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1.0 Introduction

1.1 Project Description

Flip chip technology, in the book edited by Lau (Lau, 1995) is defined as placing a chip

to the substrate by flipping over the chip so that the I/O area of the chip is facing the substrate.

By flipping over the chip, the interconnection between the chip and the substrate are achieved by

conductive "bumps" placed directly in between the die surface and the substrate. Therefore, the

whole cnip surface can be utilized for active interconnections and at the same time, eliminates

the need for wire bonding.

An internet source, (FlipChips Dot Com, 2001) indicates that flip chip interconnection

has been introduced since the early sixties by IBM for use in their mainframe computers and

IBM has continued to use flip chip up to the present day. The same source also acknowledges the

role played by Delco Electronics in helping to develop flip chip for automotive applications in

the seventies. These early developments together with the advantages of flip chip packaging

technology which offers smaller chip size, higher I/O density with area array, better electrical

performance and lowest cost interconnection for high volume automated production results in

flip chip packaging being considered as the preferred choice over other conventional wafer level

packaging technology (Meilhon et aI., 2003).

There are essentially three basic elements in the solder flip chip interconnect systems

(Fig. 1.1). These include the chip, the solder bump, and the substrate. The solder bumps in a flip

chip interconnect system has three functions. First, the solder joint forms the electrical

connection between the chip and the substrate. Second the solder joint also serve as a path for

heat dissipation from the chip.

Silicon Die

Encapsulant~- _-.....-"""-_-_--...-.....~*~~_'_''___==___>o_ Solder Joint

C () ';CB': 'tt:=J

I
I'



Fig. 1.1 Schematic of a solder flip chip interconnect system (Pang, 2001a)

Lastly, the solder joint provides the structural link between the chip and the substrate. The

structural integrity of the solder joint affects both the electrical and thermal performances of the. . , .

flip chip interconnect system. Degradation in the structural integrity can be a reliability concern.

Another reliability concern is the thermo-mechanical behaviour of the solder joint.

Thermal mismatch deformations due to the different coefficient of thermal expansion (CTE)

between different materials used in the package can cause mechanical stresses in the solder joint.

This will eventually cause crack growth and leads to failure in the package.

The effect of temperature cycling on the reliability of microelectronic packages has been

the subject of many studies. Because of the difference in the thermal expansion of the multiple

materials involved in the construction of a typical package, temperature variations create a

mismatch ultimately resulting in solder joint stress. Repeated application of this stress eventually

causes solder joint failure, a mechanism commonly known as low cycle fatigue.

To minimize development costs and maximize reliability performance, advanced analysis

is a necessity during the design and development phase of a microelectronic package. Computer

simulation such as finite element analysis can provide a very detailed description of solder

stress/strain distribution and history under a variety of loading conditions, and is a powerful tool

for performing parametric studies and design optimization. However, analyst is typically

interested in the cycles to failure that a package design configuration and cyclic loading
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condition will cause. This requires the utilization of a life prediction methodology in which data

typically provided by a finite element solution can be translated into cycles to solder joint failure.

Advances in the electronic industry leave in its wake a trail of reliability problems. The

integrity of ball and bump solder joints is one of the major reliability concerns in modem

microelectronic packages. A wide variety of literature is scanned for work done in addressing the

reliability issues in microelectronic packages, particularly on the solder joint interconnect

system.

Many investigators have studied the low-cycle fatigue life of solder bumps under

accelerated thermal cycling test (e.g. Popelar et al. (2000), Darveaux (2000), Zahn (2000a), Zahn

(2000b), Wiese et al. (2001), Lau et al. (2002), Schubert et al. (2002), Dutta et al. (2002), &

Schubert et al. (2003). It is true that many package configurations studied by these researchers

roughly have the same build-up and each of the case studies utilizes a fatigue life prediction

methodology not much different from one another. Even solder fatigue lives predicted fall within

a certain common range of a few hundred cycles to a few thousand cycles. However, despite all

these work, not a single analysis approach and results obtained for a case study can be directly

used for another case study. There will be too many irregularities that must be accounted for in

j

order to compare any two case studies. Hence, even if fatigue life prediction methodology using

plastic work is not new, different case study with different package configuration and different

thermal cycle profile warrants the need for a simulation to be carried out in order to determine its

solder fatigue life.

The objective of this work will be to predict the low-cycle fatigue life of a flip chip

package subjected to two different accelerated temperature cycling test conditions. Temperature

fluctuations caused by either power transients or environmental changes, along with the resulting

5



thermal expansion mismatch between the varIOUS package materials, results in time and

temperature dependent creep deformation of solder. This deformation accumulates with repeated

cycling and ultimately causes solder joint cracking and interconnect failure. Due to the thermal
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mismatch in thermal expansion, plastic strain is generated during temperature cycling and the

solder structures accommodate most of the plastic strain. Since plastic strain is a dominant

parameter that influences low-cycle fatigue, it is used as a basis for evaluation of solder joint

structural integrity. An extensively published and correlated solder joint fatigue life prediction

methodology based on viscoplastic finite element simulation was incorporated by which finite

element simulation results were translated into estimated cycles to failure. Due to availability,

the program ANSYSTM was used to run the finite element simulations.

1.2 Project Activities

The activities carried out in this project can be summarized as follows

I

I

Stage 1: Modeling solder bump flip chip package

A detailed model of flip chip package was simulated based on based on viscoplastic finite

element. Due to availability, the program ANSYSTM was used to run this finite element

simulations.

Stage 2: Development of solder bump fatigue model

A simplified and detailed models of solder bump fatigue was developed. An extensively

published and correlated solder joint fatigue life prediction methodology based on viscoplastic

finite element simulation was incorporated by which finite element simulation results were

translated into estimated cycles to failure.

Stage 3: Derivation of algorithm for constitutive model for solder bump

6
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The algorithm for constitutive model for solder bump was derived based on Anand's constitutive

relations for rate-dependent viscoplasticity model and Darveaux constitutive relations. These

constitutive relations were used to describe the deformation behaviour of solder joints.

Stage 4: Prediction of solder joint fatigue life

Based on non-linear Finite Element Analysis, simulations were carried out to calculate

the plastic work per unit. volume (or viscoplastic.strain energy density). Another analysis based

on the combination of a linear finite element analysis and imposed strain on the solder joints plus

a non-linear analysis, was carried out to calculate assembly stiffness and to calculate strain

energy density.

Stage 5: Parametric study on solder joint fatigue life

Package parametric analysis using the Artificial Neural Network (ANN) was used as a

tool to predict other data points in the simulation results. This reduces the number of simulations

required for parametric analysis.

Stage 6: Parametric optimization for fatigue life prediction

Once the effects of every package dimensions on the solder fatigue life have been

established, the solder fatigue life can be appropriately adjusted to a higher fatigue life or a lower

fatigue life by increasing or decreasing a chosen package dimension. Genetic Algorithm (GA) is

used to optimize a combination of package dimensions that can provide a particular determined

solder fatigue life.

The various stages of the work and their results are reported in the theses produced from this

research. Several excerpts of the reports are available in the Appendix A.

I i

1.3 Project Benefits

j

1
J

Through this research, the numerical analysis of solder bump flip chip package in

electronic packaging material has been developed. To minimize development costs and

7
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maximize reliability performance, advanced analysis is a necessity during the design and

development phase of a microelectronic package. Computer simulation such as finite element

analysis can provide a very detailed description of solder stress/strain distribution and history

under a variety of loading conditions, and it is a powerful tool for performing parametric studies

and design optimization. This will help the engineers in developing the electronic package

requirement and the performance of the package can be predicted.

1.4 . Project Duration

The project started in September 2001 and was completed in August 2002, which is for

duration of one year.

1.5 Approved Grant Amount

The total amount approved by INTEL for this project is RM 41,200.00.

1.6 Project Cost

The total amount spent for this project was RM 41,200.0.

2 Project Contribution/Achievement

Thesis and Publications

The contribution of the research in terms of theses and publications are as follows:

Thesis:

1. MSc Thesis entitled: Solder Joint Reliability of Flip Chip BOA Packages - Lee Kor

Gon (Mac, 2004).
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Journal Papers:

1. LA.Azid, Lee Kor Oon, Ong Kang Eu, K.N. Seetharamu, G.A.Quadir "Applications Of
Artificial Neural Network For Fatigue Life Prediction", Key Engineering Materials, Volume
297-300 (2005), pp 96-101

2. KO Lee, KE Ong, KN Seetharamu, LA.Azid, GA Quadir and TJ Goh,"Application of
Artificial Intelligence for the Determination of Package Parameters for a desired Solder Joint
Fatigue Life", Microelectronics International, Vol. 23, No.2, 2006

3 Conclusion

In this project, three-dimensional finite element analysis has been applied to

determine the time-dependent solder joint fatigue response of a package under accelerated

temperature cycling conditions. Due to the difference in the thermal expansion of the various

materials involved in the construction of a typical package, temperature variations create a

mismatch in package expansion which ultimately results in solder joint stress. Repeated

application of this stress eventually causes solder joint failure, a mechanism commonly known as

low cycle fatigue.

The solder structures accommodate the bulk of the plastic strain that is generated during

accelerated temperature cycle. Since plastic strain is a dominant parameter that influences low­

cycle fatigue, it is used as a basis for evaluation of solder joint structural integrity. An

extensively published and correlated solder joint fatigue life prediction methodology was

incorporated by which finite element simulation results were translated into estimated cycles to

failure. The analysis methodologies as implemented in the ANSYSTM finite element simulation

software tool and the corresponding results for the solder joint fatigue life, is also discussed.

Artificial Neural Network (ANN) has been used to consolidate the parametric studies and then

the evaluation of parameters to give a particular fatigue life is achieved by the use of Genetic

Algorithm (GA).

9
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APPENDIX A

Extract from MSc Thesis entitled: Solder Joint Reliability of

Flip Chip BGA Packages - Lee Kor Oon (Mac, 2004).
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Fig. 2.1. Package outlinedrawing (Intel).

A typical flip chip package measuring 14x14mm, with 256 solder balls (16x16 full ball

Package centre
neutral point.

2.1 Solder-bumped Flip Chip Package

matrix), O.80mm pitch and attached to a 50x50mm board is analyzed. There are 2 dies in the

package. The top die measured 9x9mm and the bottom die measured 12x12mm. The package I
outline drawing is shown in Fig. 2.1.

The basic structure of the solder-bumped flip chip package is shown in Fig. 2.2.
More detailed layer dimensions of the package substrate and printed circuit board are shown. in
Figs. 2.3 and 2.4. Graphical details of the solder ball along with the package substrate pad and
the printed circuit board pad are shown in Fig. 2.5. The stack-up layer dimensional information
ofthe flip chip package is given in Table 2.1.
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Printed Circuit
Board

Top Solder Mask
(0.040mm)

Bottom Solder
"----

Mask (0.040mm)

circuit board (Intel).

Mold

Printed Circuit Board

Substrate

Solder Balls

Fig. 2.4. Layer dimensions ofprinted

Top Die

Die Attach

Bottom Die

~-- Underfill

Top Solder Mask
(0.03Omm)

Substrate

Fig. 2.2. Basic structure of a flip chip package (Intel).

Bottom Solder
'----

Mask (0.030mm)

Substrate (Intel).

As shown in Fig. 2.2, the basic structural layer layout of the typical flip chip package

Fig. 2.3. Layer dimensions ofpackage

consists of the top die which is attached to the bottom die through the die attach layer. The

bottom die is attached to the substrate through the underfill layer. Solder balls form the
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encompasses the top and bottom dies.

Fig. 2.5. Graphical details of the solder ball (Intel).

Printed
Circuit
Board

Substrate

9x9
0.100

Dimension mm

SMD (Solder
Mask Defined)

Board
~----- Pad

Suhstrate Pad

Size
Thickness

la er dimensions of the acka e Intel.
Packa e Attribute

Top Die

PCB Mask

Substrate
Mask

Solder Ball

Table 2.1. Stack-u
F;';;';";;;~";"';";~';""';;=~=~~~~';';";'=~';';;';""~"""T"-------"

interconnection between the package substrate and the printed circuit board. The mold

Die Attach Thickness 0.030

Bottom Die

Underfill
Mold

Substrate

Substrate Mask

Substrate Pad

SMD

Solder Ball

Printed Circuit Board

Thickness
Size

Thickness
Thickness
Thickness

Size
Thickness

Mask 0 enin Diameter
Thickness
Diameter
Thickness

Hei ht
Pitch

Diameter
Thickness

14

0.130
12x12
0.090
0.540
0.168
14x14
0.030

0.3254
0.027

0.1881
0.030
0.300
0.800
0.400
1.570



Size 50x50

PCB Mask Thickness 0.040
Mask Opening Diameter 0.500

Board Pad Thickness 0.027
Diameter 0.300

Table 2.1 shows the dimensions of the typical flip chip package used in the analysis. The

top die has a thickness of 0.100 mm and the size of the die is 9x9 mm square. Underneath the top

die is the die attach with a layer thickness of 0.030 mm. The top die and die attach is placed

above the bottom die which has a thickness of 0.130 mm with a die size of 12xl2 mm square.

Beneath the bottom die is a 0.090 mm thick layer of underfill which connects the bottom die to

the package substrate. The mold encompasses the top and bottom dies as shown in Fig. 2.2 with

a thickness of 0.540 mm from the substrate. The package substrate surfaces have a 0.030 mm

thick substrate mask. Other details at the solder ball joint interfaces include a 0.027 mm thick

substrate pad with a diameter of 0.1881 mm and a 0.027 mm thick board pad with a diameter of

0.300 mm. The solder ball itself has a standoff height of 0.300 mm, a pitch of 0.800 mm and a

diameter of 0.400 mm. The printed circuit board is a 50x50 mm square board with a thickness of

1.570 mm. The printed circuit board surfaces also have PCB masks of 0.040 mm thick.

2.2 Solder Ball Fatigue Models

Viscoplastic finite-element simulations methodologies are utilized to predict the stress

level and accumulated strain energy density per thermal cycle within the critical solder ball of a

package. Two models with different levels of package details are used for the simulations. The

first model is a simplified version of the flip chip package where a few layer details are omitted

from the simulation model. The second model is a full model with more layer details

incorporated into the simulation model. Omission of a few layer details at the interface of the

model is carried out in order to determine if model simplification can produce results similar to a

15



more complex model. For the simplified model only the most necessary basic components of the

package are drawn and many small details at the solder ball interfaces are neglected, with a

possible view of obtaining results with much less effort. Due to the complex physics that

encompass this type of non-linear transient finite element analysis, only half of a diagonal slice

of the package was modeled in order to facilitate reasonable model run times. The utilization of a

half diagonal slice assures that a worst-case situation is simulated where the perimeter solder ball. . . .

is the farthest bump from the package centre neutral point shown in Fig. 2.1. The half diagonal

slice representing the finite element model is shown by the diagonal bold print dashed line in

Fig. 2.1.

The half diagonal slice model goes through the thickness of the overall package

assembly, taking into account all major components and a full set of halved solder joints.

Utilization of a slice model necessitates the consideration of boundary constraints that has to be .

imposed on the slice model, which has to appropriately represent the actual boundary conditions

by which the full package assembly is subjected to. The symmetrical diagonal plane remains

planar and constant in the y-direction throughout the analysis. The opposite side of the diagonal

symmetric plane is neither a free surface nor a true symmetry plane. A reasonable compromise is

to couple the y-displacements of the nodes on the slice plane. The effect of this constraint is that

the slice plane is free to move in the y-direction, but that the surface is required to remain planar.

Boundary constraints applied to a typical slice model are shown in Fig. 2.6. For all models

presented in this work, the printed circuit board length is truncated at a distance after the package

length. For a diagonal slice model, the ball pitch is the hypotenuse (l.l314mm) of the true ball

pitch (O.80mm). The y-dimension or width of the slice model is one-half the solder ball pitch

(O.5657mm).

16
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UY=O on all plane surfaces

UY coupled on all plane
surfaces

UX=o on all plane
surfaces

UX coupled on PCB
vertical surface

1
VOLUHIS

HAT HUB

Fig. 2.6. Boundary constraints applied to a typical slice model (Zahn, 2000a).

2.2.1 Simplified Flip Chip Model

l' A simplified flip chip model is used for the first part of the simulation. The layer

configuration of the model is shown in Fig. 2.2. By comparing Fig. 2.2 with Figs. 2.3 through
l'

2.5, a few details of the flip chip package assembly are omitted from this m<;>del. The solder mask

layers on the substrate and on the printed circuit board are not included in this model. The

substrate pads and the board pads are not included as well. The solder mask defined (SMD) layer

on top of the solder balls is also omitted from the model. This configuration simplifies

17
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Fig. 2.7. Simplified diagonal slice model of the flip chip package.

OCT" 11 2003
10:10:48

J\NSYS1
VOLUHIS
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Based on Table 2.1, a three dimensional model of the flip chip package is drawn using

resulting mesh are shown in Figs. 2.7 and 2.8 respectively. The close-up details at one of the

the commercial software ANSYSTM "7.0. The half diagonal slice finite element model and the

solder ball joint and its resulting mesh are shown in Figs. 2.9 and 2.10 respectively.
. . . .

and computational time required.

considerably the finite element model at the solder ball joints and hence reduces the modeling
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Fig. 2.8. Meshed simplified slice model of the flip chip package.

Fig. 2.9. Close-up details of a solder

ball joint.

Fig. 2.10. The resulting mesh ofa

solder ball joint.

The entire model utilized a mapped or structured finite element mesh with 5506 elements and

7652 nodes. Typical solution run times are about 1.15 hours to 1.3 hours depending on the

accelerated temperature cycling test condition applied.

19
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Fig. 2.11. Detailed diagonal slice model of the flip chip package.
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For the second part of the simulation, a more detailed flip chip model is used for

in Figs. 2.13 and 2.14 respectively

half diagonal slice finite element model and the resulting mesh are shown in Figs. 2.11 and 2.12

the model. The substrate pads and the board pads along with the solder mask layers on the

respectively. The close-up details at one of the solder ball joints and its resulting mesh are shown

substrate and printed circuit board are included in the model. Based on Table 2.1 and Figs. 2.2

through 2.5, a three dimensional model of the flip chip package is drawn in ANSYSTM 7.0. The. . . .

2.2.2 Detailed Flip Chip Model

simulation. As shown in Fig. 2.5, the SMD layer on top of each solder ball joints is included in
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Fig. 2.12. Meshed detailed slice model of the flip chip package.

Fig. 2.13. Close-up details of a solder

ball joint for the detailed model.

Fig. 2.14. The resulting mesh of a solder

ball joint for the detailed model.

21



The entire model utilized a mapped or structured finite element mesh with 6920 elements and
9308 nodes. Typical solution run times are about 1.25 hours to 1.42 hours depending on the
accelerated temperature cycling test condition applied.

2.3 Material Properties and Modified Anand Constants

Tables 2.2 through 2.8 show the material properties incorporated in the finite element

models. As seen from the tables, most of the properties used in the analysis are dependent only

on temperature.

Table 2.2. Die material properties (Intel).

Table 2.3. Die attach/underfill material properties (Intel).

22

Table 2.4. Mold material properties (Intel).

0.279

Poisson's Ratio

0.3

Poisson's Ratio

.Poisson's Ratio
0.3

CTE (11K.)

-0.028 + 0.0005T - 4xl0-6T2

+ lxl0-8T3
- 3xlO-11r

+ 3xlO-14T5 _ lxl0-17T6

Temp. (K) CTE (IlK.)

200 2.36E-6
250 2.63E-6
293 2.81E-6
325 2.89E-6
350 2.98E-6
425 3.3E-6
450 3.5E-6
500 3.61E-6

Temp. (K) CTE (11K.)

223 1.545E-5
410 5.020E-5

435.5 3.901E-5

Young's Modulus (MPa)

-268349 + 4631.4T - 32.27T2

+ 0.117T3
- 0.0002r

+ 2xl0-7T5 _ lxlO-10T6

Temp. (K)
Young's Modulus

(MPa)

233 21300
273 19900
298 19000

Temp. (K)
Young's Modulus

(MPa)
213 131000
233 131000
273 130000
293 130000
323 130000
373 129000
500 129000



323 18100
373 16100
423 2200
498 600

573 4.192E-5

Table 2.5. Substrate material properties (Intel).

Young's Modulus
(MPa)

29664 - 39.455T (X,Y)
7800 (Z)

Shear Modulus
(MPa)

1520 (X,Y)
152 (Z)

CTE (11K)

1.6x 10-5 (X,Y)
6x10-5 (Z)

Poisson's Ratio

·0.39 (X,Y,Z)

Table 2.6. Solder ball material properties (Intel).

1_

Young's Modulus (MPa)
75827 - 151.64T

CTE (1IK)
2x10-5 + 2x10-8T

Poisson's Ratio
0.35

Table 2.7. Printed circuit board material properties (Intel).

Young's Modulus
(MPa)

29664 - 39A55T (X,Y)
7800 (Z)

Shear Modulus
Pa

1520 (X,y)

152 Z

CTE (11K)

1.6x1O-5 (X,Y)
6x10-5 (Z)

Poisson's Ratio

0.39 (X,Y,Z)

Table 2.8. Substrate mask/PCB mask material properties (Intel).

Young's Modulus (MPa) 1.1f----C-T-E.......(1-~:--')------l
4137 . . 30xl~

T is material properties temperature in Kelvin

2.3.1 Anand's constitutive model and Darveaux's constitutive model

Poisson's Ratio
0040

Anand (1982) presented a constitutive model to describe the deformation of metals at

elevated temperature. Anand's model is described by equations (1) to (4).

23



Anand's constitutive relations are proposed for rate-dependent viscoplasticity model.

Plasticity is defined by the propensity of a material to undergo permanent deformation under

(2)

(3)

(1)

(4)

is the effective inelastic deformation rate

is the strain rate sensitivity of hardening

is the strain rate sensitivity of saturation value

is the coefficient for deformation resistance saturation value

is the hardening constant

is the strain rate sensitivity of stress

is the multiplier of stress

is the initial value of deformation resistance

is the activation energy/Boltzmann's constant

is the pre-exponential factor

• [dep / dt ( Q)]ns =s" exp -
A kT

s
B=I--.

s

24

n

Q/k

s

m

a'

A

S"

where dep

dt



load. Viscoplasticity is defined when creep is taken into consideration with plasticity. Anand's

model however does not consider rate-independent plasticity.

Darveaux (2000) has through his work presented his constitutive relations that describe

the deformation behaviour of solder joints through equations (5) to (9) as shown below. Steady

state creep of solder is expressed by the relationship of

dss =C..[sinh(au)]n exp(- Qa)
dt kT

(5)

where dss is the steady state strain rate, k is the Boltzmann's constant, T is the absolute
dt

temperature, u is the applied stress, Qa is the apparent activation energy, n is the stress exponent,

a prescribes the stress level at which the power law dependence breaks down, and Css is a

constant.

Transient creep at constant stress and temperature can be described by

s = d.Ss t+s (l_exP(_B dSs
t)J

C dt T dt
(6)

where Se is the creep strain, dss is the steady state creep rate, Sr is the transient creep strain, and
.~ .

B is the transient creep coefficient.

The instantaneous creep rate is given by
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where Sin is the total inelastic strain.

(7)

(8)

(9)

ds ds ( (dS )J_c =_s l+s
T
Bexp _B__s t

dt dt· dt

Darveaux's model is adopted. However, Darveaux has also noted that many commercial finite

As mentioned earlier, equation (8) is the time-independent plastic strain which has not

independent plasticity as well as the time-dependent phenomenon. Due to this reason,

been taken into consideration by Anand's model as Anand's model is only meant for a rate-

by the sum of creep strain and plastic strain

There is also a time-independent plastic strain component to the deformation at high

where sp is the time-independent plastic strain, G is the shear modulus, and Cp and m p are

element analysis softwares do not have his proposed constitutive relations incorporated.

constants. This component is not considered in Anand's model. The total inelastic strain is given

dependent plasticity approach. Darveaux's model however incorporates both the time-

stresses when -rIG> 10.3•

where dss is the steady state creep rate.
dt
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ANSYSTM for example has viscoplastic elements as a standard option but utilizes Anand's

constitutive model. Therefore, in order to include time-independent plasticity, Darveaux utilized

an iterative process to determine the Anand constants that provide results which is comparable to

results obtained by Darveaux's model. By doing this, Darveaux has modified the constants in

Anand's constitutive relation to account for both time-dependent and time-independent

phenomenon. These modified Anand constants are given in Table 2.9. Using ANSYSTM as the
. . . .

finite element analysis tool, the Anand plasticity data table is activated for the solder ball

material and the constants listed in Table 2.9 are incorporated into the simulation. Solder ball

materials are meshed in ANSYSTM using the VISC0107 elements, whereas all other package

materials are meshed using SOLID45 elements.

Table 2.9. Darveaux modified Anand constants (Darveaux, 2000).

Constant Parameter Value Definition
Cl So (MPa) 12.41 Initial Value ofDeformation Resistance
C2 O/R (llKelvin) 9400 Activation Ener~y/Boltzmann's Constant
C3 A (l/sec) 4.0E+06 Pre-Exponential Factor
C4 E, (dimensionless) 1.5 Multiplier of Stress
C5 m (dimensionless) 0.303 Strain Rate Sensitivity of Stress
C6 ho(MPa) 1378.95 Hardenin~ Constant

C7 s (MPa) 13.79
Coefficient of Deformation Resistance

Saturation Value
C8 n (dimensionless) 0.07 Deformation Resistance Value
C9 a (dimensionless) 1.3 Strain Rate Sensitivity ofHardenin~

2.4 Solder Joint Fatigue Life Prediction Methodology

Darveaux (2000) utilized two different methodologies to calculate the strain energy

density accumulation in solder joints. The first method was based on non-linear Finite Element

27



Analysis. Simulations were carried out with a slice model as well as with a quarter symmetry

model to calculate the plastic work per unit volume (or viscoplastic strain energy density). The

second method was a combination of a linear finite element analysis to calculate assembly

stiffness and imposed strain on the solder joints plus a non-linear analysis to calculate strain

energy density.

Besides that, Darveaux had also carried out a series of tests using ceramic chip carriers. . .

and eutectic hall grid array joints with 8 thermal cycle conditions. Crack length measurements

were carried out for all the tests involved and the measured crack growth data are correlated with

the calculated inelastic strain energy density. The crack growth data were fit into the equations

[~­

[-I

(--1-­

[--,

I.-
(

I

constants.

28

I ~I I

( ill

(J II
(II
( I.
( I.
I L~

rJ ,I __il

I-~~I

.1~LaI
r~1
rLmi

(10)

(11)da =K3(LlW )K4
dN ave

in equations (10) and (11).

By measuring the crack growth rate of actual solder joints under a series of tests and

data, Darveaux was able to establish the four crack growth correlation constants (KUhrough K4)

for crack initiation "No" and crack propagation rate "dakiN' as shown in equations (10) and (11).

controlled eutectic solder element thickness. Kl,K2, K3, and K4 are crack growth correlation

with calculated inelastic strain energy density per cycle in the solder. Using. the crack growth

thermal cycle conditions, Darveaux (2000) was able to correlate the measured crack growth data

"LlWave " is the element volumetric average of the stabilized change in plastic work within the
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However, precautions must be taken as the methodology is sensitive to the finite element

modeling procedure. Care must be taken in controlling the element thickness at the interface

between the eutectic solder and substrate pad. Element volumetric averaging must also be used

since the calculated strain energy density increases as element size in the solder joint decreases.

This procedure reduces singularity issues whereby the sensitivity of the finite element meshing

affects the plastic work simulation results.. .

Darveaux (2000) provided crack growth correlation constants for fifteen different

configurations using ANSYS that include the type of finite element model used, the simulation

method involved, the time step scheme of the simulations and the thickness of element layers in

averaging. Since the models used in this work are slice models that utilizes ANSYS for non-

linear finite element analysis, there are only two configurations given by Darveaux that fits these

criteria. The only difference between the two configurations is the choice of a fine or course time

step scheme. Both configurations require that the element interface thickness is at 0.0254 mm (1

mil). In the present work, a fine time step scheme is chosen and the only set of crack growth

correlation constants that fit into all the above mentioned criteria are shown in Table 2.10.

Table 2.10. Darveaux K1 through K4 crack growth correlation constants.

Constant Value
K1 22400 cycles/psi
K2 -1.52
K3 5.86x 10.7 in/cycle/psi
K4 0.98

With the crack growth correlation constants in Table 2.10 and the calculated strain energy

density obtained by ANSYS simulation, the characteristic solder joint fatigue life "a,v" can then
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Two temperature cycle profile known as B-test and X-test are used for the simulations.

2.5 Temperature Cycling Tests: B-Testand X-Test

(~.

I~.­

1-1'
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1-:
1 1

1 r

I,
I,
I,

I
I
I
I;
1-1

I

I-J-
.J

1r.J

(12)
a

a =N +---
W 0 da/dN

a certain sample size (Darveaux, 2000).

cumulative distribution of failures by calculating cycles to first failure and the failure free life of

Zahn (2000a) has also noted that material intermetallic layers normally present at the

defined as the characteristic life at which 63.2% of the population (sample) in a test has failed

and "aw" is a deterministic function. However, "aw" can further be used to find out the

crack to propagate across the entire solder joint diameter "a" as shown in equation (12). "aw" is

be calculated by summing the cycles to crack initiation with the number of cycles it takes for the

solder pad/solder ball interfaces have mechanical influences on the fatigue life of the solder

Darveaux derived his fatigue life prediction methodology using actual measurement data of

assumed to have been indirectly taken into consideration in the predicted results.

solder joints, which are presumed to have similar intermetallic structures, their influence can be

Each test has distinctively different profile and temperature ranges. The B-test is a standard

temperature cycling procedure documented in the JEDEC standard JESD22-A104-B. JEDEC

(Joint Electronic Device Executive Council) is an organization that prepares and publishes test

joints. These effects are not directly included in the finite element models. However, since

Intel Technology Sdn. Bhd.

standards designed to serve the public interest. The X-test is an industry standard provided by



the X-test.

The microelectronic industry selectively applied different test conditions to simulate the

different types of environment in which the final product with the flip chip package is being

also not subjected to a maintained temperature loading at the highest and lowest temperature in

Fig.

2.15.
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For both the simplified and the detail model, two simulations are carried out, namely the

140

120

100

G' 80
Q

-- 60e= 40....
e 20
~

Cote 0
~

E-t -20

-40

-60

-80

targeted for used.

time. In com~arison, the X-test has a .relatively more relaxed .temperature cycling ran?-e where

the extremes of the temperature range are lower than that of the B-test. The package assembly is

B-test and the X-test. The temperature cycle profiles for a B-test and an X-test are shown in Figs.

is also being subjected to a maintained highest and lowest temperature loading for a period of

package assembly is subjected to higher temperature range. In the B-test, the package assembly

2.15 and 2.16 respectively. As seen from Figs. 2.15 and 2.16, the B-test is more stringent where
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Three dimensional non-linear finite element modeling is used to calculate the strain
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Fig. 2.16. Temperature cycling test X.

Temperature cycling test B.

because many different layers of materials exist within the PCBs. Due to this reason, PCB can no

energy density accumulation in solder joints. ANSYSTM is used to model the three-dimensional

materials as linear elastic solids. The printed circuit boards are modeled as orthotropic solids

longer be considered as isotropic material as the material properties is no longer independent of

direction. PCBs may have different elastic constants (Young's modulus, Poisson's ratio, and

finite element diagonal slice model of the flip chip package. The solder material is modeled as a

viscoplastic solid, the printed circuit boards as orthotropic linear elastic solids, and the rest of the

shear modulus) in the three principle directions.

2.6 ANSYSTM Solution Methodology
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are used to initiate the simulation.

that the difference in life prediction by a two thermal cycle's simulation and a three thermal

enter solution processor
set solver and tolerance
set analysis type
set large def and strain
set Newton-raphson solution
write data to .rst file

The goal of the simulations is to calculate the plastic work per unit volume or viscoplastic

!SET SOLUTION OPTIONS
/solu
eqslv,pcg,1.Oe-08
antype, static, new
nlgeom, on
nropt,auto"off
outres,all,last

Once the diagonal slice model has been completed and appropriately meshed as shown in

temperature "hitmp" of the thermal cycle sequence. Each thermal cycle in the B-test consists of

Variables such as temperature and time used in the thermal cycle can be set in
ANSYSTM using variable names and equations. The analysis will use one substep for every 10
degrees K of temperature change in a thermal ramp load step as suggested by Darveaux (2000)
and as calculated by the variable "rmpstp". Once the solution setup is complete and the solution
variables are set, the commands to initiate the two thermal cycles for each test conditions can be
entered.

For the B-test, the ANSYSTM zero strain reference temperature is set to the high

four load steps (ramp low, dwell low, ramp high, and dwell high). Thus a complete B-test

Figs. 2.9 and 2.13, the boundary constraints as shown in Fig. 2.6 are applied to the model.

Having done this, the following ANSYSTM solution setup commands, as shown in Zahn (2000a)

accumulated during the last cycle was used for all crack growth correlations.

three thermal cycles, 30-35% of simulation run times can be reduced. The plastic work

to establish a stable stress-strain hysteresis loop. Through experience and observation of other

cycle's simulation is less than 5%. However, by simulating only two thermal cycles instead of. . . .

strain energy density accumulated per thermal cycle. Two thermal cycles were simulated in order

publications that incorporate Darveaux's methodology, Zahn (2000a) has indicated in his work
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test simulation of two thermal cycles consists of nine load steps.

required for the first thermal cycle and the second thermal cycle are included as well.

temperature is set as the assembly temperature. In the X-test, the first load step ramps low from
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high cycle temperature (K)
low-high ramp time (sec)
high dwell time (sec)
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turn off auto time step
set substeps
apply temp to all nodes
linearly ramp loads
set time
write load step file 1

turn on auto time step
set substeps
apply temp to all nodes
maintain loads
set time
write load step file 2

!set zero strain temp

!set low cycle temp (K)
!set high-low ramp time (sec)
!set low dwell time (sec)
!calculate delta temperature
!calculate ramp substeps

VARIABLES
!set
!set
!set

The following sequence of ANSYSTM commands indicates the setting of thermal cycle

B-Test:

!SET THERMAL CYCLE
hitmp 125+273
hirmp 10*60
hidwl 5*60

high, ramp low, ramp low, ramp high) define the first thermal cycle. Therefore, a complete X-

!DWELL LOW (LOAD STEP 2)
autots,on
nsubstp,10,100,1
bf,all,temp,lotmp
kbc,1
time,lormp+lodwl
Iswrite,2

variables and the settingof the zero strain reference temperature in the B-Test. The commands

!RAMP HIGH (LOAD STEP 3)

lotmp -55+273
lormp 10*60
lodwl 5*60
delta hitmp-Iotmp
rmpstp = delta/10

simulation of two thermal cycles consists of eight load steps. For the X-test, the reference

the assembly temperature to the room temperature. Then the foUowing four load steps (ramp

tref,hitmp

! RAMP LOW (LOAD STEP 1)
autots,off
nsubstp,rmpstp
bf,all,temp,lotmp
kbc,O
time,lormp
Iswrite,1



follows:

for load steps 5 through 8 must be adjusted appropriately. This can be done by adding a

multiplier in front of each of the time constants for load steps 5 through 8 respectively as

To continue with second thermal cycle, the above ANSYSTM command groups for load steps 1

35

!solve all load step files

!turn off auto time step
!set substeps
lapply temp to all nodes
!linearly ramp loads
!set time
!write load step file 3

ISET THERMAL CYCLE VARIABLES

X-Test:

is used to solve all the eight load steps.

lssolve,1,8,1

time,2*lormp+lodwl+hirmp+hidwl !LS5
time,2*lormp+2*lodwl+hirmp+hidwl !LS6
time,2*lormp+2*lodwl+2*hirmp+hidwl !LS7
time,2*lormp+2*lodwl+2*hirmp+2*hidwl !LS8

To execute the eight load steps written to the ANSYSTM load step files, the following command

through 4 are repeated. However, the t-value indicating time in the ANSYSTM "time,t" command

lOWELL HIGH (LOAD STEP 4)
autots,on lturn on auto time step
nsubstp,lO,lOO,l !set substeps
bf,all,temp,hitmp !apply temp to all nodes
kbc,l !maintain loads
time,lormp+lodwl+hirmp+hidwl !set time
lswrite,4 !write load step file 4

autots,off
nsubstp,rmpstp
bf,all,temp,hitmp
kbc,O
time,lormp+lodwl+hirmp
lswrite,3
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asstmp = 85+273
hitmp = 85+273
rotmp 27+273
lotmp -45+273

!set assembly temp (K)
!set high cycle temp (K)
!set room temp (K)
!set low cycle temp (K) I~
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!RAMP LOW (LOAD STEP 4)
autots,off
nsubstp,rmpstpc
bf,all,temp,lotmp
kbc,O
time,assrmp+rohirmp+hirormp+rolormp
lswrite,4

,-j

I~
•.J

I

I

I
I

I

I

time (sec)

!set zero strain temp

!calc delta temp A
!calc ramp substeps A
!calc delta temp B
!calc ramp substeps B
!calc delta temp C
!calc ramp substeps C

assembly temp to room temp ramp
room-high temp ramp time (sec)
high-room temp ramp time (sec)
room-low temp ramp time (sec)
low-room temp ramp time (sec)

!RAMP LOW (LOAD STEP 3)
autots,off
nsubstp,rmpstpb
bf,all,temp,rotmp
kbc,O
time,assrmp+rohirmp+hirormp
lswrite,.3

!RAMP HIGH (LOAD STEP 2)
autots,off
nsubstp,rmpstpb
bf,all,temp,hitmp
kbc,O
time,asstmp+rohirmp
lswrite,2

!RAMP LOW (LOAD STEP 1)
autots,off
nsubstp,rmpstpa
bf,all,temp,rotmp
kbc,O
time,assrmp
lswrite,l

deltaa = asstmp-rotmp
rmpstpa' = deltaa/lO
del tab = hitmp-rotmp
rmpstpb = deltab/10
deltac = rotmp-lotmp
rmpstpc = deltac/10

tref,asstmp

assrmp = 390 !set
rohirmp 200 ! set
hirormp 200 ! set
rolormp = 200 !set
lorormp 200 !set
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!RAMP HIGH (LOAD STEP 5)
autots,off
nsubstp,rmpstpc
bf,all, temp, rotmp
kbc,O
time,assrmp+rohirmp+hirormp+rolormp+lorormp
Iswrite,5

To continue with the second thermal cycle, the above ANSYSTM command groups for load steps
2 through 5 are repeated. However, the t-value indicating time in the ANSYSTM "time,t'"
command for load steps 6 through 9 must be adjusted accordingly. This can be done by adding a
multiplier in front of each of the time constants for load steps 6 through 9 respectively as
follows:
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worst-case· solder joint. can be identified by plotting the nodal plastic work of the solder ball

only the 0.0254mm (1 mil) thick layer of solder ball material elements at the joint interface are

materials at the end of the last load step. Once the worst-case solder joint has been identified,

!solve all load step files

Once the two thermal cycles (eight load steps for B-test and nine load steps for X-test)

time,assrmp+2*rohirmp+hirormp+rolormp+lorormp !LS6
time,assrmp+2*rohirmp+2*hirormp+rolormp+lorormp !LS7
time,assrmp+2*rohirmp+2*hirormp+2*rOlormp+lorormp !LS8
time,assrmp+2*rohirmp+2*hirormp+2*rolormp+2*lorormp !LS9

To execute the nine load steps written to the ANSYSTM load step files, the following command is

used.

Issolve,1,9,1

have completed execution, it is necessary to obtain the jj.Wave for the worst-case solder joint. The

selected using the ANSYSTM ESEL (element select) command. Once the 0.0254 mm thick layer

of solder ball material elements which make up the solder joint have been selected within
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ANSYSTM, the below sequence of ANSYSTM commands are then used to calculate !1Wave. The

set of commands below are for a B-test. An X-test uses the same commands below with the

exception of that of the first line for each cycle.

!CALC AVG PLASTIC WORK FOR CYCLE 1
set,4,last,1 !for X-test, use the command: set,5,last,1
etable,vtable,volu
etable,vsetable,nl,plwk
smult,pwtable,vtable,vsetable
ssum
*get,sumplwk,ssum"item,pwtable
*get,sumvolu,ssum"item,vtable
wavgl=sumplwk/sumvolu

!CALC AVG PLASTIC WORK FOR CYCLE 2
set,8,last,1 !for X-test, use the command: set,9,last,1
etable,vtable,volu
etable,vsetable,nl,plwk
smult,pwtable,vtable,vsetable
ssum
*get,sumplwk,ssum"item,pwtable
*get,sumvolu,ssum"item,vtable
wavg2=sumplwk/sumvolu

!CALC DELTA AVG PLASTIC WORK
dwavg=wavg2-wavgl

Since Oarveaux provides crack growth correlation constants in English units, it is

important to remember to convert the simulated !1Wave (ANSYSTM constant "dwavg") from units

of MPa to units of psi. Also, the solder joint diameter should be converted from units of mm to

units of inches. These values can then be substituted into equations (10) through (12) to obtain
> >

cycles to crack initiation, crack propagation rate, and solder joint characteristic fatigue life

respectively.

2.7 Summary
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. . . .

will be used in the finite element simulations and subjected to two temperature cycling profiles.
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A non-linear finite element analysis approach will be utilized to predict the fatigue life of

solder joints. ANSYSTM will be used as the finite element simulation software tool. A general

approach in the prediction of solder joint fatigue life is shown in Fig. 2.17. As seen from Fig.

2.17, a typical slice model of the package assembly is first created in ANSYSTM. The slice model

The strain energy density accumulated per cycle can then be determined in the post processing of

each simulation. Based on the type of analysis carried out and also the model used in the

simulation, four crack growth correlation constants can be determined (Darveaux, 2000). Using

the crack growth correlation constants and the strain energy density calculated, the number of

cycles to crack initiation can be calculated. Also by using the crack growth correlation constants

and the number of cycles to crack initiation, the crack growth rate per thermal cycle can be

determined. Finally, the characteristic solder joint fatigue life can be calculated using the number

of cycles to crack initiation, the crack propagation rate and the joint diameter at the interface of

the solder ball. Artificial Neural Network (ANN) and Genetic Algorithm (GA) will then be used

for parametric study and optimization.
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Create a half
diagonal slice

model in
ANSYS.

ANSYS simulation: calculate
strain energy density

accumulated per cycle.

Calculate number of
thermal cycles to
crack initiation.

Calculate crack
propagation rate

per thermal cycle.

Calculate
characteristic
solder joint
fatigue life

Parametric study using
ANN and GA

Fig. 2.17 Solder joint fatigue life prediction method.
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CHAPTER 3
RESULTS AND DISCUSSION

3.1 Results

Two diagonal slice models are created to study the effect of model simplification on the

solder ball joint fatigue life. The first model is the simplified flip chip slice model shown in Fig.

2.7 and the second model is the detailed flip chip model shown in Fig. 2.11. Both slice models

are subjected to two different test conditions, namely a B-test condition and an X-test condition.

The interest of each simulation is to study the fatigue life of the solder joint interfaces, both at

the ball/substrate interface and at the ball/board interface. Results shown subsequently will be

listed as follows:

i) Simplified Model: B-Test (3 view angle of worst-case solder ball)

ii) Simplified Model: X-Test (3 view angle of worst-case solder ball)

iii) Detailed Model: B-Test (3 view angle of worst-case solder ball)

iv) Detailed Model: X-Test (3 view angle of worst-case solder ball)

Graphical plots of nodal solution will concentrate on the von Mises stress distribution of

the worst-case solder ball joint and the corresponding solder joint plastic work. Since the interest

of this work is to study the stresses at the solder ball joint interfaces, only plots of von Mises

nodal stress distribution at the worst case solder balls are selected to be displayed. Von Mises

equation as defined in ANSYS 7.0 Documentation, is a measure of shear strain in a material. The

equivalent strain for the elastic, plastic, creep and thermal strains are computed in postprocessing

using the von Mises equation. Therefore, von Mises stress is chosen because this stress is

1
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Section 3.2 will highlight the results obtained for the simplified slice model and

solder ball from the package centre.

deformation.

directly related to the distortion energy and IS appropriate for material undergoing plastic

the two sections are nodal solution plots of the worst-case solder joint which are at the eighth. . . .

subsequently, section 3.3 will highlight the results obtained for the detailed slice model. For each

section, results for B-test will be shown first followed by results of X-test. All figures shown in
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3.2 Simplified Flip Chip Model

3.2.1 B-Test
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Fig. 3.1a. Von Mises stress distribution. Fig. 3.1b. Plastic work
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Fig. 3.1c. Von Mises stress distribution.
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Fig. 3.1d. Plastic work
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Fig. 3.1e. Von Mises stress distribution.

3.2.2 X-Test



Fig. 3.2c. Von Mises stress distribution. Fig. 3.2d. Plastic work

1
acm.lL SOLUTIO.

STlP·,1I1lIl-,
TIlII-l"O
nov ("'VOI
DII)( -,0118"
!J!III -2.851
SJ!X -.2.1)5

I\NSYS
OCT U 2003

10:57:40

1
WDAL SOJ,UtIOJJ

S'fIP-'
SUB _,

TIln-lnO
InPLVK (AVOI
JUlYS-O
D!IX -,aHU3
SPIH-.OOU03
11'0(· ... 287

'YS
OCT U 2003

10:&1:27

2.851 11.127 20.604 29.48 38.351
1.289 16.1156 2.5.042 33.919 42.ns

. DOU03 . """03
.478553 1.431 2.383 3.335

3.811

Fig. 3.2e. Von Mises stress distribution.

3.2.3 Simulation Results

Fig. 3.2f. Plastic work

Figs. 3.1a through 3.1f show the von Mises stress distribution of the worst-case solder

joint at three different view angles with their corresponding solder plastic work distribution for

the B-test. As seen from the figures, highest stress occurs at the edge of the top solder ball

interface while the area around the circumference of the solder ball diameter has the lowest

stress. High stress concentration is also observed at the bottom solder interface. This is consistent

with the fact that the top solder surface and the bottom solder surface is attached to the substrate

and printed circuit board respectively. Therefore, differing expansion of package components

due to thermal mismatch of the various package materials will cause high stress concentration at

the solder ball Interfaces. The solder plastic work distribution also indicates that high stress

concentration area also has high plastic work done.

Figs. 3.2a through 3.2f also show similar von Mises stress distribution of the worst-case

solder joint at three different view angles with their respective solder plastic work distribution for
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the X-test. Similar trends as discussed in the previous paragraph are also observed from the

figures.

As indicated at the end of Chapter 2, a 0.0254mm thick layer of solder ball elements at

the joint interfaces are selected to calculate the averaged plastic work. This value will then be

used to determine the solder fatigue life using equations (10) to (12). Table 3.1 shows the results

of the calculation for solder fatigue life for the simplified slice model subjected to the B-test. . . .

condition and the X-test condition. Included in the table is the location of the diagonal slice

model failure ball (from the model centre). Also included is the viscoplastic strain energy density

which is substituted into Equations (10) and (11) to calculate cycles to crack initiation and crack

propagation rate respectively. The solder joint diameter, cycles for the crack to propagate across

this diameter, and the characteristic solder joint fatigue life (63.2% population failure) are also

provided in Table 3.1.

Table 3.1. Results for simplified flip chip model.

Data Description B-Test (-55°C to 125°C) X-Test (-45°C to 85°C)

Ball/Substrate Solder Joint
Failure Joint (From Centre) 8 8
Delta Plastic Work/Cycle (MPa) 1.0620 0.4506
Delta Plastic Work/Cycle (psi) 154.02 65.35
Crack Initiation (cycles) 11 39
Crack Growth Rate (mm/cycle) 0.2073E-02 0.8950E-03
Solder Joint Diameter (mm) 0.30 0.30
Crack Propagation (cycles) 145 335
Characteristic Life (cycles) 156 374

Ball/Board Solder Joint
Failure Joint (From Centre) 8 8
Delta Plastic Work/Cycle (MPa) 0.8159 0.2587
Delta Plastic Work/Cycle (psi) 118.34 37.51
Crack Initiation (cycles) 16 91

6



The above results are obtained by running the simulations on a desktop computer with
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Fig. 3.3a. Von Mises stress distribution.

these specifications: (Pentium III Processor 1.0 GHz, 1 Gbyte RAM, Windows NT Professional

3.3 Detailed Flip Chip Model

3.3.1 B-Test

operating system).

Crack Growth Rate (mm/cycle) O.l601E-02 0.5190E-03
Solder Joint Diameter (mm) 0.30 0.30
Crack Propagation (cycles) 187 578
Characteristic Life (cycles) 203 669

Model Size and Run Time Info.
Total Model Nodes 7652 7652
Total Model Elements 5506 5506
CPU Run Time (Hrs) 1.02 0.88
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3.3.2 X-Test

Fig. 3.3f. Plastic work
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Fig. 3.4a. Von Mises stress distribution. Fig. 3.4b. Plastic work
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3.3.3 Simulation Results

Figs. 3.3a through 3.3f show the von Mises stress distribution of the worst-case solder

joint at three different view angles with their corresponding solder plastic work distribution for

the B-test. As seen from the figures, highest stress concentration occurs at the edge of the top

surface of the SMD layer which is also considered as solder material in the analysis. The area

around the circumference of the solder ball diameter also shows the lowest stress. High stress
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concentration is also observed at the bottom edge of the solder ball. This is consistent with the

fact that the top SMD surface and the bottom solder surface is attached to the substrate and

printed circuit board respectively. Therefore, differing expansion of package components due to

thermal mismatch of the various package materials will also cause high stress concentration at

the solder ball interfaces. The solder plastic work distribution also indicates that high stress

concentration area also has high plastic work done.

Figs. 3.4a through 3.4f also show similar von Mises stress distribution of the worst-case

solder joint at three different view angles with their respective solder plastic work distribution for

the X-test. Similar trends as discussed in the previous paragraph are also observed from the

figures.

As indicated earlier, a 0.0254mm thick layer of solder ball elements at the joint interfaces

are selected to calculate the averaged plastic work. This value will then be used to determine the

solder fatigue life using equations (10) to (12). Table 3.2 shows the results of the calculation for

solder fatigue life for the detailed slice model subjected to the B-test condition and the X-test

condition. Included in the table is the location of the diagonal slice model failure ball (from the

model centre). Also included is the viscoplastic strain energy density which is substituted into

Equations (10) and (11) to calculate cycles to crack initiation and crack propagation rate

respectively. The solder joint diameter, cycles for the crack to propagate across this diameter,

and the characteristic solder joint fatigue life (63.2% population failure) are also provided in

Table 3.2.

Table 3.2. Results for detailed flip chip model.

Data Descri tion B-Test (-55°C to U5°C) X-Test (-45°C to 85°C)

10



Ball/Substrate Solder Joint
Failure Joint (From Centre) 8 8
Delta Plastic Work/Cycle (MPa) 0.5407 0.16QO
Delta Plastic Work/Cycle (psi) 78.42 23.21
Crack Initiation (cycles) 30 188
Crack Orowth Rate (mm/cycle) 1.07E-03 0.324E-03
Solder Joint Diameter (mm) 0.30 0.30
Crack Propagation (cycles) 280 925
Characteristic Life (cycles) 310 1113

BalllBoard Solder Joint
Failure Joint (From Centre) 8 8
Delta Plastic Work/Cycle (MPa) 0.3051 0.09119
Delta Plastic Work/Cycle (psi) 44.25 13.23
Crack Initiation (cycles) 71 442
Crack Growth Rate (mm/cycle) 0.6110E-03 0.1870E-03
Solder Joint Diameter (mm) 0.30 0.30
Crack Propagation (cycles) 491 1605
Characteristic Life (cycles) 562 2047

Model Size and Run Time Info.
Total Model Nodes 9308 9308
Total Model Elements 6920 6920
CPU Run Time (Hrs) 1.58 1.38

The above results are obtained by running the simulations on a desktop computer with

these specifications: (Pentium III Processor 1.0 GHz, 1 Gbyte RAM, Windows NT Professional

operating system).

3.4 Discussion

Four simulations are done using two package diagonal slice models. Two of the
simulations are carried out using the simplified flip chip model while the other two simulations
are carried out using the detailed flip chip model. Tables 3.1 and 3.2 indicate the detailed
simulation results for the two flip chip models.

Results of the stress distribution and plastic work distribution as shown in the
figures in section 3.2 and section 3.3 are rarely seen in published literature as most of them are
interested in the final solder joint fatigue life. Therefore comparison of solder stress distribution

11
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with the literature is not a feasible option. However a general comparison of the solder fatigue
life with published results can still be adopted to determine whether if the characteristic solder
fatigue life calculated is acceptable.

In the overall comparison between the simplified flip chip model and the detailed
flip chip model, the simplified models have a relatively shorter fatigue life compared to the
detailed models. This indicates that no simplification should be done on the actual model, as this
will only cause premature failure of the flip chip package. The results also show that small
details at the solder joint interfaces are important to maintain the structural integrity of the flip
chip package and hence, should be included in any simulation models used. From the four
simulations carried out, inclusion of all the package layer details results in a doubled package
fatigue life for the B-test and. a tripled package fatigue life for the X-test. Therefore this also
establishes that model simplification is not an option for this type of analysis.

Since model simplification has been ruled out, only results of solder life from the
detailed model will be used for comparison with other published results. The present work as
indicated in Table 3.2 shows that for the joint at the ball/substrate interface, solder life is 310
cycles for the B-test and 1113 cycles for the X-test. Results observed from lahn (2000a), shows
8 different package configurations with different temperature cycles applied, producing solder
lives at the ball/substrate interface that range from 287 cycles to 1130 cycles. Table 3.2 in the
present work also shows that for the joint at the ball/board interface, solder life is 562 cycles for
the B-test and 2047 cycles for the X-test. Similar comparison with lahn (2000a) shows a solder
life range for the ball/board interface to be from 690 cycles to 1536 cycles. Keeping in mind that
none of the package configurations used by lahn are similar to the present flip chip
configuration adopted for this work and the temperature cycle profile used by lahn is also
different from the present B-test and X-test adopted, differences in the comparison of solder lives
are expected. However, the ranges of solder joint life obtained in the present work are still within
the generally acceptable range.

In all four simulations evaluated, the solder joint at the package substrate fails
first while the fatigue life at the ball/board interface has almost double the life expectancy of that
at the ball/substrate interfaces. The first failure ball at both solder ball joint interfaces for all
simulations occurs at the eighth solder ball, which is the last solder ball from the package centre,
at the diagonal edge of the package.

The next chapter will discuss about the package parametric study and the use of ANN

and GA for optimization.

12
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an additional five simulations can be done in between the specified ranges for each parameter.

CHAPTER 4
PARAMETRIC STUDY AND OPTIMIZATION

For the parametric study, six package dimensions will be involved. The six package

In the previous chapter, a comparison is made between the simplified flip chip model and

ranges of the package dimensions should not deviate too much from the original model in the

The chosen ranges for each parameter and their respective increments are shown

and it should also be smaller than the package substrate size. Increments are chosen in a way that

any two materials). For example, the bottom die size should noi be smaller than the top die size

control case and they should also be physically possible to model (Le. no intersection in between

study will be carried out to look at the effect of each package dimension on the overall package

solder ball standoff height, the top solder mask opening diameter and the bottom die thickness. A

dimensions involved are the board thickness, the substrate thickness, the bottom die size, the

fatigue life. The values of these parameters will be varied in a range so that the original values of

4.1 Parametric Study

X-test condition.

the detailed flip chip model. From the results obtained, it is recommended that all simulations
. . . .

should be carried out using the detailed flip chip model. Keeping this in mind, the detailed flip

parameter. This is carried out in order to determine what the effect of increasing or decreasing a

chip model used in Chapter 3 is taken as the standard case model for a parametric study using the

each package dimension as in the standard case model fall in between the chosen ranges for each

package dimension will have on the characteristic solder ball fatigue life. Values for the chosen

subsequently:



2

Parameters Life Cycles

1.17 0.168 7.9198 0.3 0.3254 0.13 1807 3666
1.37 0.168 7.9198 0.3 0.3254 0.13 1380 2634

Board Substrate Bottom Solder Solder Bottom Balli Balli
Thickness Thickness Die Size Ball Mask Die Substrate Board

Height Opening Thickness Interface Interface
-I

increment~

Table 4.1. X-Test Parametric Study

X-Test arametrlc stud Detailed FII Chi Model

1
2

c) 5.6570 mm ~ Bottom die size ~ 8.4855 mm with 0.5657 mm increments

e) 0.3154 mm ~ Top solder mask opening diameter ~ 0.3654 mm with 0.01 mm

b) 0.108 mm ~ Substrate thickness ~ 0.208 mm with 0.02 mm increments

t) 0.11 mm ~ Bottom die thickness ~ 0.16 mm with 0.01 mm increments

d) 0.27 mm ~ Solder ball standoff height ~ 0.32 mm with 0.01 mm increments

a) 1.17 mm ~ Board thickness ~ 2.17 mm with 0.2 mm increments

Simulation
No.

All together, an additional 30 simulations are carried out for the parametric study. A summary of
the simulated results is shown in Table 4.1.
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7.9198 0.3254
7.9198 0.3254
7.9198 0.3254
7.9198 0.3254
7.9198 0.3254
7.9198 0.3254

9 1.57 0.188 7.9198 0.3 0.3254 0.13 1246 2251
10 1.57 0.208 7.9198 0.3 0.3254 0.13 1391 2469
11 1.57 0.168 5.6570 0.3 0.3254 0.13 4080 8075
12 1.57 0.168 6.2227 0.3 0.3254 0.13 3071 5832
13 1.57 0.168 6.7884 0.3 0.3254 0.13 2309 4238
14 1.57 0.168 7.3541 0.3 0.3254 0.13 1657 2984

28 1.57 0.168 7.9198 0.3 0.3254 0.14 1036 1897
29 1.57 0.168 7.9198 0.3 0.3254 0.15 970 1771
30 1.57 0.168 7.9198 0.3 0.3254 0.16 913 1663

22 1.57 0.168 7.9198 0.3 0.3354 0.13 1113 2050
23 1.57 0.168 7.9198 0.3 0.3454 0.13 1105 2052
24 1.57 0.168 7.9198 0.3 0.3554 0.13 1092 2054
25 1.57 0.168 7.9198 0.3 0.3654 0.13 1074 2056
26 1.57 0.168 7.9198 0.3 0.3254 0.11 1317 2456
27 1.57 0.168 7.9198 0.3 0.3254 0.12 1206 2232

* The highlighted rows indicate the original package dimensions as in the standard case
model. This serves to show where the original package dimensions fit in the data above and
how each parameter is varied with respect to their original value.

Figs. 4.1 through 4.6 display the summarized results from Table 4.1 in graphical plots.
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As seen from Fig. 4.7, the board thickness, the bottom die size and the bottom die thickness
show a decreasing trend with increasing parameter values. The top solder mask opening is
almost constant for all data points. On the other hand, the substrate thickness and the solder ball
height show an increasing trend with increasing parameter values.

Fig. 4.8 also shows the comparison of all six package parameters and their effect on the

Fig. 4.7. Effect ofpackage dimensions on the solder fatigue life.
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for the control case model. From the existing six data points, ANN is used to further predict

additional data points in between each of the original six ANSYS™ simulated data points.

Keeping in mind that there are two solder ball interfaces to consider, 2 sets of data will be used

4.2 Application of Artificial Neural Network for Fatigue Life Prediction

the parametric study. Each dimension has six ANSYSTM simulated data points including the data

other data points within a known set of data. A total of six package dimensions are involved in

As seen from Fig. 4.8, the fatigue life distribution for the ball/board interface shows an almost
similar trend with the fatigue life distribution of the ball/substrate interface. The only difference
is the values of the fatigue life, which approximately double those at the ball/substrate interface.



te interface and another

dictions as compared to

Predictions

(mm) Increment
(mm)

.12 0.05

.203 0.005

.344 0.141425

.3175 0.0025

.3629 0.0025

.1575 0.0025

I

i

i
I

Table 4.2 indicates the data points ranges used for the ANN pre

8

4.2.1 Prediction for the Parameter 'Board Thickness'

Table 4.2. Data points for ANSYS and ANN.

ANSYS Simulations ANN
Package Parameter

Data range (mm)
Increment

Data range
mm

Board thickness 1.17 to 2.17 0.2 1.22 to 2
Substrate thickness 0.108 to 0.208 0.02 0.113 to 0
Bottom die size 5.6570 to 8.4855 0.5657 5.798 to 8
Solder ball hei ht 0.27 to 0.32 0.01 0.2725 to 0
Solder mask 0 enin 0.3154 to 0.3654 0.01 0.3179 to 0
Bottom die thickness 0.11 to 0.16 0.01 0.1125 to 0

the data point ranges used in the ANSYS simulations.

to train the network for each package dimension, one for the baillsubstra

for the ball/board interface.
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Table 4.3 shows the predicted values of the characteristic fatigue life for the
parameter 'Board Thickness' at both solder ball joint interfaces. The following figures depict the
data in Table 4.3 in graphical plots with Fig. 4.9a showing the effect of board thickness at the
ball/substrate interface and Fig. 4.9b showing the effect of board thickness at the ball/board
interface. Both figures show a good conformance between the ANSYS simulated results and the
ANN predicted results.

9

Table 4.3. Data for ANSYS simulations and ANN predictions (Board Thickness).

ANSYS Simulations ANN Predictions

Board Characteristic Life (cycles) Board Characteristic 'Life (cycles)

Thickness Ball/Substrate BalllBoard Thickness Ball/Substrate BalllBoard
(mm) Interface Interface (mm) Interface Interface

1.17 1807 3666 - - -
- - - 1.22 1696 3364

- - - 1.27 1585 3089

- - - 1.32 1478 2846

1.37 1380 2634 1.37 1380 2634

- - - 1.42 1295 2452

- - - 1.47 1225 2296

- - - 1.52 1166 2162

1.57 1113 2047 1.57 1113 2047

- - - 1.62 1064 1946

- - - 1.67 1019 1855

- - - 1.72 976 1769

1.77 938 1687 1.77 938 1687

- - - 1.82 910 1607

- - - 1.87 873 1534

- - - 1.92 845 1478

1.97 818 1448 1.97 818 1448

- - - 2.02 793 1427

- - - 2.07 770 1382

- - - 2.12 749 1327

2.17 732 1282 - - -
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Table 4.4 shows the predicted values of the characteristic fatigue life for the parameter

11

Table 4.4. Data for ANSYS simulations and ANN predictions (Substrate Thickness).

'Substrate Thickness' at both solder ball joint interfaces. Fig. 4.1 Oa shows the effect of substrate

results and the ANN predicted results.

thickness at the ball/substrate interface and Fig. 4.10b shows the effect of substrate thickness at. . . .

the ball/board interface. Both figures show a good agreement between the ANSYS simulated

4.2.2 Prediction for the Parameter 'Substrate Thickness'

ANSYS Simulations ANN Predictions

Substrate Characteristic Life (cycles) Substrate Characteristic Life·(cycles)
Thickness Ball/Substrate Ball/Board Thickness Ball/Substrate Ball/Board

(mm) Interface Interface (mm) Interface Interface

0.108 786 1542 - - -
- - - 0.113 810 1578
- - - 0.118 834 1616
- - - 0.123 858 1655

0.128 884 1695 0.128 884 1695
- - - 0.133 910 1735
- - - 0.138 937 1777
- - - 0.143 964 1819

0.148 993 1864 0.148 993 1863
- - - 0.153 1022 1907
- - - 0.158 1051 1953
- - - 0.163 1082 2000

0.168 1113 2047 0.168 1113 2048
- - - 0.173 1145 2097



- - - 0.178 1178 2147

- - - 0.183 1211 2198
0.188 1246 2251 0.188 1245 2250

- - - 0.193 1281 2304
- - - 0.198 1316 2358

- - - 0.203 1353 2413
0.208 1391 2469 - - -
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Fig. 4.10b. ANN Predictions for BalllBoard Interface

4.2.3 Prediction for the Parameter 'Bottom Die Size'

Table 4.5 shows the predicted values of the characteristic fatigue life for the parameter

'Bottom Die Size' at both solder ball joint interfaces. Fig. 4.11a shows the effect of substrate

thickness at the ball/substrate interface and Fig. 4.11 b shows the effect of bottom die size at the

ball/board interface. Both figures show a good agreement between the ANSYS simulated results

and the ANN predicted results.

Table 4.5. Data for ANSYS simulations and ANN predictions (Bottom Die Size).

ANSYS Simulations ANN Predictions

Bottom Die
Characteristic Life (cycles)

Bottom Die
Characteristic Life (cycles)

Size (mm) Ball/Substrate BalllBoard Size (mm) Ball/Substrate BalllBoard
Interface Interface Interface Interface

5.6570 4080 8075 - - -
- - - 5.7980 3891 7460

- - - 5.9400 3647 6875

- - - 6.0810 3362 6331

6.2227 3071 5832 6.2230 3071 5833

- - - 6.3640 2817 5381

- - - 6.5060 2617 4969
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Ball/Substrate Interface: Effect of Bottom Die Size

Bottom Die Size (diagonal length, mm)
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- - - 6.6470 2457 4592
6.7884 2309 4238 6.7880 2309 4239

- - - 6.9300 2156 3905

- - - 7.0710 1994 3584

- - - 7.2130 1825 3277
7.3541 1657 2984 7.3540 1657 2985

- - - 7.4960 1497 2711

- - - 7.6370 1352 2462

- - - 7.7780 1224 2240
7.9198 1113 2047 7.9200 1113 2049

- - - 8.0610 1017 1886

- - - 8.2030 932 1752

- - - 8.3440 856 1643
8.4855 786 1555 - - -



Table 4.6. Data for ANSYS simulations and ANN predictions (Solder Ball Height).

Table 4.6 shows the predicted values of the characteristic fatigue life for the parameter

thickness at the baIVsubstrate interface and Fig. 4.12b shows the effect of bottom die size at the

ball/board interface. Both figures show a good agreement between the ANSYS simulated results

98.58

ANN Predictions
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15
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'Bottom Die Size' at both solder ball joint interfaces. Fig. 4.12a shows the effect of substrate

and the ANN predicted results..

4.2.4 Prediction for the Parameter 'Solder Ball Standoff Height'

-~

~
r
l

[I
I
'I
I.
I.
I.

"
I.
L.
I.

1
1



Solder Ball
Characteristic Life (cycles)

Solder Ball
Characteristic Life (cycles)

Height (mm) Ball/Substrate Ball/Board Height (mm) Ball/Substrate Ball/Board
Interface Interface Interface Interface

0.27 989 1856 - - -
- - - 0.2725 999 1871

- - - 0.275 1009 1886

- - - 0.2775 1020 1901
0.28 1030 1916 0.28 1030 J916

- - - 0.2825 1040 1932

- - - 0.285 1051 1948

- - - 0.2875 1061 1964
0.29 1072 1981 0.29 1071 1980

- - - 0.2925 1082 1997

- - - 0.295 1092 2013

- - - 0.2975 1103 2031
0.3 1113 2047 0.3 1113 2048

- - - 0.3025 1123 2065

- - - 0.305 1134 2083

- - -' 0.3075 1144 2101
0.31 1155 2121 0.31 1155 2120

- - - 0.3125 1165 2139

- - - 0.315 1176 2158

- - - 0.3175 1186 2177
0.32 1197 2196 - - -
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4.2.5 Prediction for the Parameter 'Solder Mask Opening'

Table 4.7 shows the predicted values of the characteristic fatigue life for the parameter

'Solder Mask Opening' at both solder ball joint interfaces. The following figures depict the data

in Table 4.7 in graphical plots with Fig. 4.13a showing the effect of board thickness at the

ball/substrate interface and Fig. 4.l3b showing the effect of board thickness at the ball/board. . . .

interface. Both figures show a good conformance between the ANSYS simulated results and the

ANN results.

Table 4.7. Data for ANSYS simulations and ANN predictions (Solder Mask Opening).

ANSYS Simulations ANN Predictions

Solder Mask Characteristic Life (cycles) Solder mask Characteristic Life (cycles)

Opening Ball/Substrate BalllBoard Opening Ball/Substrate BalllBoard
(mm) Interface Interface (mm) Interface Interface

0.3154 1098 2048 - - -
- - - 0.3179 1104 2047

- - - 0.3204 1107 2047

- - - 0.3229 1111 2048

0.3254 1113 2047 0.3254 1113 2048

- - - 0.3279 1114 2048

- - - 0.3304 1115 2049

- - - 0.3329 1115 2049

0.3354 .1113 2050 0.3354 1115 2049

- - - 0.3379 1114 2050

- - - 0.3404 1112 2050

- - - 0.3429 1109 2051

0.3454 1105 2052 0.3454 1106 2051

- - - 0.3479 1102 2052
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Table 4.8. Data for ANSYS simulations and ANN predictions (Bottom Die Thickness).

Table 4.8 shows the predicted values of the characteristic fatigue life for the parameter

in Table 4.8 in graphical plots with Fig. 4.l4a showing the effect of board thickness at the

[
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'Bottom Die Thickness' at both solder ball joint interfaces. The following figuresdepictthe data

ball/substrate interface and Fig. 4.14b showing the effect of board thickness at the balllboard

4.2.6 Prediction for the parameter 'Bottom Die Thickness'

interface. Both figures show a good conformance between the ANSYS simulated results and the

ANN results.
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ANSYS Simulations ANN Predictions

Bottom Die Characteristic Life (cycles) Bottom Die Characteristic Life (cycles)
Thickness Ball/Substrate Ball/Board Thickness Ball/Substrate Ball/Board

(mm) Interface Interface (mm) Interface Interface

0.11 1317 2456 - - -
- - - 0.1125 1287 2397

- - - 0.115 1259 2339

- - - 0.117~ 1232 2284
0.12 1206 2232 0.12 1206 2232

- - - 0.1225 1182 2182

- - - 0.125 1158 2135

- - - 0.1275 1135 2090
0.13 1113 2047 0.13 1113 2047

- - - 0.1325 1092 2007

- - - 0.135 1072 1968

- - - 0.1375 1053 1932
0.14 1036 1897 0.14 1035 1897

- - - 0.1425 1017 1863

- - - 0.145 1001 1831

- - - 0.1475 985 1801
0.15 970 1771 0.15 969 1771

- - - 0.1525 954 1743

- - - 0.155 940 1715

- - - 0.1575 927 1689
0.16 913 1663 - - -
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4.2.7 Discussion

Looking back at Figs. 4.9 through 4.14 in the previous section, it is easily perceived that

the fatigue life predictions are easily anticipated due to the almost linear plots in most of the

graphs. This is also supported by the fact that most of the plots in Figs. 4.9 through 4.14 are

showing either an increasing trend or a decreasing trend except for Fig. 4.13a. In fact one can. . . .

easily fit these curves to different equations and use the equations for life prediction within the

specified ranges. These factors raise the important question of the practicality of using ANN for

fatigue life predictions, when a simple line plot of the six ANSYS simulated data can give a

fairly accurate prediction for all the other data points. This issue will be addressed in the

following discussion.

All the plots in Figs. 4.9 through 4.14 only involve one changing parameter, with the

other five parameters fixed at the same value as in the standard case model. It is true that in such

scenario, the fatigue life predictions can be easily carried out with a simple line plot. However,

such a method will become impossible if more than one package dimension is changing or if the

plots become more complicated. This necessitates the use of ANN for a more versatile

prediction, as the ANN can take care of all the difficulties mentioned above.

4.3 Verification of ANN Predictions

As a comparison and also as a verification that ANN predicted fatigue lives agree well·

with ANSYS simulated fatigue lives, three sets of six parameter values not plotted in any graphs

in the previous section are used for fatigue life prediction. Three sets of package dimensions as

shown in Table 4.9 are chosen for verification. First ANN uses the existing data for training and
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Then ANSYS is used to remodel new finite element models based on the three chosen sets of

by both ANN and ANSYS are very close to each other, within a 100 cycles difference.

predict the fatigue life. This value is then compared with the value obtained through ANN.
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bh == ball height;

Table 4.9. Fatigue life comparison.

Table 4.9 displays the chosen set of parameter values and their respective fatigue lives

* b == board;

package dimensions. For each set ofpackage dimensions chosen, an ANSYS simulation is run to

predicted both by ANN and ANSYS. As can be seen from Table 4.9, the fatigue lives predicted. . . .

to predict the fatigue lives of the mentioned sets of package dimensions shown in Table 4.9.

ANN Predicted Fati2ue Life ANSYS Simulated Fati2ue Life
*Parameters

Ball/Substrate
Ball/Board

Ball/Substrate
BalllBoard

(mm) Interface Interface
Interface (cycles)

(cycles)
Interface (cycles)

(cycles)

Set 1
b == 1.42
st == 0.175
ds == 7.3541

2016.6 3913.4 2068 3871
bh == 0.295
mo == 0.3404
dt == 0.125

Set 2
b == 1.85
st == 0.133
ds == 6.7884

1294 2485.8 1313 2398
bh== 0.276
mo== 0.3504
dt == 0.146

Set 3
b == 1.61
st == 0.154
ds == 7.3541

1309.7 2393.3 1362 2357
bh== 0.313
mo == 0.3304
dt == 0.152



st = substrate thickness;
ds = die size;

mo = mask opening;
dt = die thickness;

4.4 Parametric Optimization with ANN and GA

The parametric study carried out in section 4.1 of this chapter studies the effect of 6

package dimensions on the overall package solder life. By knowing how certain package

. dimension changes with the solder fatigue life, parametric optimization can be achieved by'

selectively reducing or increasing certain package dimensions accordingly so that solder fatigue

life can be maximized. From results shown in Figs. 4.1 through 4.6, it can be deduced that solder

fatigue life can be optimized by reducing the thickness of the PCB board, increasing the

thickness of the substrate, reducing the size of the bottom die, increasing the height of the solder

ball standoff height and also by reducing the bottom die thickness.

Besides the parametric study carried out, ANN and GA can also be used to predict

possible package dimensions for a limited fatigue life cycle range. For this purpose, a program is

executed with ANN and GA. In addition to that, a few lines of programming commands enable

GA to selectively collect the combination set of package dimension values that fall within the

user specified fatigue life cycle range. By collecting these data, a rough idea of the variation of

package parameter values that gives a limited range of solder fatigue life can be determined.

Consider the case of the detailed flip chip model used for an X-test simulation in Chapter

3. The fatigue life at the ball/substrate interface is 1113 cycles whereas the fatigue life at the

ball/board interface is 2047 cycles. In the case when the need to increase or decrease the solder

fatigue life arises, the above methodology can be utilized to predict and to be decided upon,

which package parameter should be changed in order to meet the new requirements. The
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following data in Table 4.10 list the possible combination of package parameter values for a

given solder fatigue life constraint of between 1000 to 1100 cycles.

Table 4.10. Parametric Data for Ball/Substrate Interface

Combination Board Substrate Bottom Die Ball Height Mask Die Thickness Life Cycle
No. Thickness Thickness Size Opening (1000-1100)

5 1.817 0.197 7.751 0.279 0.320 0.118 1081
9 1.462 0.197 8.371 0.304 0.342 0.121 1019

11 1.684 0.154 7.946 0.307 0.328 0.112 1063
25 1.865 0.192 7.456 0.281 0.332 0.118 1040
42 1.211 0.127 8.460 0.277 0.316 0.159 1063
84 1.652 0.167 7.932 0.314 0.332 0.133 1060
86 1.978 0.201 7.378 0.311 0.344 0.129 1096
100 1.821 0.141 7.167 0.288 0.335 0.140 1017
112 1.774 0.148 7.508 0.293 0.342 0.116 1010
124 1.947 0.201 7.102 0.274 0.329 0.120 1030
136 1.978 0.201 7.290 0.313 0.346 0.151 1079
325 1.477 0.199 8.380 0.313 0.321 0.140 1079
359 1.558 0.135 7.604 0.273 0.316 0.130 1016
516 1.517 0.167 8.468 0.307 0.332 0.112 1069
611 1.516 0.155 8.328 0.306 0.343 0.114 1058
3019 1.841 0.194 7.796 0.306 0.330 0.151 1029
3776 2.096 0.157 6.525 0.315 0.363 0.128 1009
4054 2.046 0.176 7.178 0.291 0.323 0.113 1098
4582 1.638 0.126 7.795 0.317 0.337 0.113 1093
6723 1.657 0.157 7.797 0.318 0.324 0.136 1080
8966 1.640 0.204 8.316 0.316 0.325 0.126 1027
9208 2.157 0.152 6.162 0.277 0.341 0.144 1038

The results shown are some of the possible combinations ofpackage parameters that give

a solder life cycle in between 1000 to 1100 cycles at the ball/substrate. It will be up to the user to

decide upon which package dimension to change after considering the data in Table 4.1 O. Other

combination of package dimensions for a given solder life cycle ranges at the ball/substrate

interface are given in Appendix A. Appendix B also list down all the possible combination of

package dimensions for different life cycle ranges at the ball/board interface.

Through the data shown in Table 4.10, Appendix A and Appendix B, solder fatigue life

can be maximized. The data generated and displayed in Tables 4.10, Appendix A and Appendix

B are based on very loose constraints on the package parameters. Therefore, changes in the

package parameters shown are very random to make any trend out of them. By introducing more
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constraints on the package dimensions, the randomized changes can be reduced and the

methodology employed can therefore produce more useful data.
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CHAPTERS

CONCLUSIONS

5.1 Overall Conclusions

A finite element analysis based methodology for estimating the characteristic fatigue life

of a solder joint interconnect under accelerated temperature cycling has been applied to predict

the reliability performance of a flip chip package. The method uses the ANSYSTM finite element

analysis tool along with Anand's viscoplastic constitutive law. Darveaux's crack growth rate

model was applied to calculate solder joint characteristic life using simulated viscoplastic strain

energy density results at the package substrate and printed circuit board solder joints.

Two package configurations were evaluated with the above methodology, with the first

being a simplified flip chip model and the second being a detailed flip chip·model. Each of these

configurations was subjected to two accelerated temperature cycling test, namely the B-test and

the X-test. Simulation results indicate that for the simplified flip chip model, the characteristic

life results for the X-test are 59-70% greater than the results for the B-test. For the detailed flip

chip model, the characteristic life results for the X-test are 72-73% greater than the results for the

B-test. Generally, the results also indicate that the solder joint at the comer end of the package

tends to fail first. The characteristic lives of solder joint at the package ball/board interface are

24-46% higher than the characteristic lives of solder joint at the package ball/substrate interface.

This means that the interface between the solder ball and substrate will fail first before the

interface between the solder ball and the board.

In addition to the above results, a parametric study has been carried out to determine the

effect of six package parameters on the package characteristic life. The six parameters involved

are the board thickness, the substrate thickness, the bottom die size, the solder ball standoff
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height, the solder mask opening diameter and the bottom die thickness. Results indicate that a

higher solder joint reliability can be achieved with thinner board, thicker substrate, smaller die

size, higher solder ball standoff, and thinner die. Effect of the solder mask opening for the

models studied is relatively insignificant. Overall comparison indicates that the die size has the

most profound effect on the solder joint characteristic life.

With the above results, ANN has been utilized to predict additional solder joint
. .

characteristic life for package configurations' not simulated earlier in the parametric study.

Results obtained show a good match between ANN predictions and simulated results. Further

verification of ANN predictions by re-simulating the package configurations with ANSYSTM

indicate results of characteristic lives that are less than a hundred cycles in difference. It has also

been demonstrated that by consolidating the existing data, GA can be used as a tool to predict

possible package dimensional values for a given constraints on the solder joint characteristic life.

5.2 Suggestions for Future Work

• Numerous methodologies exist to convert finite element simulation results (Le.

viscoplastic strain energy density) to cycles to failure under accelerated temperature

cycling conditions. However, all these methodologies assume the utilization of eutectic

solder materials. Life prediction methodologies for high temperature solder of future non­

lead based interconnect materials, are almost non-existent due to their low volume use in

today's microelectronics packaging industry. Since the packaging industry is striVing

towards a lead-free packaging environment, it is timely that some work be carried out

with regard to this.
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• Results obtained through these methodologies lack general applicability. There are many

different types of packages in the microelectronics industry. From the past work done,

many similarities can be derived from different package analysis, yet the results obtained

from one type of package analysis cannot be fully utilized by the same analysis of a

different package. Therefore, it would be more useful if an analysis of a generalized

scheme of microelectronic packages be carried out so that the findings can be used by. . . .

different types ofmicroelectronic packages.
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