are disposable
screen-printed lipid-membrane taste sensors. The sensor
array comprises of 8 active eclectrodes and a reference
electrode. The material used for active electrodes depends
largely on sensor applications. Here we used lipid materials
similar to the ones reported by Toko[2]. Meanwhile the
Ag/AgCl was chosen material for reference electrode. The
electrodes are fabricated in such a way that they make
electrical contact with the liquid inside the test beaker but do
not effect its normal mass transfer. The sensor array is
connected to sensor electronics by short lengths of driven
shield co-axial cable to reduce the effect of extraneous
environmental noise and interference. Electrochemical
reactions which occur at the liquid-electrode interfaces
induce dc voltages in mV range. The strength of these
voltages depend largely on the magnitude of the
electrochemical reactions, which in tum, ‘depend on
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electrode materials. Since each electrode 1s fabricated trom
different lipid materials, hence, the induced voltages are also
different. The combined signal voltages of all the eight
clectrode yield a signature or finger-print of the test sample.

The voltage measurement circuitry extends from the voltage
buffers in sensor electronics module to PC-based data
acquisition system. [n DAS the output sensor electronics 1s
firstly multiplexed, and secondly, routed into differential
input amplifier, which amplifies the potential difference
between the voltage and reference signals. The important
attribute of such an amplifier is its ability to reject
common-mode signals such as extraneous electrical noise
appearing on both input lines. The common-mode rejection
ratio (CMRR) in the present system is approximately 90dB
at dc - over 30 dB higher than most typical high speed
wide-band differential amplifiers. This figure was
accomplished in our circuit by switching the inputs to the
amplifier to negate the effects ot input impedance imbalance
between two lines. The output of differential amplitier 1s fed
into a programmable gain amplifier and finally to general
purpose analogue-to-digital converter (ADC) where it 1s
compared to previously stored ‘standard” value.

Figure 2 shows typical voltage signatures captured by the
system in reponse to 4 Eurycoma Longifolia concentration
levels— 0.01%, 0.03%, 0.05% and 0.08%.
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Figure 2 Steady state response of electronic taste equipment
to four Eurvcoma Longifolia concentrations.

From Figure 2, channels 4,5 and 8 registered consistently
higher magnitudes in the following concentration sequence:
0.05%, 0.08%, 0.03% and 0.01%. Theoretically, the method
of direct thresholding can be used to determine the different
concentration levels of Eurvcoma Longifolia. However, a
close inspection of Figure 2 reveals that voltages registered
by channel 1-3 and 6-7 for different concentration levels
overlap with each-other. Clearly, no single threshold value
exists which can uniquely separate the Eurveoma Longifolia
based on responses of sensor array. Furthermore, the
presence of voltage noise can affect the responses of the
sensor array, resulting in a great number of Eurycoma
Longifolia being misclassified. Clearly a diflerent approach
1s needed to solve this pattern classification problem.




One convenient method to solve this problem was to treat
the voltage profiles as features and apply multivariate
discriminant analysis to directly obtain a criterion from
training multiple samples. The advantage ol using this
method was that it does not need to consider voltage profile
details. However, its main drawback was that the discarding
of variables which were correlated highly with those
retained did not necessarily guarantee that the deleted
variables were, in fact, redundant in the classitication model
Similarly, retaining the variables irrespective of their
correlation characteristics did not necessarily vield a subset
with maximum rate of correct classification. We
demonstrated in this paper that the use of principle
component analysis before discriminant analysis helped
overcome this problem. The details are given below.

Principle component and dicriminant analyses

Primarily principle component analysis (PCA) deals with
dimension reduction while discriminant analysis (DA) deals
with  separating distinct sets of observations and
subsequently allocating new observations to the defined
groups. Dimension reduction is achieved by linear
combinations ol the data instead of data deletion or removal
as in direct or step-wise DA. In this way, PCA preserves the
original data set before: and alter classifications.
Theoretically, both PCA and DA are established statistical
techniques and interested readers are referred to a text book
by Dillon and Goldstein (1984) for technical details. A
summarised version is presented here, focussing on taste
sensing application.

In deriving the principle components, it is desirable to firstly
investigate the interdependence of the variables among
themselves in a multidimensional space. In so doing let
v(,23,..n) . Z(1.23,....,n) and P(1,23..,n) be the
original data (voltages), variance-covariance and correlation
matrices based on m measurements and » sensors. In this
case, P is given as follows,

i
pij = ———

where o is the ijth variance. Note that P is symmetrical
matrix having all diagonal elements equal to one. Hence, the
interdependence between /th and jth variables is the highest
when p;; is maximum. Figure 3 shows typical relationships

9]

among variables of the 8-channel taste sensing equipment.
Clearly, there is a strong relationship between channel 2 and
channel 6, implying that the voltages generated by these
electrodes were highly correlated. Channel 3 and channel 7
also appeared visually correlated. Hence, it can be seen that
there were at most 6 uncorrelated channels trom 8 available
channels. Secondly, the eigen values of P is calculated in
- order to examune the percentage variation among the
available channels. Mathematically,

|P-a1|=0 ' @)
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where [ 1s the identity matrix and A is the eigen veclor.
Generally, the number of eigen values greater than 1.0, a
common stalistical cutoff’ point in PCA[3], determines the
number of principal components. The varation of A4 is
demonstrated in the SCREE plot shown in Figure 4. Clearly
from this graph that there were 2 principal components
corresponding o eigen values greater than 1.0. These 2
principal component constituted 91% of the total sample
variation. Thus the dimensionality of the data was reduced
from 8 correlated voltages to 2 principal components with
75% loss of variation. Furthermore, it was observed that the
proportion of variance explaihed by any principle
component was not greater than 10% and’ the individual
voltage loadings on the principle components were relatively
uniform. In other words. this procedure gives a conservative
estimate of the downward bias in A due to combination as
compared to all possible subsets procedure.

Finally, the principal component vector v is computed as
follows:

(/’j )T ("r - ‘_’)

}.":I' G (3)
V Zfi
where b 1s the jth cigen vector culcfllul;;d as.
Pbh=Ab ()]

and for j=123....n and r=1,23,....¥ .

Once all principle components have been calculated using
(3) and (4), classification can be performed using DA. The
basic 1dea of DA is to generate the classification function for
cach group corresponding to concentration level-of the
analyte. For a population comprising .o’ g groups, the ith
classification function containing r principal components
can be expressed as follows:

P
X; =4a; +Z (.','J-.yj for i=1,23,....,r (3)
J=

where a; is the ith constant, y; 1s the Jth principal

component and Cjj is the ith classification function for the

Jth principal component. Classification coefticients can be

computed by first forming the pooled variance-covariance
matrix. W. and second. applying the following matrix
multiplication:

=
Ci =W v; (6)
where ¥; is the column vector containing average measured

voltages tor ith class. Similarly. the classitication constants
can be calculated using the standard procedure as tollows:
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ligure 3 Correlation distribution of the taste sensing equipment showing the reldtionships among the 8
available channels.
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Figure 4 Variation of & with the number of principal component. Note that the eigen values converge
sharply to zero as the number of principal component approaches 2.
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[t is well known that DA returns optimal classification when
the within-group covariance matrices are equal or
homogeneous. In actual practice, we discovered that this
condition is difficult to fullfill due to systematic, random and
inherent measurement errors. We observed that the voltages
recorded by the sensor drift as much as 5% to 12% with time.
However, we. also discovered that as long as the
homogeneity 1s not significantly substantial then the
robustness of the algorithm would not be severely aftected.
In fact heterogeneity improves the performance of the
algorithm because of a slight bias [7].

Materials and Methods

Sample Preparation

Commercial types of Euryeoma Longifolia were purchased

from local suppliers and stored at 5°C. The water-soluble

{raction was extracted using standard spray-drying technique.

The resulting powder was mixed with distilled water of
known volume to produce the desired concentration. For
instance, diluting x g of Ewvecoma Longifolia powder in 100
ml distilled water produces x % of analyte concentration.
This formula was used to prepare Eurveoma Longifolia of
four concentration Ievels —0.01%. 0.03%, 0.05% and 0.08%.

vieasurement strategy

The measurement strategy taken was to employ a new sensor
array for each concentration level. Measured voltages were
grouped into two sets: Set A and Set B. Each set was turther

Jdivided in two subsets referred here as Subset Al, Subset A2,

Subset Bl and Subset B2. Each subset comprised of 96
voltages corresponding Lo 24 voltages for each concentration
level. Therefore, altogether 384 measurements werc
performed requiring 8 sensor arrays. Set A was used for
Jdirect DA and Set B was reserved for PCA. Meanwhile, the
first and second subset for each set was used for training and
tcsting respectively. - Classification experiments were firstly
conducted using training set and secondly using testing set.
m this way, the system accuracy could independently be
mvestigated. For both direct DA and PCA, the discriminant
program was trained using 24 concentration samples for
cach group.

Results and discussion

Uhe Eurycoma Longifolia training and independent sample
test results via direct DA are presented in Figure 3. For the
truining process, all 96 samples were correctly classified.
Hewvever, for the independent test samples, 22 our 24
wimples of 0.01% concentration level were correctly
iassitied. All the other samples were wrongly classified.
rience the correct classification rate of independent test
samples was approximately 23% compared to 100% of the
rning samples.  This indicates that the good separation
produced by the training set is artificial since the rate of

correct classification is biased against the best subset

dicriminant analysis. The system seems 0 memorise the
input signatures nstead of generalising them. Clearly, the
inclusion ol all variables in the data set do not necessarily
contribute to separation ol the groups
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vl |
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< 0.05% () 0 24 0
0.08% 0 0 0 24
(a)
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Concentration
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Figure 5 Classitication results of direct DA of (a) training
test samples and (b) indeperident test samples.

Results of discriminant analysis aller PCA are tabulated in
[igure 6. i

Predicted
Concentration
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0.03% 0 24 0 0
35 - T T
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0.08% | .p 0 0 24

(a)
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Figure 6 Classification results of DA after PCA of (a)
training test samples and (b) independent test samples.

Similarly, dicriminant analysis after PCA of training
samples resulted i 100% correct classification. However,
for independent test samples, all 24 samples belonging to
0.01%, 0.03% and 0.05% concentration levels were
correctly classified. Only 8 out of 24 samples of the 0.08%
concentration level were wrongly classified. Hence, this

method yielded an overall percent correct classification of

more than 92%. The calculations using individual group
covariances and pooled covariance showed a very closed
result. Hence, it can be concluded that discriminant analysis
after principal component analysis is more precise in
classification than the direct application of discriminant
analysis.
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