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Abstract

fVater extracts 0/ Ew:vcoma Longifolia(Tongkat A Ii) were
analvsed bv artificial-taste sensor employing -I mm diameter
and - 10 ;m thiclmess lipid membrane technology. The
sensing elernent which comprises 018 sensing channels and
1 reference channel lvas aI/ached to high impedance
difFerential' voltmeter forming the data acquisition' and
capturing system. A-feasurements were pet/armed on
extracts 0/ four concentration levels: 0.001%, 0.015%,
0.05% and (UJ75%.. Alto~ether 38-1 measurements were.
performed comprising 0/ ]-1 potentials per concentration
level. These data were treated with direct and principal
component based discrirninant ana~vses and results
compared It \Vas discovered Ihal direct application 0/
dicriminant analvsis prodllced an overalf! accuracy 0/
11.9% comparei (0 91.7% of principle component based
discriminant analvsis. Reslllts obtained confirmed ow'
prediction that th~ data set produced hy the multichannel
taste sensing system were highly correlated, and selectin~

the best subset 'containing variables with highest
discrimination powers could Significantly improved the
separation between groups.

Keywords:
Taste sensing' Discriminant Analysis; Principal Component
Analysis.

728

Introduction

The nutritional and commercial importance of Eurycoma
Longifolia have long been reconised, particularly its
aphrodisiac propeny. To-date this material forms one of the
major constituents in many health-based agricultu~aI and
food products. Determining and assessing the authentiCIty of
the Ew:vcoma Longifolia based foodstuffs has been studied
extensi'\,ely by conventional chromatographic methods[l].
These methods nre very accLirate but a] 0 costly and time
consuming, and they require the use of toxic, flammable
pollutants reagents and gases. This has prompted scientists,
and engineers into designing instrumentation capable at
broad-band chemical detection and quantification. One such
example is the development of electronic or
artificial-tongue[2-3]. In this system, arrays ofcross-reactive
chemical sensors are coupled to pattern recognition
programs, paralleling the biological gustatory system, in
which semi selective gustatory receptors are combmed WIth
higher order or neural processing. Recent studies. have
demonstratetl the potential of qualitative and qu.anhtatlve
analvsis based on artiticial-tongue spectra to discriminate
bet\~een mine'ral water from different maoufaclurers[ 4-5].
Mo t of these studies were based on the application of
neural-network on the complete data information. This
method is rather complex and require exteosi ve computing
facilities and complicated interfacing hardware. However,
Abdullah et. af. [6J tollowed approach based on multivariate
analYsis for solving pattern recognition problems. lnstead of
using all availnble <.lata, they have selected best variables fo.r



classification using the Wilk's Lambda analysis. Reducing
the dimensionality of data is preferred in this case since it
minimises errors due to redundancy and interdependence
among vanables. They concluded thut uiscriminant analysis
after Wilko Lambda analysis is more precise 111

classification than direct application of discrimination
analysis. The same procedures can be applied to
electronically solve pattern classification problems in
artificial taste sensor. Here, dimensionality reduction was
achieved via principal component analysis which perform d
linear combinations of data instead of del<:;ting a gi en
variable or subset of variables·.

Approach and Methods

Electronic taste sensing system

The data acquisition system for electronic taste sensor used
in this study is similar to the one reported in [4J. Therefore,
interested readers are referred to this paper for further
technical details. Here a summarised version of this system
is presented in order to facilitate discussion on algorithm for
pattern recognition. The block diagram ohhe taste sensing
system is shown in Figure I. "

electrode materials. Since each electrode is fabricated trom
different lipid materials, hence, the induced voltages are also
different. The combined signal voltages of all the eight
electrode yield i1 signature or finger-print of the test sample.

The voltage measurement circuitry e:\tends from the voltage
buffers in sensor electronics module to PC-based data
acquisition system. In DAS the output sensor electronics is
tirstl.' multiplexed, and 5econdi~i, routed into tlifferentiai
input amplifier, which amplifies the potential difference
between the voltage and reference signals. The important
attribute of such an amplifier is its ability to reject
common-moue signals such as extraneOllS electrical noise
appearing on both input lines. The common-mode rejection
ratio (CMRR) in the present system is approximately 90d8
at dc - over 30 dB higher than most typical high speed
wide-band differential amplifiers. This tigure was
accomplished in our CIrcuit by switching the inputs to tht:
amplifier to negate the etreets of input impedance imbalance
between two lines. The output of differential ampli tier is fed
into a programmable gain amplitier and finally to general
purpose analogue-to-digital converter (ADC) where it i
compared to previously stored 'standard' value,

Figure 2 shows typical voltage signat.ures captured by the
system in reponse to 4 Eltrycoma LOt1g1jOlia concentration
levels- 0.0 1%, 0.03%, 0.05% and 0.08%.

Figure I Schematic block diagram of electronic taste sensing
instrument
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The electrodes depicted in Figure are disposable
screen-printed lipid-membrane taste sensors. The sensor
array comprises of 8 active electrodes and a reference
electrode. The material used for active electrodes depends
largely on sensor applications. Here we used lipid materials
similar to the ones reported by Toko[2]. Meanwhile the
Ag/AgCI was chosen material for reference electrode. The
electrodes are fabricated in such a way that they make
electrical contact with the liquid inside the test beaker but do
not etfect its normal mass transfer. The sensor array is
connected to sensor electronics by short lengths of driven
shield co--axial cable to reduce the dTect of extraneous
env;rorunental noise and interference. Electrochemical
reactions which occur at the liquid-electrode interfaces
induce dc voltages in 111 V range. The strength of these
voltages depend largel. on the magnitude of the
electrochemical reactions, which in tum, 'depend on

Figure 2 Steady state response of electronic taste equipment
to four Ellrycoma Longifolia concentrations.

From Figure 2 channels 4,5 and 8 registered consistent!.
higher magnitudes in the following concentration sequence:
0.05%,0.08%,0.03% and 0.01 %. Theoretically, the method
of direct thresholding can be used to detcnnine the different
concentration levels of Eurycoma LongJfolia. However, a
close inspection of Figure 2 reveals nlat voltages registered
by channel 1-3 and 6-7 for di tTerent concentration levels
overlap with each·other. Clearly, no single threshold value
exists which can uniquely separate the Ew:vcoma Longifolia
based on r.esponses of sensor array. Furthennore, the
presence of voltage noise can alTect the responses of the
sensor array, resulting in a great number of Eurycoma
LongiJolia being misclassitied. Clearly a ditferent approach
is needed to solve this pattern classification problem.
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One convenient methotl to solve this problem was to treat
the voltage pro ti les as features antl apply' lllultivHTiatc
di 'criminant annlysis to tlircctly obtain a criterion from
training multiple samples. The aJ\'[lntage of Llsing this
method \Vas that it does not neeJ to consider voltage prolile
details. Howc\'er, its main drawback was that the discarding
of variables which were correlated highlv with those
retained tlitl not neccssarily gunrllnlee th,!t thc delcteJ
variables were, in fact, redundant in the class!tkation model.
Similarly, retaining the variables IITcspecti\'c or their
correlation characteristics did not necessarily yield a subset
"'lith maximum rate of correct classi tication. We
demonstrated in this paper that the usc of principlL:
component analysis before discriminant analysis helpeJ
overcome this problem. The details are given bel 0\\'.

Principle component antl dicriminant analyses

where J lS the iJentitv matri\: <iml A. is thc eigcn vector.
Gcnerally, the number of eigen values greater than 1.0. a
COIllmon statistical cutotr p\)jnt in PCA[S /, J tennines the

number of principal components. The 'anation of A is
demonstrated in the SCREE plot s,ho\\'TI in hgurc ~. Clearl)'
from this gmph that there \\ere 2 principal componcnts
corresponding to cigen values greater than 1.0. These 2
princip<J1 component cOllslituleJ ql%l of the total sample
\'ariatw!1. Thus the Jimensi()nalit~' or the datu \vas reduced
Ii'om correlated voltages to 2 prinCipal components with
75% loss of variation. Furthennorc, it wns observetl that the
proportion of \'miance explained by any principle
L:omponenl was not greater than 10% and'the indi idual
voltage loadings on the principle cnmponents were relatively
uniform. In other \\'ords. this procedure gi\'cs a conscf\'ati\'e
cstimnte of the do\\'n\\ard hias in A. due to l:ombinalion as
compared to all possible 'ubsets procedure.

Finally, the principnl component vector y is computed as
tallows:

Primarily principle component analysis (PCA) deals with
dimension reduction while discriminant <malysis (DA) deals
with separating distinct sets of observations anJ
subsequently allocating new observations to the detined
groups. Dimension reduction is achieved by linem
combinations of the data insteaJ or tlata deletion or rellloval
as in direct or step-Wise DA. In thi:) wa\', PCA presen'es the
original data set before' and after classitications.
Theoretically, both PCA and DA are !;;stablished statistical
teclmiques and interested readers are referred to a te:-;t book
by Dillon and Goldstein (1984) for technical details. A
summarised version is presented here, focussing on taste
sensing application.

where b is thejth eigcn vector ca!culatyu as.

Pb =)J;

and lor j =1,2,3, ... ,11 and r =1,2,3,... , tV .

(3 )

(4)

In deriving the principle components, it is desirable to tirstl y•
investigate the interdependence of the variables among
themselves in a multidimensional spa c. Ln so doing let
V(I,2,3, ... ,n) , L:(1,2,3, ... ,n) and P(I,2,3, ... ,n) be the

original data (voltages), variance-covariance and correlation
matrices based on m measurements and n sensors. Ln this
case, P is given as follows,

Once all principle components have been calculated using
(3) and (4), classification can he perfonncd using DA. The
basic idea of DA is to generate th~ classification function lor
cach group correslXJnding to concentration level-of the
analyte. For a population compris\ng .01' g groups, the ith
classification function containing r principal components
cap be expressed as tallows:

Pij
a"LJ

( I ) r

Xi = (Ii +I Cij-J'j

)=1

where (7 is the {jih variance Note that P is synlliH~trical

matrix having all diagonal elements equal to one. Hence, the
interdependence between ith and jth variables is thc highest

when Pu is maximum. Figure 3 shows typical relationships

among variables of the R-channel taste sensing equipment.
Clearl. , there is a strong relationship between hannel 2 and
channel 6, implying that the \'oltages generated by' these
electrodes were highly correlated. Charmel 3 and channel 7
also appeared visually correlated. Hence, it can be seen that
there were at most 6 uncorrelated charmels (rolll 8 available
channels. econdl', the eigen values of P is calculated in

. order to e:-.:amine the percentage variation among the
available channels. Mathematicalk

where Vi is the column \'cctor cOlltainll1g a\'crLlgc measured

\'oltag!;;s ror ith class. 'imilarl\·. the c1asslticatlOn constants
can De calculatcu usmg. the standard procetlurc a' t\)ll\)\\s:

where (Ii is the ith constant, Yj IS the jth principal

L:Olllponent and C ij is the ith classilication fLmction for the

jth principal GOl11ponent. Classillcation coet'ticients can be
L:olll\Juted hy tirst tllfIning the pooled \'ariance-co\'ariance
lI111tri:-.:. W. and second. appl\'ing the following matrix
multi plication:

Ip- All =0 (2)
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Figure 3 Correlation distribution of the taste sensing equipment shO\\"ing the relationships among the 8
available channels.
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It is well known that DA retlUTIs optimul clnssilicatioll \-vhen
the within-group covanance matrices are equal or

homogeneous. In ,lctual practice, we uiscovereu thut tllis
'~ondition is didicult to fullfill due to sv tematlc, random anu
inherent measurement errors. We observed that the voltages
recorded by the sensor drift as much as 5% to 12% with time.
Ho\.ve\·er, we. also discovered that as long as the
J1'JI110geneity is not significantly substantial then the
robustness or the algorithm \Voulu not be severely arrecte I.
In fact heterogeneity improves the pert'orm,mce of the
aJgoritlull beca~Lse of a slight bias [7].

Materials anti Methods
Sample Preparation

Commercial types of Eurycoma Longi/olin were purchaseu

from local suppliers nnd stored at SoC. The water-soluble
[i'Qction was extracted using standard spray-drying technique.
The resulting powder was mixed with tlistilled wnter of
kno\.VT1 volume to produce the desired concentration. For
instance, di luting x g of Eurycoma Longifolia powder in 100
1111 distilletl water produces x % of analyte concentration.
This formula was used to prepare ElIf:vcorna LO/'l,<!!olia of
lour concentr~ltl_on levels - 0.0 1%,003%,0.05% and 0.08%.

Measurement strategy

The measurement strategy taken was to employ a new sensor
<nay Cor each concentration level. Measured voltages were
grouped into two sets: Set A and Set B. Each set was further
divided in two subsets referred here as Subset AI, Subset A2,
~)ubset BI antl Subset 82. Each subset comprised of 96
':o!tages corresponding to 24 voltages tt)r e3ch concentration
!;;vel. Therefore, altogt:lher 384 measurements were
performed requ1rin"g 8 sensor arrays. Set A was used for
..lirect DA nnd Set 8 was reserved f lr PCA. Meanwhile, the
lir:>t and secorid subset for each set was used for training and
lc:;ring respectively.. Classification experiments were tirstly
cnnducted using training set ami se~ondly using testing set.

11 t.his way, the system accurac:' could independently be
111 ·cstigated. For both direct DA ami PCA, the discriminant
,lrogrmn was trained using 24 concentrntion samples Cor
l;;\ch group.

.Rc~ults and discussion

i'he Ellrycom(l Long!!c)/ia training and independent sample
te~ir res.LLlts via direct DA are presented in Figure 5. For the
Inining process, all 96 samples were correctlv classitied.
Il'l\\'ever, for the independent test samples, 22 our 24
··:'1I1.pJes of 0.0 I% concentration level were correctly
'~b~;sified. All the other samples were wnmgly classified.
r;~:l\,;C the correct classification rate of independent test
~dlllples was <lppraximntely 23% compared to 100% of the
Irllll1mg s31npJes. This indicates that the good separation
pr'_'duced by the twining set is mtiticial since the rate of
":\iITect classification is biasetl ngainst the best subset
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dicrilllin,mt i:malvsls. The system seems to memorise the:
input slgnuturcs instead of gencralisl1lg them Clearl. _ the
inclusion o( all \'ariablcs in the unta set do not necessari Iy
c()Jllribute to separnlion ur the groups.

Preui~ted

Concentration

0.01% IUL % U.05% O.OR%

0.01% 24 0 0 0

0.03% () 2~ 0 I)

2
'J« (J05% 0 0 24 0

0.08% 0 () 0 24
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O.Q I(Yo 0.03% 0.05% ()J)8%

OJ)I% 22 2 0 0
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ro
::J
U« 0.05% n () 0 24
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Figure 5 ClnssiJication results of direct DA 01" (n) training
test samples and (b) independent test samples.

Results l)!' discriminant anal.ysis (In.er !)CA (ITt.: tabulated in
figure 6.

Pn.:dided
Concent ration

0.01% ()U3% 0.05% 0.08%

001% 24 (j 0 0

O.UJ% 0 2~ 0 ()

;
<3
-< (lO5% 0 0 2~ 0

O.OS% ·0 0 0 24
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Predicted
Concentration

0. () 1'Xl 0,03% 0,05% 0,08%

0,01% 24 0 0 0

0.03% 0 24 0 0
I ~, :::l

I
u« 0,05% 0 0 24 a

U,08% a 0 16 8

Figll1'e 6 Classitication results of DA after PCA of (a)
training test samples and (b) indepemlent test samples.

Similarly, dicriminant analysis after PCA of training
samples resulted in 100% correct classification, However,
for independent test samples, all 24 samples belonging to
0.01 %, 0.03% and 0.05% concentration levels were
correctly cla-ssitied. Only 8 out of 24 sample;:, or the 0.08%
concentration level were wrongly classitied. Hence, this
method yielded an overall percent correct classification of
more than 92%. The calculations llsing inclividual group
covariances <1no poo1ecl covariance showed a very closed
result. Hence, it can be concludeo that discriminant analysis
after principal component analysis is more' precise in
classification than the direct application of discriminant
analysis.
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