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Abstract

pH control problem is very important in many chemical and biological systems and especially in waste treatment
plants. The neutralization is very fast and occurs as a result of a simple reaction. However, from the control point of
view it is very difficult problem to handle because of its high nonlinearity due to the varying gain and varying
dynamics with respect to the operating point. Introduction of Artificial Neural Networks (ANNSs) in modeling of
process for control purposes is very useful due to their flexibility applications. In this research, feedforward neural
network (NN) model technique are developed to predict the performance of a pH neutralization, which uses a
sulphuric acid as the acidic stream and sodium hydroxide aques as the bes stream. Despite of many advantages of
ANN that have been mentioned in the literature, some problems that can deteriorate neural networks performance
such as lack of generalization has been bothering researchers. This problem has lead to a new approach in applying
neural networks that is called as multiple neural networks (MNN). In MNN, the individual networks are developed
from bootstrap re-samples of the original training a\nd testing data sets. Instead of combining all the developed
networks, these research propose selective combination techniques using backward elimination method. This
techniques essentially combine those individual networks that, when combined, can significantly improve model
generalization, in the other words, at first, all the ihdividual networks are initially aggregated and some of the
individual networks are then gradually eliminated until the aggregated network error on the original training and
testing data sets cannot be further reduced. The analysis on the ability of neural network modeling is based on sum
square error (SSE), mean square error (MSE), relative correlation (R-square) and residual error. The application
results demonstrate that the multiple ﬁeural network (MNN) model techniques significantly create great model

generalization.




Abstrak
Masalah pengawalan pH adalah amat penting dalam kebanyakan proses kimia mahupun biologi terutamanya dalam
sistem rawatan air sisa, Dalam sistem ini, proses peneutralan berlaku begitu pantas dan hanya disebabkan oleh
tindakbalas yang ringkas. Walau bagaimana pun, ianya adalah masalah yang sukar dari aspek sistem kawalan. Ini
-sebabkan oleh sistem yang sangat tidak lelurus yang berpunca dari dapatan dan dinamik sistem yang berubah-ubah.
Pengenalan jaringan neural dalam permodelan dan juga sistem kawalan adalah satu langkah yang amat berguna
disebabkan oleh ciri-ciri jaringan ini yang fleksibel. Dalam kajian ini, model jaringan neural suap depan
dibangunkan untuk meramal prestasi proses peneutralan pH dengan menggunakan asid sulfurik sebagai laluan asid
and natrium hidroksida sebagai laluan alkali. Walaupun terdapat banyak keistimewaan jaringan neural, terdapat juga
celaan yang boleh memesong prestasi jaringan neural seperti kurangnya kebolehan untuk menyepadankan antara
model dan data sebenar. Masalah ini telah menyedarkan para pengkaji dan mengambil langkah untuk
mengaplikasikan satu lagi cabangan jaringan neural yang dipanggil jaringan neural pelbagai. Dalam jaringan neural
pelbagai, setiap jaringan neural dibangunkan dengan kaedah pengsampelan semula ikat-but (bootstrap) set data
latihan dan ujian yang asal. Bagi kajian ini, teknik kombinasi terpilih dengan kaedah penyingkiran belakang
digunakan walaupun terdapat kaedah yang mengkombinasikan semua jaringan neural. Teknik ini
mengkombinasikan jaringan neural yang mana dapat meningkatkan keberkesanan proses penyepadanan data model
dan asal. Dalam kata lain, semua jaringan neural pada mulanya diagregatkan dan kemudian sebahagian darinya
disingkirkan sehingga ralat jaringan agregat bagi set data latihan dan ujian mencapai tahap paling minima. Kaedah
yang digunakan untuk mengukur kebolehan dan keberkesanan model jaringan neural adalah berdasarkan ralat
jumlah kuasa dua, ralat min kuasa dua, pekali kolerasi relatif dan ralat baki. Keputusan bagi kajian ini menunjukkan
bahawa teknik pemodelan jaringan netral pelbagai ini menghasilkan model yang mampu menyepadankan data

model dan asal dengan baik.
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COMPREHENSIVE TECHNICAL REPORT

The aim of this works is to develop neural network modeling technique using real application of pH
neutralization process and also develop a selective combination in multiple neural network modeling
technique. This report consists of 4 sections which is pH neutralization rig, data sampling, result and
discussion and lastly conclusion. The background/introduction of this study will not be given as this
already been presented in the previous research proposal.

1.0 pH Neutralization Set Up

A schematic sketch of the experimental set up is shown in Figure 1. It consists of a 2L continuous
stirred tank reactor (CSTRY), supply tanks, pumps, pH electrodes (pHE), pH transmitter (pHT), a VR200
recorder (pHR) and a controller (pHIC). Agitation is provided in the reactor by means of a mechanical
stirrer. Two supply tanks, Tank 1 and 2 each of 35L capacity contain the required base and acid are
connected to each pump. Two liquid streams, a strong acid 0.01M H,SO, is feed into the CSTR at a
constant flow rate by a masterflex pump and a strong base 0.1M NaOH is feed in by a metering pump.
An exit valve is manually adjust to ensure constant liquid volume in the CSTR and allows the effluent to
flow out continuouély into the waste tank. pH at the outlet of the CSTR is monitored by a pH transmitter
through a pH electrode. The pH transmitter feadihg is sent to the recorder and controller. The control
objective will be achieved through manipulaﬁon of base flow rate that receive corrective signal from the
controller. A sampling period of 1s is recorded in the recorder.

1.1 Raw materials and chemicals
Alkaline (bes) solution
1. Sodium hydroxide (NaOH) 0.1 M
Acid solution.
1. Strong acid — Sulphuriqracid (HS0,) 0.01M

1.2 Experimental set up

In this part, the overall experiments set up will be show according to the flow chart in Figure 2. The
instrumentations are important including where it must be in good condition. Some of them like pH
electrode (sensor), pH transmitter, recorder, controller and pump must be calibrated first. After that,
other equipments like CSTR reactor, stirrer, and tubing must be prepared so that the experiment can
be run. If there is problems occur during the test especially on the accuracy of the reading, the
instrumentations part must re-check or recalibrated to make sure that the data taken from this
experiment is in high quality ( less noise and accurate).
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Figure 1: Schematic sketch of the experimental set-up
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Figure 2: A methodology for the experiment start-up




1.2.1 Pump Calibration
1. To calibrate two different type of pump.
a. Metering pump
b. Masterflex pump

1.1.2 Materials required
1. Tank (21 inch long by 15.5-inch wide).
2. Stop watch.

1.1.3 Procedures ,
1. ‘Each tank is filled up with a certain volume. Ensure that the valve V1, V2 and V3 are
closed. ’
2. A metering pump is selected, and switch on.
3. The pump calibration is started by manually set the stroke length on the pump into 10%
4. Adjust the manipulated variable percent, MV% on the controlier for 10%.
5. As water drop into a mixer tank that pass through the tube plastic which is connected to
pump, the stopwatch as a timer was started and allowed to run throughout the calibration.
6. Continue to monitor the falling water level in mixer tank.
7. As soon as pumped to a certain amount of level (500 mi), turn the pump off and the water
level and time were recorded.
8. After the draining ends, the tank was filling up again. Allow the water level to return to the
original height.
9. Next, continued to increasingly the MV% to 20, 30,40,50,60,70,80,90 and 100.
10. After finish the 100% for the MV, step 3 is continued by increasingly stroke % until
approximately 20, 30,40,50,60,70,80,90 and 100.
11. The pump is calibrated within 10 to 100 stroke%.
12. The experiment is gontinued to masterflex pump without changing the MV%.
13. Record the flow rate (ml per second) for each pump started the value stored in the
Recorder. ' '



1.1.4 Results and Graph

Table 1 Time in second, (s) needed to fill the 500 ml reactor for metering pump, P1

Metering Pump stroke
pump %
10 20 30 40 50 60 70 80 90 100
0 0 0 0 0 0 0 0 0 0 0
10 ([ 5136|2049 | 1184 | 1616 | 1158 | 920 | 695 | 668 | 602 | 584
20 {2076 | 932 | 539 | 717 | 533 | 415 | 348 | 304 | 447 | 263
30 [12901 693 | 344 | 457 | 334 | 263 | 217 | 194 | 176 | 167
MV % 40 936 | 443 | 254 | 335 | 246 | 196 | 165 | 142 | 129 | 125
50 758 | 365 | 201 267 | 198 | 157 | 131 115 | 103 99
60 664 | 303 | 169 | 224 | 165 { 129 | 103 95 85 85
70 577 | 274 | 134 | 191 139 | 106 90 80 72 69
80 515 | 237 | 121 163 | 120 95 80 70 64 61
90 490 | 207 { 111 151 107 84 71 64 57 54
100 | 444 | 186 98 134 99 75 64 58 51 49
106.3 | 443 | 174 94 133 98 75 64 58 51 49

Table 2 Time in second, (s) needed to fill the 500 ml reactor for masterflex pump, P2

Masterflex pump stroke/min
stroke
length 40 60 80 100
20 981 211 345 292 215
40 552 277 212 154 120
60 407 219 154 155 90
80 - 332 166 127 96 75
100 287 143 108 82 63

All reading in unit second(s)




Calibration graph

Flowrate vs manipulated variable percent, MV% for metering pump
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Figure 3: Flowrate versus manipulated variable, MV% for metering pump

Flowrate vs stroke length percent for masterflex pump

R?=0.9793
R? = 0.9634
»
E
e R?=0.9797
13
5 R? = 0.9766
R?=0.9803

120
i stroke length %

]0205pm w 40 spm .60 spm - 80 spm x1005pm]

Figure 4: Flowrate versus stroke length for masterflex pump

Figure 3 and Figure 4 shown that both metering pump and the masterflex pump are in the good
condition and can be use to run this experiment. For data generating purposes, the masterflex pump is
kept at 20% stroke length and 20 spm constantly mean while the metering pump is varies from
20,30,50,60,70,80 and to 90 %stroke.



2.0 Data sampling

The instruments must be in a good condition before an experiment can be run in order to achieve a
good result and also obtained the quality data for modeling. Therefore, several instruments; recorder,
pH sensor and transmitter, needs to be calibrate in order to justify that these instruments are in good
conditions and works well. Once the instruments were calibrated, the wires are ensured to be
connected at the right terminals.

21 Recorder VR200 Calibration

The objective of this calibration is to check whether the reading of the pH value from the input
and output signal is accurate or same signal. It clearly shown in Figure 5, that pH values are
proportional with its input signal. Therefore the signals transfer to the recorder and linearly
corresponding the physical reading of the pH. The data was recorded at every one second.

pH versus input signal for Recoder VR200
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Input signal,volt

Figure 5: Calibrated result of Recorder VR200
2,2 pH Sensor and Transmitter Calibration
The objective of this calibration is to check the capability and sensitivity of the reading. In this
case is the pH reading from the reactor to the recorder and also to the controller? pH tester has been
used as a reference point for this calibration as we assume fhat the pH tester will gave an accurate
reading. Based on the error calculated in Table 3, the maximum error was only 0.4, thus it is assumed
that these etrors are small and negligible.

L3

Table 3: Errors calculated at pH transmitter reading

pH Tester pH Transmitter Error
2.0 1.8 0.2
2.8 2.7 0.1
3.1 2.8 0.3
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2.3 Instrumentation and wirir_lg

The objectives are to make sure that all the instrumentations have been connected correctly at the
right terminals to ensure the accuracy and safety during the experiment. The connections of the
instruments are shown in Figure 6. Once the wiring connections were checked, an experiment was run
to test the links of each instrument. A perfect connection showed that pH transmitter 1 reading was
displayed at the controlier and recorder. Then, the auto mode and set point were set at the controller
and it should be manipulating the base flow rates to reach the set point and the MV, % of the metering

pump is also recorded.
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Figure 6: Instrumentation wiring block diagram



2.4 Modeling technique: Training Using Levenberg-Marquardt method.

Levenberg-Marquardt is an algorithm that trains a neural network 10 to 100 faster than the usual
gradient descent backpropagation method. It will always compute the approximate Hessian matrix,
which has dimensions n-by-n. The Levenberg-Marquardt algorithm was designed to approach second-
order training speed without having to compute the Hessian matrix. When the performance function
has the form of a sum of squares (as is typical in training feedforward networks), then the Hessian
matrix can be approximated as H = J'J and the gradient can be computed as g= JTe where J is the
Jacobian matrix that contains first derivatives of the network errors with respect to the weights and
biases, and e is a vector of network errors. The Jacobian matrix can be computed through a standard
backpropagation technique that is much less complex than computing the Hessian matrix. The
Levenberg-Marquardt algorithm uses this approximation to the Hessian matrix in the following Newton-
like update:

Xt = X — [T + i Te )

When the scalar y is zero, this is just Newton's method, using the approximate Hessian matrix. When p
is large, this becomes gradient descent with a small step size. Newton's method is faster and more
accurate near an error minimum, so the aim is to shift towards Newton's method as quickly as possible.
Thus, p is decreased after each successful step (reduction in performance function) and is increased
only when a tentative step would increase the performance function. In this way, the performance
function will always be reduced at each iteration of the algorithm. In the following code, we reinitialize
our previous network and retrain it using the Levenberg-Marquardt algorithm. The training parameters
for trainim are epochs, show, goal, time, min_grad, max_fail, mu, mu_dec, mu_in¢c, mu_max,
mem_reduc. Once the network weights and biases have been initialized, the network is ready for
fraining. The network can be trained for function approximation (nonlinear regression), pattern
association, or pattern classification. The training process requires a set of examples of proper network
behavior - network inputs p and target outputs t. During training the weights and biases of the network
are iteratively adjusted to minimize the network performance function. The default performance
function for feedforward networks is mean square error mse - the average squared error between the
network outputs a and the target outputs t. Training one hidden layer neural network using Levenberg-
Marquardt method.

function [w1,b1,w2,b2,ise1,ise2]=nntrim(w1,b1, ;1, w2,b2,f2,x,y xt,yt,opt)
[w1,b1,w2,b2,iset,ise2]=nntrim(w1,b1,f1,w2,b2,f2,x,y,xt,yt,opt)

w1 - hidden layer weights, nh x n

b1 - hidden layer bias, nh x 1

f1 - activiation function for hidden layer

W2 - output layer weights, 1 x nh



b2 - output layer bias, 1 x 1

f2 - activation function for output layer

x - input data (training), nr1 x n

y - output data (training), nr1 x 1

xt - input data (testing), nr2 x n

yt - output data (testing), nr2 x 1

opt(1) - maximum iterations between training and testing, default=50
opt(2) - regularization parameter, default=0
Epochs = Maximum number of epochs to train.
Show = Epochs between showing progress.
Goal = Performance goal. —————

Time = maximum time to train in seconds.
Min_grad = minimum performance gradient .
Max_fail = maximum validation failures.

2.4.1 Scale

Before training, it is often useful to scale the inputs and targets so that they always fall within a
specified range. The function scale can be used to scale inputs and targets so that they fall in the small
range [-1,1]. Another approach for scaling network inputs and targets is to normalize the mean and
standard deviation of the training set. ’

function sx = scale(x,means,stds)

2.4.2 Rescale
After training, it is often useful to rescale the outputs so that they always fall back within an original
range. Another approach for rescaling network outputs is to normalize the mean and standard
deviation of the data set.
function rx = rescale(x,mx,stdx)

2.4.3 Evaluation
1. Sum square error, SSE
Sum of Squares Due to Error. - This statistic measures the total deviation of the response
values from the fit to the response values. It is also called the summed square of residuals and
is usually labeled as SSE. A value closer to 0 indicates a better fit,
n
SSE = Z]wi =) ‘ @
2. Relative error, R-square
This statistic measures how successful the fit is in explaining the variation of the data. Put
another way, R-square is the square of the correlation between the response values and the
predicted response values. it is also called the square of the multiple correlation coefficients
and the coefficient of muitiple determinations. R-square can take on any value between 0 and



1, with a value closer to 1 indicating a better fit. For example, an R2 value of 0.8234 means
that the fit explains 82.34% of the total variation in the data about the average. SST is also
called the sum of squares about the mean, and is defined as

SST =3 w,(y,-7) 3
i=1
R - square = R® —1-55E (4)
SST
Residuals

The residuals from a fitted model are defined as the differences between the response data
and the fit to the response data at each predictor value.

residual = data — fit 7
Mathematically, the residual for a specific predictor value is the difference between the

response value y and the predicted response value p

r=y-y ®)
Assuming the model you fit to the data is correct, the residuals approximate the random errors.
Therefore, if the residuals appear to behave randomly, it suggests that the model fits the data
well. However, if the residuals display a systematic pattern, it is a clear sign that the model fits
the data poorly.
Mean sum square error, MSSE
This statistic is also known as the fit standard error and the standard error of
the regression.

N
MSE=—3% (3, - )’ ©)

i=l

1
N

A MSE value closer to 0 indicates a better fit



2.5 Data sampling and Division

The numbers of data are not equal for every pump percent stroke because it depend on the reaction
occur during the process as shown in Figure 7, Figure 8 and Figure 9 respectively. The data were
separated into 3 div_isions which are training, testing and validation (unseen data)

Training Data
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Figure 7: Original training 40 % stroke) and testing (100 % stroke) data for pH (scale)



pH for 60 % stroke

pH for 90 % stroke
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Figure 8: Original validation data for 60 % stroke data
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Figure 9: Original validation data for 90 % stroke data



3.0 Result and Discussion

3.1 Modeling using Single Neural Network (SNN)

Figure 10 and Figure 11 shows the model and actual output in the validation data for single neural
networks (SNN) using original training and testing data. 1t clearly seen that the single neural networks
was performed quite well. The predicted model output showed quite the same as the experiment data,
but there is some errors occurred at the low pH region as well as at the end of the high region and also
at the transition between the low region and middle region. This might be due to the transition of the pH
especially from low region to higher region where the neutralization process was very fast, small
changes in the input (acid flow) give a lot of affect to the process.

This modeling performance was supported by the quantitative analysis in Table 4 and also the residue
analysis in Figure 12 and Figure 13 respectively. From Figure 12 and Figure 13, the relative error or
the predicted and actual data is small which is around 0.05 and 0.1 respectively. It shows that the
variation of error in this model is relatively reasonable and can be assume closed to zero. By
evaluating both performances in graphical measures; the residuals appear randomly scattered around
zero indicating that the model captured the experiment data well.

Further, in the Table 4, the sum square error for training is 0.0392 lower than testing 0.6935. The
correlation coefficient for training is 1 and for the testing is 0.9994. Although the sum square error for
testing is higher than the training, but these phenomena is expected due the model that been

developed using training data.
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Figure 10: Validation for 60% stroke in pH
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Residuals for 90% stroke validation data
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Table 4 Sum square error, mean square error, and R-square for validation data
Data SSETr | SSETs | SSETv | MSSETv | RsquareTr | RsquareTs | RsquareTv
60 0.0392 ; 0.6935| 2.6757 0.0013 1 0.9994 0.9977
90 0.0392 | 0.6935| 0.4584 | 4.64E-04 1 0.9994 0.9996

3.2 Modeling using Single Neural Network (SNN) using resamples Technique (bootstrap)

;A
g

Bootstrap application or bootstrap technique was first introduced in 1979 as a computer based method

for estimating the standard error of empirical distribution. In neural networks bootstrap basically relate

or deals with the sampling to create random data sets for training and testing. By creating an equal
number of bad and good data sampling, it actually improves the generalization ability because it helps
the identification of the characteristic of the scarce class. The motivation of creating those different
inputs or partitions is to create the effective neural network model and also network ensembles. The
bootstrap or bagging basically refers to replication of a training data set where the bootstrap algorithm
re-samples the original training data set. Some of the data samples may occur several times, and other
may not occur in the sample at all. The individual training sets are independent and the neural

networks can be trained in parallel.




As shown in Figure 14 and Figure 15, there is a different between the original data and the data after
applying the boostrap re-sampling techniques.
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Figure 15: Training and testing data for pH (scale) after re-sampling using boostrap.



Then re-sampling technique using boostrap approach is applied and the result was shown in Figure 16
and Figure 17 for 60 % and 90 % stroke data respectively. It clearly seen that from Figure 16 and
Figure 17, single neural networks prediction using resample technique is significantly better than single
neural networked using original data generated in the previous section. The predicted and the
- experiment value can be seen exactly matching for both data. In order to test further the performance

of the model, statistical analysis was carried out which is sum square error (SSE), mean square error
(MSSE) and relative correlation R-square analysis.

The overall statistical analysis result of SSE, MSSE and relative correlation R-square shown in the
Table 5. It is clearly shown in Table 5 that the SSE and the MSSE is quite small, the relative correlation
(R-square) is 1 for re-sampling SNN while in original SNN prediction is slightly lower than 1. Meanwhile
for SSE and MSSE, the original SNN produced higher value compare to re-sampling SNN. It is shown

that the re-sampling SNN model can predict significantly well even though using real process data
compare to original SNN.
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Figure 16: Validation output for re-sampling SNN for 60 % stroke data
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Figure 17: Validation output for re-sampling SNN for 90 % stroke data v
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Table 5: Result of the output based on the single neural networks application on the validation data.

SSETv MSSETv RsquareTv
. - . . Re-
Data Original Re-sampling Original Re-sampling Original .
sampling
SNN SNN SNN SNN SNN

SNN
60 2.6757 0.0988 1.3E-3 4.9652E-005 0.9977 1.0000
90 0.4584 0.0442 4.64E-04 4.4782E-005 0.9996 1.0000




3.3 Modeling using Multiple Neural Networks (MNN) using resamples Technique (bootstrap)

Multiple neural networks (MNN) combination approach is applied and the resuit was shown in Figure
18 and Figure 19 for 60 % and 90 % stroke data respectively. It clearly seen that from Figure 18 and
Figure 19, the muitiple neural networks prediction is significantly better than single neural networked.
The predicted and the experiment value can be seen exactly matching for both data. The performance
of MNN combination is encouraging especially based on the residue analysis which is shown in Figure
20 and Figure 21. The residue is constant for MNN but for SNN is quite inconsistent especially in the
transition of low and upper region. This contributed to the large number of SSE for SNN prediction.

In order to test further the performance of the model, statistical analysis was carried out which is sum
square error (SSE), mean square error (MSSE) and relative correlation R-square analysis as well as
residue analysis. The overall statistical analysis result of SSE, MSSE and relative correlation R-square
shown in the Table 6 and Table 7. it is clearly shown in Table 6 that the SSE and the MSSE is quite
small and in Table 7, the relative correlation (R-square) is nearly to 1 for MNN while in SNN prediction,
it's slightly larger for SSE and MSSE. It is shown that the MNN combination model can predict
significantly well even though using real process data.
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Figure 18: Multiple Neural Networks validation output for 60 % stroke data
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Figure 19: Multiple Neural Networks validation output for 90 % stroke data
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Figure 20: Residue for multiple neural networks (MNN) and single neural network (SNN) prediction for
60 % stroke data
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Table 6: Result of the output based on the single and multiple neural networks application on the
validation data.

SSETv MSSETv
Data
SNN MNN SNN MNN
60 2.6757 0.0880 0.0013 4.4234e-005
90 0.4584 0.0458 4.64E-04 4.6383e-005

Table 7. Result of the output based on the single and multiple neural networks application on the
validation data for R-square. ’

RsquareTv
Data
SNN MNN
60 0.9977 0.9999
90 0.9996 1.0000




3.4 Modeling using selective combination of Multiple Neural Networks (MNN).

Suppose that neural network models are to be developed from the data set {X, Y}, where XeR™ is the
input data, YeR¥ is the output data, N is the number of samples, p is the number of input variables,
and g is the number of output variables. To develop an aggregated neural network model containing n
individual networks, the original data set can be re-sampled using bootstrap re-sampling with
replacement to form n replications of the original data set. The n replications can be denoted as {Xy),
Yo X2, Yok - X Yioh Where XpeR™P, YyeR™, i=1, 2, ..., n. A neural network model can be
developed on each of these replications, which can be partitioned into a training data set and a testing
data set if cross-validation is used in network training and network structure selection. If the predictions

of these n networks on the original data set are denoted asfI ,1;2. }:'n then the sum of squared

errors (SSE) of fhe ith network can be calculated as

SSE, = tracel(Y =)' (¥ ~1)] | ™

For the sake of simplicity in illustration, the simple average method is used in combining the selected‘
networks. If all n networks are combined, then the aggregated network output is:

PO L I
Y==37% ®

i=1

At first we propose to apply support vector machine (SVM) technique. This technique basically refer to
object recognition. Currently this technique is applied to regression and time series prediction task.
Therefore it will be good if we can utilise the capability of the vector machine to combined the output
based on the multiple neural netwoks model. However the SVM were hardly differentiate or select the
best output of the MNN due to the MMN itself the predict the same pattern. Therefore to apply SVM we
need to used totally different individual output then it can work. Thefore we proposed a step wise
method using simple averaging approach as what we call backward elimination (BE) technique.

3.4.1 Backward Elimination

The BE approach bégins with the aggregated neural network containing all the individual networks and
removes one network at a time until the SSE on the training and testing data cannot be further
reduced. The network deleted at each step is such selected that its deletion results in the largest
reduction in the aggregated network SSE on the training and testing data. The BE method is
summarized as follows:

Step 1 Generate n replications of the original data set using bootstrap re-sampling, {Xu), Yo}, Xe2),
Y - Ky Y} and develop a neural network on each replication. Denote the prediction of the ith



network on the original data set as Yi. Calculate the SSE of these networks on the original data using
Eqg (1).

Step 2 Set j=1 and denote | as a set containing the indices of the networks currently included in the
aggregated network and [=[1, 2, ..., n]. Denote J as a set containing the indices of the networks

currently deleted from the aggregated network and J=[], i.e. J is initially empty. Denote I}a ; and SSE()

as, respectively, the predictions and SSE of the aggregated network at stage j.

SSE(j)=trace[<%Zf’,- —Y)’(%Zﬁ -1) ©

iel iel

Step 3 If n-j=0, then go to Step 5;

else
i+t
foriel
A, 1 A
Y9 = Y,
“ n- J Ig—:i
end

k = arg min trace[(F) ~ V)" (F) - 1)]

SSE(j) = trace[(F}) - ¥)" (2 - 1)]

Step 4 If SSE(j)=SSE(j-1), then go to Step 5;
else
I=1-k (i.e. remove k from set I)
J=[J, K]
go to Step 3.

Step 5 Stop

Figure 22 show the multi steps-ahead prediction performance of individual neural networks. It can be
seen from Figure 21 that the individual networks °give inconsistent multi steps-ahead prediction
performance on the training and testing data and on the unseen validation data. For example in Figure
22 shows that network number 14 among the networks with various structures gives the worst
performance on the training and testing data. However, its performance on the unseen validation data
is quite good. This demonstrates the non-robust nature of individual networks. Figure 23 shows the
SSE of multi steps-ahead predictions from aggregated neural networks with various structures. The



aggregated networks under selective combination scheme give quite consistent prediction
performance on the training and testing data and on the unseen validation data. This patent was also

obsérved. for the fixed structure.
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Figure 23: SSE from aggregated neural networks with various structures in pH neutralization process



Table 8 gives the SSE on the unseen validation data of different combination schemes. It can be seen
that the worse one of BE selective combination schemes gives better performance than combining all
the networks and the median of individual networks. In the BE selection methods 5 networks (networks
1, 6, 11, 14, and 17) and 7 networks (networks 1, 5, 7, 11, 17, 18, and 20) were combined for fixed and
various structures. The median of the individual network SSE on the unseen validation data for fixed
and various structures are 90.44 and 90.52 respectively.

Table 8: Overall Results for pH Neutralization Process

Combination schemes SSE on validation data
. Fixed structure 90.44
Median .
Various structures 90.52
Feedback before Fixed structure 57.31
Average L v
combination Varjous structures 43.84
BE Feedback before Fixed structure 41.77
combination Various structures 37.44
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Figure 24: Long range predictions from the best aggregated neural network combination




Table 9: Mean and Standard Deviation When Varying the Parameter in Neural Network Modeling

Std
Combination schemes Mean .
' Deviation
o Fixed structure 93.48 3.52
Median . : :
Various structures 94.43 4.38
Feedback before - Fixed structure 59.16 4.99
Average L — : -
combination Various structures 51.36 4.41
BE Feedback before Fixed structure 50.47 314
' combination Various structures 38.37 1.29

The best combination scheme in this case is “BE with fixed structures with feedback before
combination” with an SSE of 37.44 on the unseen validation data. Figure 24 shows the multi steps-
ahead predictions from this aggregated neural network. Lastly, the initial parameter was change in
order to test whether the proposed methods can get a consistent result even though some of the
condition is different. The result is quite consistent for BE selection method where the mean and
standard deviation is smaller compare to median and averaging methods as shown in Table 9.

3.5 Studying the Effeét of CSTR Capacity and Stirring Rate in Controlling pH Neutralization
Process

3.5.1 Case Study 1: Reactor Tank Capacities

The set points in pH adjustment processes are usually at the steepest part of the titration curve, near
the neutral pH of 7. The process has extremely high gain or sensitivity at this point meaning a'small
amount of changes in reagent will cause remarkable changes in pH value. To study the effect of tank
capacities on the system response, three different pH tracking were used. The servo was varied after
30 minutes at each set point from pH 7 to 9 followed by pH 5. Figure 26 shows the performance of the
pH process under different tank capacities for servo control problems with the correspondihg to the
base flow rate. '

When the set point tracking behavior of each tank was compared, the system was more
capable of bringing the pH to the set points in the largest tank, 1.5L. By using this tank, PID showed a
faster response with minimum oscillations and over/undershoots and settling times less than 10
minutes toward the set point than did in the 1.0L and 0.5L tank as in Figure 25. The errors caused by
the set poin{ changes were instantaneously sensed B'y the controller and immediate corrections in the
base flow were taken as can be seen in Figure 26. This was probably because in 1.5 L tank capacity
with 350 rpm stirring rates, the mixture of acid and base was well mixed. As base flows in the tank, the
pH changes gradually resulting excellent pH control at each set point.



In 1.0L tank with 350rpm stirring rates, PID also showed good control performance but with oscillations
and over/undershoots especially at set point pH 5. This was due to severe changes of base flow rates
into the reactor had caused the pH suddenly changes until the controller finally reached a suitable flow
rates of base. This had taken a longer time especially in obtaining an acidic solution of pH 5. As the
controller was manipulating the base flow rates, a high amount of base was used.

pH Value
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Figure 25: Set point changes at different tank capacities, Time (min) versus pH value

Meanwhile, in tank of 0.5L, PID showed very slow response with extremely poor performance. This
was most probably because -as the tank volume is smaller, minor changes of base flow rates will
caused major changes of pH in the mixture. The controller could not obtain the suita.ble amount of base
needed in this small volume of mixtlre as the pH was fluctuating. A high amount of base had been

used in this process without success.

In order to assess the robustness of the controller at different capacities of tanks, its ability to maintain
the pH value of the effluent stream at the neutral value of pH 7 in the presence of disturbances was
examined. instead of keeping the acid flow rate constant, it was changed from 1.5 ml/s to 3.4 mi/s for
15 seconds. It was disturbed respectively at time 30 minutes which was after it re,aéhed steady state at
pH 7. This characteristic is important in applicatio}ls. such as waste-water treatment, where
disturbances should not cause the pH value of the effluent stream to deviate too much from the set

point.



<

0 T Y T

0 10 20 30 40 50 60 70 80 90
Time,min

|—1.5L (A) —1.0L (B) ---0.5L (C)]

Figure 26: Changes of base flow rate, MV % versus time (min)

FigAure 27 displayed the drop of pH caused by disturbance while Figure 28 showed the controller
performance in rejecting disturbance. Tank A showed a small change of pH value because the
disturbance was introduced only for a short time of 15 seconds, thus it took only 4 minutes to return
back to pH 7. The pH value of Tank B drop to pH 5 with 7 minutes needed to recover back to the -
process pH while Tank C took 10 minutes to trace the set point from pH 3.5. All three different tank
capacity managed to reject the disturbance but at different range of time.
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Figure 27: Disturbance effect at different tank capacities, Time (min) versus pH value
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Figure 28: Changes of base flow rate, MV % versus time (min)

3.5.2 Case Study 2: Stirring Rates
The set points were changed similar to the first experiments which were pH 5, 7 and 9 to

evaluate the controller response at different stirring rates. The servo was varied after 30 minutes at



each set point from pH 7 to 9 followed by pH 5. Figure 29 shows the control of pH at different stirring

rates with the corresponding base flow rate is given in Figure 30.
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Figure 29: Set point changes at different stirring rates, Time (min) versus pH value

100
80 4
32 60 -
>
-
40
20
0 — — v v y y v y y
()} 10 20 30 40 50 - 60 70 80 90
Time, min
|—450rpm (1) —360rpm (2) ---150rpm(3)]

Figure 30: Changes of base flow rate, MV % versus time (min)

Overall, at 450rpm in 1.0L tank, the controller was able to control the pH value at different set
points with minimum oscillations and over/undershoots. This resulted from a complete mixing in which
acid and base molecules were dissociated completely and the pH changes are instantaneous. This



vigorous mixing ensures uniform composition through out the reaction tank thus an accurate
measurement of pH was obtained and consequently an easier and accurate control of pH value.
Referring to Figuré 30, it can be seen that the controller was able to manipulate and maintained the
base flow rates efficiently at éach set point.

At rate 350rpm, the set point tracking response was not as good as at 450rpm especially at pH 5. In
obtaining pH 5, the flow rates of base was decreased, thus stirring rate plays a crucial role in mixing
this less amount of base in the mixture in a short time. This is probably the reason at 350rpm, the
mixing was not fully complete and thus more time is needed to perfectly mix the acid-base mixture.
Therefore, a longer time needed by the controller to reach the set points.

The mixing process with rate 150rpm was inadequate therefore it exhibited a poor controller
performance. Inadequate mixing resulted inaccurate reading of pH measurement. Since this controller
responded based on error of measurement and set point, it will proceed with its action. Therefore, as
shown in Figure 30, several actions taken were inappropriate such as low amount of base were feed
in, in order to obtain an alkaline solution of pH 9. '

To study the controller ability to maintain the pH value of the effluent stream at the neutral value of pH
7, disturbance was introduce by increasing the acid flow rate for 20 seconds. The result was showed in
Figure 31 and the controller response as in Figure 32. From the below Figure 31, at Rate 3, 150rpm,
the pH changes faster followed by Rate 2 and then Rate 1. However, the rejection of disturbance at the
three different rates was almost the same, after 10 minutes, the disturbance was rejected and back to
its initial set point. Therefore, even thqugh Rate 3 showed faster changes of pH, the time it took to
reach the oﬁginal pH is the same aé Rate 1. Thus, Rate 1 can still be considered as the best stirring
rates in rejecting disturbance.
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Figure 31: Disturbance ef_fect at different stirring rates, Time (min) versus pH value
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Figure 32: Changes of base ﬂO\;V_ rate, MV % versus time (min)

4.0 Conclusion » A
A single nreural network (SNN) and multiple neural network (MNN) was developed to model the

performance of a pH neutralization process using experimental data, which was subjected to a series
of different stroke percent for sodium hydroxide stream. The inputs to the network were the sodium



hydroxide stream flow rate and metering pump percent stroke, and the output was the pH values of the
effiuent. The Levenberg—-Marquardt optimization technique was used together with the ‘early stopping’
and regularization methods to improve the robustness of the network. Application to the real pH
neutralization process shows that combining multiple neural networks (MNN) increased the robustness
of neural network models compared to single neural network (SNN). The SSE is decreased as well as
the increment of R-square analysis compare to singlé neurai networks in all validation data. The result
for multiple neural networks combination was consistent especially in residue analysis as well as in R'-
square.

Then the selective combination technique which is using Backward elimination methods is proposed in
order to improve the model generalization performance. In the BE method, initially all individual
net\&orks are included in the aggregated network. Individual networks are then eliminated one at a time
{from the aggregated network until the aggregated ne‘tworkv error on the original training and testing data
canriot be further reduced. BE selective combination methods‘have shown their superiority compared
to the combination of all networks and the median in this case study and it's concluded that combining
rmultiple neural networks can significantly produced better models. ’.

In addition to studying the dynamics of the pH neutralization itself, it was found that the dynamics of the
system are totally dependent on the size of the reactor and also the rate of the stirrer. Therefore to
model the system accurately, the size and the dynamics of the system must be included as part of the
input to the system. | '
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: w techniques to improve neural network model
robustness for nonlinear proce%f? ing and cohtrol. The focus is on multiple neural
networks and also some other tec s that have been reported in the literatures. Single
“neural networks have been dominating neural networks “world”. Despite of many
advanta_ges that have been mentioned in th& litérature, some problems that can deteriorate
neural networks performance such as lack-'of generalisation has been bothering

researchers. Driven by this, neural networks “ ” evolves and converges towards

better representations of the modeled functions tha ead to better generalization and

manages to sweep away all the glitches that have sha swedaeural networks applications.
This evolution has lead to a new approach in applying ne tworks that is called as
multiple neural networks. Just ré}:ently, multiple neural networ. e been broadly used
in myﬁad applications since their performance is literally bette: using single neural

networks in representing nonlinear systems.
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INTRODUCTION
Artificial neural networks have been shown to be able to approximate any continuous
non-linear functions and have been used to build data base empirical models for non-

linear processes [1]. Hence what is a neural network? According to [2].

‘A neufal network is a massive parallel-distributed processor that has a natural capability
for storing experiential knowledge and making it available for use. It resembles the brain
in two respects knowledge is acquired by the networks through a learning process.

Interneuron connectj engths known as synaptic weights are used to store the

knowledge’

Furthermore, the main adv%tage : ,“eural network bésed process models is that they are

easy to build. This feature is g% arly useful when modeling complicated processes

where detailed mechanistic mo e difficult to develop. However a critical

shortcoming of neural networks is that. ften lack robustness unless a proper network

Robustness of the model can be defined as one

training and validation procedure is us

of the baseline to judge the performance of new work models and it is reaifly, related

to the learning or training classes as what Bisho escribed:
‘The importance of neural networks in this conte it they offer very special
powerful and very general framework for representing nondinear mappings from several
input variables to several output variables, where the form of the:mapping is governed by

a number of adjustable parameters.’

Many factors contributed to the successful research on neural networks and among them
the two main factors are as follows. The first one is that neural networks are very
powerful modeling tool capable of modeling extremely complex functions [4, 5, 2]. In
particular, neural networks are non-linéar models, which are very useful in modeling
honlinear- systems that cannot be successfully modeled by linear models. The second
main factor is that neural networks are easy to use and develop and they basically learn

by examples. The neural network users gather representative data, and then invoke a

http://imc.manuscriptcentral.com/apjce
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training algorithm to automatically learn the structure of the data (e.g. [6, 7, 8]). Because
of the tremendous capability of neural networks, currently there are a lot of appﬁcations
of neural networks in industry and business and they are applied in pattern recognition
such as automated recognition of hand-written text, finger print identification and moving
target on a static background (e.g. [9, 10, 11]). Neural networks have also been used in -
speech production where a neural network Vmodel is connected to a speech synthesizer
(e.g. [12, 13]).

Real time control is als¢ : . major application area of neural networks with neural network
models having beéﬁ applied in the monitoring and control of complex plants such as
chemical plants (e.g. [ A 151). Neural networks have been employed in business where
?gplé}edsga role in predicting the stock market trend in certain

period of time (e.g. [16, 17]). A

neural network model ha

ea of applications of neural network models is in

signal processing and other typic glications such as noise suppression, filtering and

digital signal processing technology

In order to improve the robustness of neural ng] s a number of techniques 'have been

developed lately like regularization (e.g. [ 19])J and the early stopping method (e.g. [20]).

Ohbayashi [21] implemented the universal learn -and second order derivatives to

increase the robustness in neural network models. Robustii€ssis enhanced by minimizing
the change in the values of criterion function cause “by tie small changes around
nominal values of system parameters [21]. Lack of the robust ss in individual neural

networks is basically due to the overfitting of the models (e.g. [22

Overtfitting basically refers to the poor generalization of the networks due: to fitting the
noise in the data (e.g. [23]). Furthermore, the trained network might not minimize the
error on the training data set because it has uneontrolled excess dynamics capability or
because the training data itself is corrupted with noise [23]. The representation capability
of a neural network is determined by its size (number of neurons). If networks are 0o
large they can find many solutions which fit the training set data exactly, but which

contain high frequency dynamics is not present in the underlying function. When the data
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is corrupted with noise a second form of overfitting occurs. Here the data itself contain
high frequencies not present in the underlying function, with the result that minimizing

the error on the data set will result in the networks fitting the noise.

Many researchers concentrated on how to increase the robustness of the neural network
models eifher by improving the learning algorithm performance or by improving the
generalisation capabi_lity of the models. However, single neural networks sometimés lack
robustness when the data is insufficient especially when dealing with real world data due

ness of the network is related to the representativeness of the

neural networks sometimes suffer badly’ when applied to unseen
ork might fail to deliver the correct result due to the network

training converged to undésired 1 minima, overfitting, or noise in the data (e.g. [24,

23]). Then multiple neural net e proposed by some researchers to enhance model

ive

robustness. This paper is the con on of the previous review regarding single and

: | multiple neural network modeling t at SomChe2007 [25].

MULTIPLE NEURAL NETWORKS MODEE

As mentioned by Willis ez al [26], more accurate re mn&ation of the processes are

required to ensure good process control performance ¢ ally in Advance Process

Control. Therefore neural network models must be robust orstable when they are applied

to new (unseen) data.

Even though single neural network models are very powerful non-linear modeling tools,
| ndises in the input data sometimes cause the model to overfit [23]. Overfitting and under
fitting is the main problem in developing neural network models. In overfitting, the error
on the training data set is driven to a very small value, but when applied to unseen data,
the network errors are large and the generalization capability of the neural network is
poor. While under fitting is due to that the neural network itself cannot cope with or fails
to capture the relationship within the complex data [27]. A single néural,network model

‘can be described as a neural network model that utilizes only one neural network model
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to represent the system to be modeled. This method however always exhibits some
glitches as mention earlier where the model fails to properly represent the function. A
single neural network model can be depicted as in Figure 1, which shows a three layer

feedforward neural network,

Therefore a lot of techniques have been introduced to improve the generalization
capability of neural network models like regularization techniques (e.g. [22, 23, 28)),

Bayesian Learning (e.g. [8, 29]) and also by using the parsimonious networks structure

model for this approach is network pruning techniques and

séqu'ential orthogo;lal ing techniques. A sequential orthogonal training techniques

gradually builds up a etwork model and avoids unnecessarily large networks
structure [14]. The idea of i‘hulﬁ ral networks came up from Wolpert [31] where he
described about stacked gen‘ n which is a technique for combining different
representations to improve the ove ediction performance. It can'alsoAbe described as
an,afchitecture of network consisting everal sub-models and a mechanism which

combines the outputs of these sub-mod

Bootstrap Re-sampling

“ Bootstrap re-sampling or bootstrap technique was first intfoduce in 1979 as a computer

based method for estimating the standard error of empitt istribution [33]. In neural

networks bootstrap basically relates or deals with the samphrrg to create random data sets

for training and testlng By creating an equal number of bad ané -good data sampling, it
actually improve the generalization ability because it helps the identification of the
characteristic of the scarce class [33]. Zhang [30] demonstrates that sampling by
bootstrap does actually increase the robustness of the model and he came up with
-BAGNET or bootstrap aggregation. ,neural,,n%twork&._, [30, 34]. Figure 2 represents
bootstrap re-sampling with replacement. In this particular realization, data sample 2 was

sampled twice but data sample 6 was not sampled.
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Stacked Neural Networks

Zhang [30] mentioned that the individual neural networks are trained using different
training data sets and/or from different initial weights, then combined. Instead of
choosing the best neural network model among the individual networks, all the neural
networks are combined. Sridhar et al [35] described the outline of the stacked neural
network on how to design and implemenf the stacked generalization techniques. Wolpert
[31] déscribed in detail how the stacked network works. In a glance a stacked neural

network model, as sh in Figure 3, contains several networks developed from the

original training dagit sét and are referred to as the level-0 models. Then the original data

set forms several sub- data during the actual training. Afterward, a level-1 data

There are several types of multiple neiiral.networks but the underlying ideas are basically
similar and the main difference is on
multiple neural networks are described here.
The first category is multiple model neural network . [36, 37]). The training data are
totally different in building the individual networks w 1 can be built using different
inputs in different regions of operation. The idea of th1 oach is to adapt different
information by using different. inputs, and by combinirig. information a better
prediction can be obtained (e.g. [24, 32]). The learning algorithm in each network can
also be different and can be supervised or unsupervised methods. ‘:Another multiple model
approach is introduced by Jacobs et al [38] by using the ‘mixture of local expert’. Then,
Jordan and Jacobs [39] came up with the hierarchical mixture of neural networks. In thié
case they basically discuss about the supervisedﬁlearning algorithm and how the divide

and conquer method works.

Some examples of multiple model applications are in the field of pattern recognition

where different models represent different image classification (e.g. [40, 41, 42]).

http:/mc.manuscriptecentral.com/apjce
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Medical application of multiple models is presented by Jerebko et al [43] where different
classifications of polyps as single neural network models using different inputs are
combined and better prediction rate is obtained. It has also been used in other medical
- fields like in diagnosis application and in detecting the lung cancer [44, 45]. Multiple
models have also been applied in time series forecasting [37]. In this case each model
forecasts a different time series prediction or prediction horizon and this reduces the
recursive prediction promoted to reducing the recursive error occurred in the long range
prediction. It also shows that the multiple network model performs better than single

networks.

The second category is«o; ting multiple models using the same training data but re-
sampled or partitioned usi%g particular algorithms (e.g. [46, 47]). There are three main
algorithms being used to re-sampl
bootstrap (e.g: [34, 47, 48, 49)), ag
The motivation of creating those diffes

network ensembles [53]. The boot-strap.\.z_\“

or partition the training data which are bagging or
ost (e.g. [50, 51]) and randomisation (e.g. [52]).

inputs or partitions is to create the effective

Bagging basically refers to replication of a

training data set where the bootstrap algori ples the original training data set.

Some of the data samples may occur several tim | other may not occur in the sample
at all. The individual training sets are independent neural networks can be trained

in parallel.

Adaboost or ‘adaptive boosting’ " on the other hand constructs omposite classifier by

sequentially training classifiers while putting more and more emp s on certain patterns
[51]. The probability distribution over the original training data was maintained in this
approach where the network is trained with respect to this distribution. In other words the
networks are dependent to each other, while randomization just randomly selects the

original training data in each training data and each network can be trained in parallel.
Each technique has it own capabilities or advantages in some applications. For example

bagging or bootstrap can generate diverse networks when the base learning algorithm is

unstable in that small changes in the training data set cause large changes in. the learned
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classifiers while boosting can result in less instability. Boosting or Adaboost can make
: largér changes in the training set like placing large weights on the training set. Based on
the experiment conducted by Dietterich [52] randomization method can give quite good
- performance when the noise level is low in the networks but bagging is still much better

when high level of noise is introduced in the networks.

Another method for creating a ‘good’ ensemble is by adjusting the individual neural

networks themselves like varying the set of initial random weights, varying the topology

of the networks and glgt %{g varying the learning algorithms in the networks (e.g. [53].

The development of con ,‘ capability promoted the development of multiple neural

networks. Application of ultfp} ural networks will grow rapidly and become an

important component of futureiresgarch. This is also due to the various neural networks

used and combining neural netw: s one of the methods for improving the neural

network model performance.
COMBINATION OF MULTIPLE NEURALNETWORKS

Figure 4 delivers a fundamental view of combin
of the combinations of networks are based on linear ihdtion (e.g. [24,35, 54, 55)).

are ensembles, the input

Sharkey [53] also described the methods of combination,”
data and also modular decomposition methods. Combining the’networks improves the

generalization capability of the neural networks models in suéh'a way that it guards

against the failure of individual components networks. This is because that some of the -

neural networks will fail to deliver the result or output prediction due to limited training
data set (e.g. [23, 24]). In other words, combining a set of imperfect estimators
(networks) can be thought of as a way of managing the recognized limitation of the
individual estimators, each component is known to make errors, but they are combined in

such a way as to minimize the effect of these errors.
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Methods for combining multiple networks reported in literature can be divided into linear
and nonlinear combinations. The common linear combination is averaging and weighted
averaging. The linear combination of multiple outputs is to create a single output as a
final prediction. In weighted averaging, individual network outputs are multiplied by
appropriate weights and then combined to give the final model prediction. Weighted
averaging includes PCR and MLR approaches. Zhang [46] used PCR approach to select
the combination weights. Another combination scheme is by Wolpert [31] and it

combines the networks with weights that vary over the feature space. The output from a

2,

majority voting (e.g. [56]), an Bayesian model averaging. The Demspter-Shafers

belief based method is quite co nd it have to deal with the uncertainty and

ignorance of the classifiers. This ap is usually used in model classification or

pattern recognition when each network of model represents a character of the image,

same as the majority voting combination for ¢

[57D).

le in handwriting recognition (e.g.

Selective combination of networks has also been ipfoposéd. The objective behind

selective combination is to reduce the number of shared faj among networks. There

are a number of methods on how to select proper networks for combination. For example,
Perrone and Copper [58] suggest a heuristics selection method whi by the population of
trained networks are ordered in terms of increasing mean squared error and only those
with lower sum of squared errors are selected for combination. Hashem [24] also came
up with a method which is combination of two alternative selection algorithms:
colinearity analysis and cross-validation. The majority voting is one of the selective
combination methods where selection is based on the majority of the classifiers or
networks that give a ‘true’ value to the actual iinage or pattern. Other selective
combination approach is by selecting networks that are less correlated before

combination using correlation co-efficient analysis (e.g. [59]). This idea is related to the
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finding by Rogova [40] that the better result of the combination output is not necessarily
based on the combination of ‘good’ individual networks and combining less accurate and
less correlated networks might have a better prediction output. Genetics algorithms can

also be used in selecting the networks as what have been done by Wu et al [60].

MULTIPLE NEURAL NETWORKS IN MODELING AND CONTROL
APPLICATIONS '

Single neural netwozks

etod

As mentioned earlier in the previous section that single neural networks have been widely

ior of the éomplex system to be modeled and

predicted accurately. Furthermore the charadteri

‘that learn from examples rather than havi

sprogram the complex system also
contributed the application of the models. The ar re of single neural networks vary
from multilayer perceptron to radial basis functie F) and also recurrent neural
networks models (e.g. [66]).
Most of the applications of neural networks in chemical eng eering are concentrated on
the modeling and control of chemical processes using muItiI;)i‘é erceptron networks.
The common systems used in the chemical processes are distillation columns, and reactor
systems (continuous stirred tank reactor (CSTR), bioreactor, and neutralizing reactor).
These processes are usually very nonlinear and nonlinear models have to be developed.
Currently, applications of single neural networks in process modeling and control are
quite significant in industry especially in model based predictive control (MBPC) (e.g.
[67, 68]) and this is due to the ability of neural networks in modeling nonlinear processes

(e.g. [69]).
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In process modelin‘g, single neural networks have been applied in numerous applications,
for example, Aldrich and Slater [70] model the fractional hold-up and drop size in a
reactor, Xiong and Jutan [68] developed a model to predict the heat released by a
chemical reactor as well as Aziz et al [71]. Other research in chemical reaction in CSTR
for examples was done by Shaw et al [69] where single neural networks have been used
to model the reactor temperature and the result was quite convincing. In bioprocess
Lobanov et al [72] developed a model where single neural networks are used as a
biosensor to predict the glucose and ethanol in certain range of substrate. Scheffer and
Filho [73] applied sipgle

eural networks with the extended Kalman filter in the training
to predict the prod&éti

[ the penicillin in a batch process. Other applications of neural
networks were reported: Lennox et al [74] where single neural networks have been

used to model a vitrification proc sing real world data.

In process control, there have been gnany applications of single neural networks and they

can be classified into three major cate of control: model predictive control, inverse-

model based control and adaptive controli'Ter example Willis e al [26] implemented

model predictive control in a CSTR using sing ral network models to control the

output concentration. Zhan and Ishida [75] in;pl ed the multi-step-ahead prediction
:CSTR. Chen and Yea [67] also
implemented a multi-step-ahead prediction model using” a.single neural network in a

- obtained. While in fed-

model in NMPC to control the product concentration.

CSTR neutralization process and the control performari"

batch processes, single neural ‘networks have also been
“al [76] applied a

single neural network in NMPC to optimize the production of the riboflavin in fed-batch

values of the process output for optimization. Kovarova-Ko

processes. Other implementations of NMPC used recurrent neural networks, for example,
Zamareno and Vega [77] applied recurrent neural network based NMPC to a very
nonlinearA suphitation process. Zhang and Moyris [78, 79] implemented GPC using
recurrent neuro-fuzzy model to model and control the tank level in a conic tank and pHin

a neutralization process in CSTR.
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The most popular control approach in inverse model based strategy is internal model
control (IMC). Shaw et al [69] use dynamic feedforward neural networks (FANN) and
recurrent neural networks (RNN) to model the temperature of a reactor. Hunt and
Sbarbaro [80] utilized the IMC approach to control the pH in CSTR. On the other hand,
Hussain [81] modified the IMC model using a single neural network to include an

adaptive scheme using sliding windows in a fermentation process. In indirect adaptive

control schemes, neural networks are used to identify an unknown nonlinear plant online. -

- Por examples Calise et al [82] implemented the adaptive control in the van der Pol

oscillator and the cg ?é’}ler performed well. Lightbody and Irwin [83] used a neural

network in parallel with a fixed gain linear controller in direct model-reference adaptive -

control configuration té.géntrol the product concentration in a CSTR. Boslovic and
Narendra [84] applied botf the F

yeast fermentation process.

and RBF in adaptive control schemes for a baker

From the above paragraphs, it is hard
networks. Instead of enormous number of applications, there are still some drawbacks
that should be avoided in order to achieve maxmmmodel accuracy and robustness and

in fact there are ways if not to make therri E@tal vanished but to suppress them.

Combining neural networks is declared to be the way to suppress the drawbacks of single

neural networks or it is known as multiple neural networks..A review of multiple neural

networks applications in process modeling and control is presented next.

Multiple neural network applications in modeling and control

Multiple neural network applications in control especially in NMPC are quite new
compared to applications -of single neural networks (e.g. [85]). Chen and Narendra [36]
implementéd what they call intelligent control where they applied multiple models on
their controller. They designed the controller based on the different models and models
can be switched when appropriates. Multiple neural networks have also been applied in
adaptive control where the weighted sum of the multiple neural networks is used to

approximate the system nonlinearity of the given task [86]. It is shown that multiple
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neural network models performed better than conventional artificial neural networks.
Zhémg [87] proposed a multiple neural network based reliable optimal control strategy for
~ abatch polymerization process. This technique shows some good result in the simulation
study. He also introduced multiple neural networks using bootstrap re-sampling
technique to predict polymer quality in batch polymerization reactor. He mentioned that
neural networks trained on different bootstrap re-sampled data sets would be more
dissimilar than those trained on the same training data. When trained with bootstrap re-
sampled data set, different neural networks will perform differently in different regions of

the input space. Al

1these neural networks are correlated since they intend to model
the same relationship, independent elements among these models can be discovered
through principal comp®; alysis. Neural network prediction confidence bounds can

also be obtained using the bootstr

technique. Model prediction confidence bounds give
process -operators extra infornia n how confident a particular prediction is [46].
Process operators can accept or t a neural network prediction based upon the

estimated conﬁdence bounds. He al

oyed principal component regression (PCR)

to determine the appropriate weights for 1¢ combined neural networks.

Sridhar et al. [88] further approves this matzer_. by 'ijlodeling chemical processes using

stacked neural networks. The stacked neural netwézl ’ihave been applied and evaluated

for three example problems including the dynamic modeling of a nonlinear chemical

process. As expected, this method never failed to give onvincing result. Another

contribution by Sridhar et al. [55] in proving the superiority ¢ tiple neural networks

is by using the stacked neural networks together with informatio etic stacking (ITS)
algorithm. This algorithm was used to combine neural network models. The ITS
algorithm identifies and combines useful models regardless of the nature of their
relationship to the actual output. This method was utilized in three examples including a

L3

dynamic process modeling problem.
Eikens and Karim [32] implemented multiple neural network models through multiple

models “division” using linear combination. They presented a flexible framework which

allows the integration of the -other model paradigms. These models were applied in
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process identification of a fermentation process. Three different methods for constructing
multiple neural network models are employed. They are prior knowledge, unsupervised
learning and gating neural network. As expected, the results aiways in a satisfactory
condition where improved modeling performance can be seen through the results.
Jazayeri-Rad [15] also has emerged with an idea of using multiple neural networks
together vﬁth nonlinear model predictive control for modeling a chemical plant. Two
examples were tested using this model that was a simple MIMO system and also a multi-
component distillation column. Simulation results demonstrate therabi.li-ty of the proposed
' he MPC algorithms based on the linear model of the plant.

strategy to outperforr
By implementing multiplesicural networks in control application especially in the batch
polymerization case, the" relationship between -batch recipes and polymerization

trajectories can be learnt avoiding+he/development of an intricate polymerization kinetic

model.

The difficult-to-measure variables such asiolecular weight are related to certain easy-to-

measure variables such as temperatures in the r

ictor. With this relationship, inferential
estimation of these difficult-to-measure variable be obtained from the measurements
of the easy-to-measure variables. Empirical mo an be developed from: process
operation data. Since polymen'za_tion processes are h non-linear processes, non-
linear empirical modéls should be developed. One of the ages of multiple neural
network based modeling is that a?"complex non-linear proces Jel can be developed

from process data only [46].

Therefore, the problem such as numerical integration for a large number of complex
differential equation can be avoided [30]. Another application of multiple neural network
is the estimation of impurities and fouling in batch polymerization reactors [89]. In this
paper, Zhang et al. introduced two approaches where first approach an inverse neural
network model of the polymer process is constructed and the initial reaction conditions
are predicted while in the second approach a neural network is used to model the dynamic

behavior of the polymer process. The inverse model was developed using multiple neural
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Page 14 of 3(



Asia-Pacific Journal of Chemical Engineering

network model i.e. stacked neural networks. From the trajectory of the polymerization
process, the neural network model estimates the effective initial initiator weight and the
effective heat transfer coefficient. The amount of impurities was calculated to be the
difference between the gross initial initiator weight and the estimated effective initial
initiator weight. The amount of fouling was defined as the difference between the

nominal and estimated heat transfer coefficient.

Meanwhile in the second approach, a dynamic neural network was used to predict the

polymerization trajectdty. from the initial conditions. Impurities and fouling were

detected when the pre d trajectory deviates from the observed trajectory. The amount

of impurities and foulin; then estimated using an optimization procedure which

minimizes the difference Betw
The predicted trajectories arg”

e predicted trajectory and the observed trajectory.

' compared with the on-line measurements of

conversion and coolant temperature,

Ahmad and Zhang [90] propose a netw
technique. In this paper, neural networks are als

combination method using data fusion
uilt based on bootstrap re-sampling of
original data and are combined using data fusion Chi;;que. A proper model is selected at

each sampling time using Bayesian inference appraach. In the proposed approach, multi-

ston to the combination of
ibination Predictor (BCP)

sensor data fusion is applied in decision level identity
multiple neural networks [90]. In essence, it is Bayesian ¢
with some modification to identiiy declaration in data fusion ique. The proposed
method has been applied in modeling of reactant concentration in: eversible exothermic
reaction process, pH neutralization process and real world data for water discharge in
Langat River and they are proved to be better compare to averaging of all networks and
combining all networks using Bayesian combination method. The architecture of

Bayesian Inference is depicted in Figure 5. -
Bayesian selective combination of multiple neural networks was applied by Ahmad and -

Zhang [91] for improving long-range predictions in nonlinear process modeling. Instead

of using fixed combination weights, the probabilityvof a particular network being the true
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model is used as the combination weight for combining the networks. Selective
combination aims to achieve maximum generalization capability by combining selected
individual networks. The results demonstrate that the proposed techniques unbelievably
improve model generalization and perform better than aggregating all the individual

networks.

Fault diagnosis becomes one of the popular research areas recently due to its vitality in
running and operating a good and safe plant. Multiple neural networks have been used as

one of the eminent tQ(

&y

o

in pattern recognition

r pattern recognition as fault diagnosis is one of the branches

"

e”. Once again Zhang [92] took a full advantage of multiple

neural networks to d .a model for improving online fault diagnosis through
information fusion. By e ﬁldgfin multiple neural networks instead -of single neural

networks, the system can trigg

for the occurrence of incipient faul is paper, multiple neural networks are developed

‘and their diagnosis results are combi : ive the overall results. In order to develop a
diverse range of individual networks,

-Sampling with replacement [92].

original training data generated through ‘boot

Three combination methods have been applié the model, averaging and weighted

averaging, major voting and also modified maj

modified major voting combination scheme give the best-performance for the system.

Zhang [93] has introduced a.nesa;imethod.,of controlling batch polymerization process by
using batch to batch control together with stacked neural nétwrks for modeling the
system. Towards the mission to overcome the difficulties of developing mechanistic
model, stacked neural network models are developed from the process operational data.
Batch process possesses a nature of repetitive process and it is in fact where the idea of
using batch to batch controlling method as a mew and improved method using the
information from current and previous batch run. This is the way it works. The neural
network model is linearized around the ‘current batch and based on the linearized model
the control policy for the next batch is modified to minimize the control errors at the end

of the next batch [93]. This procedure is repeated from batch to batch. Application to a

http:/ime.manuscriptcentral.com/apjce
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simulated batch polymerization reactor demonstrates that the proposed method can
enhance process performance from batch to batch in the presence of model plant

mismatches and unknown disturbances.

Tian et al. [94] employed hybrid stacked recurrent neural network model for a batch
polymerization process. They claimed that the hybrid model contains a simplified
mechanistic model that does not consider the gel effect and stacked recurrent neural

networks. Stacked recurrent neural net_works on the other hand were built to characterize

the gel effect which \ perceived as one of the most difficult parts of polymerization

modeling. The results were compared with a best-single-network-based hybrid model. It
was proved that control.policy based on the hybrid stacked recurrent neural network
model performed reliably on the geal process. Meanwhile, Perrone and Cooper [58]

utilized a neural network ensef

applying averaging in functional sgite; they triumphantly constructed a neural network

model which is guaranteed to have ir d performance. Hashem [24] in his paper
proposed optimal linear combinations (@ ©) of neural networks. He adduced that
combining the trained neural networks may helpsdntegrate the knowledge acquired by the
cy. He also discussed about the harmful

collinearity which can deteriorate the model’s.. performance. His optimal linear

components networks thus improve model accu:

combinations of neural networks had been tested on vafious“algorithms and certified to

significantly improve model accuracy.

The fact that they have surpassed single neural networks performance has been stamped

as a new evolution in neural network application. Multiple neural networks have been

GEM estimator on the NIST OCR database. By -

utilized not only in modeling and controlling chemical engineering related processes but -

in any other processes and systems such as biology, agriculture, hydrology, etc.

Wanga et al [95] applied multiple neural networks for prediction of membrane protein
types based on pseudoamino acid. He mentioned that they are several identifiers that have
been developed such as support vector machine (SVM), covariant discriminant (CD),

artificial neural network (ANN) and k-nearest neighbor (KNN) classifier but still the way
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they operate are basically individual. In view of this, stacked generalization has been
chosen as the method for classification task. Stacking approach can combine several
different types of classifiers through a meta-classifier to maximize the generalization
~ accuracy and it is anticipated to be able to improve identification quality of the protein

classes.

Sharkey [96] is one of the eminent name in multiple neural networks has come up with an

idea of applying multiple neural networks for a fault diagnosis of a diesel engine. This

system was designed 461 E9vide an early warning of combustion-related faults in a diesel
engine. '-He used four different sets of data, NEF, NE, NF and NE for training purpose.

Modules Vcon'e_:sponding

these different sets of data were then assembled. The

combined modules were d the multiple neural networks system capable of

providing a solution to compi-’éf wlt diagnosis problem. The system is shown to
outperform a decision-tree algori id a human expert; comparisons which show the
complexity of the required discriminat d it is depicted in Figure 6.
Jia and Culver [97] applied bootstrap neur: orks in synthetic flow generation.
Hydrological calibration of mechanistic wafe simulation models often. requires
several years of continuous flow data. Unfortun ~-historical flow information is
highly limited for many ungauged or recently gatigeéd watersheds. Synthetic flow
generation methods could be used to extend the availab: v records at data-limited
watersheds and to create a statis%ically reasonable synthetic flow..series as a target for
hydfological calibration. The bootstrap method is used to estimate the generalization
errors of neural networks with different structures and to construct the confidence
intervals for each flow prediction. In a Total Maximum Daily Load (TMDL) study, a
continuous mechanistic watershed simulation model can play a key role, providing a
means to describe the relationships between pollutant sources, load allocation plans, and

water quality

However, some important issues related to this synthetic flow generator require further

investigation. First, the accuracy of the generated synthetic flows is a major concern, and

=
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a more rigorous understanding of the uncertainty of the synthetic flows will help the
analyst to estimate the uncertainty of the calibrated model parameters. Second, under the
condition of a small data set, the cross-validation approach may not be the best approach
for the modeling of ANNs. To address the above problems, this study investigates a
bootstrapped ANN (BANN) approach for synthetic flow generation. Based on the result
of the research, bootstrap neural networks outpérform the other models such as
maintenance of variance extension (MOVE) and modified drainage area ratio (DAR).
The summary of multiple neural networks application in various fields can be seen in
Table 1.

. .CONCLUSIONS
From day to day, a continuously zasing number of people interested into joining the
exciting research about neural netwg ave been one of the causes of broad , extensive
and continuing application of neu works in many chemical processes, both

modeling and control. There are myri plications nowadays that are using neural

networks as part of their modeling and contr cess. These are due to convincing

results for both research and real application neural networks as the tool in

modeling and control applications. Moreover, neural:‘networks also posses an ability of

embedding into other control scheme such as fuzzy, invérse.thodel and adaptive control

so that they can perform better than using solely fuzzy or inverse model or adaptive

control. Such circumstance allows us to venture into a real broa -application of neural

networks both for neural networks and neural networks along With the other control
schemes. Despite of theif enormous advantages, neural networks never been “born”
perfectly. Drawbacks such as overfitting, underfitting and also problem on how to
improve the generalization capability of neural networks have forced us to seek for a
better solution. Multiple neural networks seem to be the best solution for the time being.
Stacked and bootstrap methods are the premier ways to apply multiple neural networks in
modeling and controlling dynamic systems which proved to be effective to overcome the
drawbacks of single neural networks. As a conclusion, these reviews were also revealing

several other points about multiple neural networks application such as:

http://mc.manuscriptcentral.com/apjce
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1. Lack of data during training stage can deteriorate the performance of neural

_ network model but can be alleviate by applying multiple neural networks. . ...

2. Using bootstrap technique, the confidence bound of neural networks can be
obtained.
3. Multiple neural networks model can overcome the problem of developing

complex and uncertain mechanistic model to represent complex processes.

k was supported.by the Universiti Sains Malaysia (USM) for funding the work .-
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Figure 2. (a) Numbers represent data for sampling (b) data are randomly create using bootstrap
method
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Figure 4. Combining Multiple Neural Networks
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ABSTRACT

A single neural network model developed from a limited amount of data usually lacks robustness. Neural
network model robustness can be enhanced by using re-sampling technique like boostrap during training of the
networks. There are several approaches for re-sampling the data but in this paper boostrap re-sampling
.. technique is employed. Comparisons of these methods on using original data without re-sampling are carried
out-in this paper and apply to pH neutralisation process which is a non-linear dynamic system. It is shown that
training using re-sampling data generally improve model performance compare to using the original data .

Keywords: boostrap re-sampling, neural networks, nonlinear modelling. pH neutralisation process

INTRODUCTION

Artificial neural networks have been increasingly used in developing non-linear models in-industry and model
robustness is one of the main criteria that need to be considered when judging the performance of neural
network models [1]. Model robustness is primarily related to the learning or training methods and the amount
and representativeness of the training data [1; 2]. Even though neural networks have a significant capability in
representing non-linear functions, inconsistency of accuracy still seems to be a problem where a neural network
model cannot cope or perform well when it is applied to new unseen data. Furthermore, advanced process
control and supervision of industrial processes require accurate process models promoting investigations in the
robustness of neural networks models. Lack of robustness in neural network models is basically due to the over
fitting and poor generalisation of the models (e.g. [3; 4]). Therefore, a lot of researchers have been interested
and concentrated on how over fitting can be alleviated by improving the learning algorithms or by combining
multiple neural networks (e.g.[3; 5; 6]). In view of improving the robustness of neural network models a lot of
techniques have been developed like regularisation and the early stopping method (e:g.[3]). Reference [7]
implemented. the universal learning rule with second order derivatives to increase the robustness in neural
network models.. Among those approaches, re-sampling the data while training the network is quite promising
enhancing-the -performance-of-single neural -network. There are several methods in re-sampling the data like
bagging but bootstrap re-samples technique is the most convincing in this case study where it actually the re-
sampling of the original training data [5 8; 9]. In this paper modelling of the real pH neutrallsatnon process is
1mplemented

The pH control is very important in many processes. For examples, in wastewater treatment plant, the cell
growth rate and the accurate stabilization of pH at an optimal level often determines the efficiency of the
bioprocess. The regulation and control of a pH process is a typical problem found in a varlefy of industries
mcludmg wastewater treatment, pharmaceuticals, biotechnolpgy and chemical processing. It is a nontrivial task
ansmg from the nonlinearity of the titration process. Therefore controlling the pH at certain region or set point
is very important. On the other hand, in chemical processes, pH neutralization is not easy to control due to the
fast and quite complicated reaction [10; 11]. In terms of modelling, one of the disadvantages of pH
neutralization is the difficulty of obtaining a rigorous mechanistic model of the process, which accounts for
several important operating factors such as-the flow rate of the influent stream;-the flow raté of the titrating
stream, the concentration of the influent stream, the concentration of the titrating stream, the concentration of
—the acid solution, and the volume of the mixture in the CSTR [12]. This is particularly true when knowledge
about the process is initially vague or if the process is so complex that the restilting equations cannot be solved.
Therefore modelling the pH is very challenging and a neural network is one of the options.
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Process modelling is an area where neural networks configurations and structures have been considered as
alternative modellmg techniques, particularly in cases where reliable mechanistic models cannot be obtained
[13-15] where this is due to the complexity and difficulty in control, the model based control is come to the
picture. As mention in [12], to be suceessful in implementing the control strategy for this system, the pH control
system must contain two main features: (i) reliable estimation of the process nonlinearity and (ii) a nonlinear
compensation and control. In this aspect the neural networks capabilities are utilized.

However, single neural networks sometimes lack robustness when the data is insufficient especially when
dealing with real world data due to the fact that the robustness of the network is related to the representativeness
of the training data [16]. Single neural networks sometimes. suffer badly when applied to unseen data where
some neural network might fail to deliver the correct result due to the network training converged to undesired
local minima, over fitting or noise in the data (e.g. [4] ). Therefore the re'-sampling the original data in siingle
neural networks using boostrap approach is implemented in this paper with the aim of ephancing the single
neural network robustness.

BOOSTRAP RE-SAMPLING TECHNIQUE

Bootstrap application or bootstrap technique was first introduce in 1979 as a computer based method for
estimating the standard error of empirical distribution {17]. In neural networks bootstrap basically relate or deals
with the sampling to create random data sets for training and testing. By creating an equal number of bad and
good data sampling, it actually improve the generalisation ability because it helps the identification of the
characteristic of the scarce class [17]). Zhang [18] demonstrates that sampling by bootstrap does actually
increase the robustness of the model and he came up with BAGNET or bootstrap aggregation neural networks
[5; 18].

There are three main algorithms: being used to re-sample or partition the training data which are bagging or
bootstrap (e.g. [5; 1921], adaboost (e.g. [22; 23] and randomisation (e.g. [9]. The motivation of creating those
different inputs or partitions is to create the effective network ensembles [24]. The bootstrap or bagging
basically refers to replication of a training data set where the bootstrap algorithm re-samples the origiital training
data set. Some of the data samples may occur several times, and other may not occur in the sample-at all. The
individual training sets are independent and the neural networks can be trained in parallel.

Adaboost or ‘adaptive boosting” on the other hand constructs a composite classifier by sequentially training
classifier while putting more and more emphasis on certain patterns [22]. The probability distribution over the
original training data was maintained in this approach where the network is trained with respect to this
distribution. In other words the networks are dependent to each other, while randomisation just randomly selects
the original training data in each training data and each network can be trained parallel.

Each technique has it own capabilities or advantages in some application like bagging or bootstrap can generate

diverse networks when the base learning algorithm is unstable in that small changes in the training data set

«cause large changes in the learned classifiers while boosting can result in less instability. Boosting or Adaboost

can make larger changes in the training set like placing large we:ghts on the training set. Based on the

expenment conducted by Dietterich [9] randomisation method can give quite good perforinance when the noise

level is low in the networks but bagging is still much better when high level of noise is mtroduced in the
networks. But in this paper, the boostrap re-sampling technique is proposed

As shown in Figure 1 and Figure 2, there is a different between the original data and the data after applying the
boostrap re-sampling techniques. The data was re-sampled after arranging the data point into discrete time
function for input and output which will be discussed in the next section.

LY
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RESULTS AND DISCUSSIONS

The experimental data employed for modellmg was obtained from a pH neutralization rig shown in Figure 3. A
feed sodium hydroxide (NaOH) solution is fed to the CSTR by a diaphragm pump (metering pump). At the
same time, a feed sulphuric acid (H,SO,) solution is fed to the CSTR by a diaphragm pump (masterflex pump).

A stream leaves the CSTR is called neutralization effluent of the H,SO4 and NaOH solution. These NaOH
stream and effluent stream pass through a pH sensor to measure its pH values. In this case study, 20 networks
with fixed identical structure were developed from boostrap re-samples of the original training and testing data.
In re-sampling the training and testing data using bootstrap re-sampling techniques, the training and testing was
already in discrete time function, therefore by re-sampling discrete time function it’s not effect the sequence of
input-output mapping of the prediction.

Then the individual networks were trained by the Levenberg-Marquardt optimisation algorithm with
regularisation and “early stopping”. All weights and biases were randomly initialised in the range from -0.1 to
0.1. The individual networks are single hidden layer feed forward neural networks. Hidden neurons use the
logarithmic sigmoid activation function whereas output layer neurons use the linear activation function. Instead
of selecting a single neural network model, a combination of several neural network models is implemented to
improve the accuracy and robustness of the prediction models

]

% : "',"'}'»I'

Figure 3. Advanced pH control schematic diagram

There were fours strokes percent for the metering pump during the data generation. The stroke percentages are
40, 60, 90 and 100 respectively. While the stroke length percent and stroke per minute for the masterflex pump
are constant at 20 percent during the experiment. The other parameter such as NaOH concentration, H,8O4
concentration and H,SO, stream stroke are also remain constant. The duration of each manipulated variables
percent changes was 4 min. The process was allowed to reach steady state for perfectelﬂrg}lurmg the first
three minutes followed by pH evaluation of the effluent for the next one minutes. The for the effluent
was then obtained automatically through the pH sensor and the signals transmitted by the pH transmitter to the
recorder and it have recorded in every two seconds. Then, the data generated from the experimental rig were
divided in to training, testing and validation where in this case study the training data is based on the data taken
from the strokes of 40 %, testing data from strokes 100 % and the remaining data is for validation. p HE 2

This case study apply a one-step-ahead predictions approach where , the process output at time (t-1), y(t-1), is
used as a model input to predict the process output at time t, y(t), as follows:
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3’(1:) = f[Y(t - 1)9 u](t - 1)’ U2(t - 1)3 4))

where ul(t-1) and u2(t-1)is the process input at time (t-1) which is the acid flow and the pump strokes, $(t) is the
predicted process output ( pH) at time t , the lags for this model is 1 for both input and output.

Initially, the network was trained using all 1166 data points based on the 40% stroke of the masterflex pump for
single and multiple neural networks. By using the LM optimization method, the training stopped after 100
iterations with the sum square error SSE value of 0.0392 and the correlation coefficient R-square equal to 1.00.
The trained network was simulated by feeding it with all of the 40 percent stroke data. Then, the model was
tested using 100 percent stroke data which contains 1086 data points. The testing also stopped after 100
iterations with the sum square error SSE value of 0.6935 and the correlation coefficient R-square equal to
0.9994. Figure 4 presents a plot. of the pH value for both network outputs (predicted pH value) and the targets
(actual pH value) versus the data points for single neural networks for training and testing data.

The model has been validated using 60% and 90% stroke data which contain around 1000 data points in each
set. The validation data will determine whether the generalization capability of the model developed using 40%
and 100% data for training and testing is acceptable.
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Figure 4. Training and testing graph in pH (scale)

Figure 5 and Figure 6 shows the model and actual output in the validation data for single neural networks (SNN)
using original training and testing data. It clearly seen that the single neural networks was performed quite well.
The predicted model output showed quite the same as the experiment data, but there is some errors occurred at
the low pH region as well as at the end of the high region and also at the transition between the low region and
middle region. This might be due to the transition of the pH especially from low region to higher region where
the neutralization process was very fast, small changes in the input (acid flow) give a lot of affect to the process.

Then re-sampling technique using boostrap approach is applied and the result was shown in F igure 7 and Figure
8 for 60 % and 90 % stroke data respectively. It clearly seen that from Figures 6 and 7, single neural network
prediction is significantly better than single neural networked using original data generated previously. The
predicted and the experiment value can be seen exactly matching for both data.
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Figure 6. Validation output for 90 % stroke data

In order to test further the performance of the model, statistical analysis was carried out which is sum square
error (SSE), mean square error (MSSE) and relative correlation R-square analysis. The overall statistical
analysis result of SSE, MSSE and relative correlation R-squared shown in the Table 1. It is clearly shown in
Table 1 that the SSE and the MSSE is quite small, the relative correlation (R-square) is 1 for re-sampling SNN
while in original SNN prediction is slightly lower than I. Meanwhile for SSE and MSSE, the original SNN
produced higher value compare to re-sampling SNN. It is shown that the re-sampling SNN model can predict
significantly well even though using real process data compare to original SNN.

ISBN 978- 983-41705-8-5 ©2007 FEIIC - 45



World Engineering Congress 2007, Penang, Malaysia, 5 — 9 August 2007

12 — s
I — ~4-0+- . J— S ,.v‘:‘\ B TR
8t { e Exp@FIAE@NT \ 1
—— — Model
E sf \ |
J / L
J N,
% 500 1000 4800 2000
Samples
Figure 7. Validation output for re-sampling SNN for 60 % stroke data
14 T T
Experiment
12 —— - Model |
e el
T
10f /,./’ 1
81 ) i
& .
L J i
© /
/,
4f | :
L /
2 e
% 200 400 7777800 7T 800 T 1000
) Samples
Figure 8. Validation output for re-sampling SNN for 90 % stroke data
Table 1: Result of the output based on the single neural networks appliéation on the validation data. .
SSETv MSSETv RsquareTv
Data Re-
Original Re-sampling Original Re-sampling Original samolin
SNN SNN SNN SNN SNN ping
) SNN
60 2.6757 0.0988 1.3e-3 4.9652¢-005 0.9977 1.0000
-. 90 0.4584 0.0442 4.64E-04 4.4782¢-005 0.9996 1.0000
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CONCLUSIONS

A single neural network (SNN) was developed to model the performance of a pH neutralization process using
experimental data, which was subjected to a series of different stroke percent for sodium hydroxide stream. The
inputs to the network were the sodium hydroxide stream flow rate and metering pump percent stroke, and the
output was the pH values of the effluent. The Levenberg-Marquardt optimization technique was used together
with the ‘early stopping’ and regularisation methods to improve the robustness of the network.

Application to the real pH neutralization process shows re-sampling neural networks (SNN) increased the
robustness of the models compared to original single neural network (SNN). The SSE is decreased as well as the
increment of R-square analysis compare to original single neural networks in all validation data. The result for
re-sampling neural networks was consistent especially in R-square and it’s concluded that re-sampling neural
networks can significantly produced a better models.

ACKN OWLEDGEMENT

The authors would like to thank University Sains Malaysia (USM) for financially support this research project
through short term grant 6035182.

REFERENCES

(1] Willis M ], C Di Massimo, G A Montaque, M T Tham and A J Morris.(1992). Artificial Neural networks
in Process Estimation and Control,Automatica 28 (6) (pp: 1181-1187).

[2]  Zhang J.(2001). Developing Robust Neural Network Models by Using Both Dynamic and Static Process
Operating Data,Ind.Eng.Chem.Res 40 (pp: 234-241).

[31 Mc Loone S and G Iwin(2001). Improving Neural Networks Training Solution Using
Regularisation,Neurocomnputing 37 (pp: 71-90).

[4] Caruana R, S Lawrence and C Lee Giles.(2000). Overfitting in Neural Networks: Backpropagation,
Conjugate Gradient and Early Stopping,Neural Information Processing System 13 (pp: 402-408).

[5] Zhang J.(1999). Developing Robust Non-linear Models Through Bootstrap Aggregated Neural

- Networks,Neurocomputing 25 (pp: 93-113.).

[6] Guyon X and J Ya0.(1999). On the Underfitting and Overfitting Sets of Model Chosen by Order
Selection Criteria,Journal of Multivariate Analysis 70 (pp: 221-249).

[7] Hagiwara K and K Kuno.(2000). Regularisation Learning and Early Stopping in' Linear
Networks,International Joint Conference ori Neural Networks ( IJCNN 2000) (pp: 511-516).

(8] Franke J and M H Neumann.(2000). Bootstrapping Neural Networks,Neural Computation 12 (pp: 1929
1949).

[9] Dietterich T G.(2000). An Experimental Comparison of Three Methods for Constructing Ensembles of
Decision Trees: Bagging, Boosting, and Randomization,Machine Learning 40 (2) (pp: 139 - 157).

[10] ChanH C and C C Yu.(1995). Autotuning of gain scheduled pH control an experimental study,Ind. Eng.
Chem. Res. 34

[11] Costello D J.(1994). Evaluation of model based control techniques for a buffered acid-base reaction
system,Trans. IChem], 72 (Part A)

[12] Loh A R, K O Looi and K F Fong.(1995). Neural network modelling and control strategies for a pH
process,Journal of Process Control 5 (6) (pp: 355-362).

[13] Chen L and K S Narendra.(2003). Inttelligent Control using Multiple Neural Networks and Multiple

" Models,Automatica 37 (pp: 1245-1255).

{14] Nguyen H H and C W Chan.(2004). Multiple Neural Networks for a Long Term Time Series
Forecast,Neural Computation and Application 13 (pp: 90-98).

[15] Chen L, S K Nguanga, C X Dong and L X Mei.(2004). Modelling and Optimization of Fed-batch
Fermentation Processes using Dynamic Neural Networks and Genetic Algorithms,Biochemical
Engineering Journal 22 (pp: 51-61).

[16] Zhang J.(2002) Sequential-Fraining-of-Bootstrap Aggregated Neural Networks for Nonlinear Systems
Modelling. In the Proceeding American Control Conference.

[17] Dupret G and M Koda.(2001). Theory and Methodology Bootstrap re-sampling for Unbalanced Data in

‘ Supervised Learning,European Journal of Research 134 (pp: 141-156).

ISBN 978- 983-41705-8-5.©2007 FENIC 47



[18]

(19]
[20]
[21]

[22)
(23]

[24]

48

World Engineering Congress 2007, Penang, Malaysia, 5 -- 9 August 2007

Zhang J, A J Morris, E B Martin and C Kiparissides.(1998). Prediction of Polymer Quality in Batch
Polymerisation Reactors Using Robust Neural Networks,Chemical Engineering Journal 69 (pp: 135-
143).

Brieman - L.(1994). Bagging Predictors ( Tech.Rep.No.421),Department of Statistic Umversnty of
California at Berkeley, USA.

Cunningham P, J Carney and S Jacob.(2000). Stability Problem with Artificial Neural Networks and The
Ensembles Solutions,Artificial Intelligence in Medicine 20 (pp: 217-225).

Wehrens R, H Putter and L M C Buyden.(2000). The bootstrap: a tutorial, Chemometrics and Intelligent
Laboratory System 54 (pp: 35-52).

Schwenk H and Y Bengio.(2000). Boosting Neural Networks,Neural Computation 12 (pp: 1869-1887).
Freund Y and R E Schapire.(1996) Experiment with a new Boosting Algorithm. In the Proceeding 13th
International Conference on Machine Learning.

Sharkey A J C. (1999).Multi Nets System. A. J. C. Sharkey (Ed).In Combmmg Artifi clal Neural Nets
Ensemble and Modular. London, Springer Publication. :

ISBN 978- 983-41705-8-5 ©2007 FEIIC



Modeling of real pH Neutralization Process using Multiple Neural Networks
(MNN) Combination Technique

Zainal Ahmad” and Fairuoze Roslin
Process Control Group,
School of Chemical Engineering, Engineering Campus, University Sains Malaysia (USM), Seri
Ampangan, 14300, Nibong Tebal, Penang, Malaysia
Tel : +604-593 7788 ext 6462, Fax : +604 594 1013
Email: chzahmad@eng.usm.my, fairuo_ze@yahoo.com

~ Abstract

Combining multiple neural networks appears
to be a very promising approach in improving neural
network generalisation since it is very difficult, if not
impossible, to develop a perfect single neural network
(SNN) especially when dealing with a real time data.
Therefore, in this paper, two feedforward neural
networks model technique are developed to predict the
performance of a pH neutralization process, which
uses a sulphuric acid as the acidic stream and sodium
hydroxide aques as the bes stream. The technique
involves combining multiple neural networks (MNN)
and single neural network (SNN). The Levenberg-
Marquardt (LM) optimization technique was
employed for training the NN for both techniques.
Application results demonstrate that the proposed
multiple neural networks (MNN) combination
techniques significantly improve model generalisation
compared to single neural network (SNN) models.

Keywords: Neural networks, Multiple Neural
Networks, simple averaging, nonlinear: process
modeling.

1. Introduction

The pH control is very important in many processes.
For examples, in wastewater treatment plant, the cell
growth rate and the accurate stabilization of pH at an
optimal level often determines the efficiency of the
bioprocess. The regulation and control of a pH process
is a typical problem found in a variety of industries
including wastewater treatment, pharmaceuticals,
biotechnology and chemical processing. It is a
nontrivial task arising from the nonlinearity of the

* corresponding authors

titration process. Therefore, controlling the pH at
certain region or set point‘is very important. On the
other hand, in chemical processes, pH neutralization is
not easy to control due to the fast and quite
complicated reaction {1,2]. In terms of modeling, one
of the disadvantages of pH neutralization is the
difficulty of obtaining a rigorous mechanistic model of
the process, which accounts for several important
operating factors such as the flow rate of the influent
stream, the flow rate of the titrating stream, the
concentration of the influent stream, the concentration
of the titrating stream, the concentration of the acid
solution, and the volume of the mixture in the CSTR
[3]. This is particularly true when knowledge about
the process is initially vague or if the process is so
complex that the resulting equations cannot be solved.
Therefore - modeling the pH is very challenging and a
neural network is one of the options.

Process modeling is an area where neural
networks configurations and structures have been
considered as alternative modeling techniques,
particularly in cases where reliable mechanistic
models cannot be obtained [4-9] where this is due to
the complexity and difficulty in control, the model
based control is come to the picture. As mention in
[1], to be successful in implementing the control
strategy for this system, the pH control system must
contain two main features: (i) reliable estimation of
the process. nonlinearity and (ii) a nonlinear
compensation -and control. In this aspect the neural
networks capabilities are utilized.

Why neural network? Artificial * neural
networks have been shown to be able to approximate
any continuous non-linear functions and have been
used to build data base empirical models for non-
linear processes [10]. Hence what is a neural network?
According to [11].



‘A neural network is a massive parallel-
distributed processor that has a natural capability for
storing experiential knowledge and making it
available for use. It resembles the brain in two
respects knowledge is acquired by the networks
through a learning process. Interneuron connection
strengths known as synaptic weights are used to store
the knowledge’

Furthermore, the main advantage of neural
network based process models is that they are easy to
build. This feature is particularly useful when
modelling complicated processes where detailed
mechanistic models are difficult to develop. However
a critical shortcoming of neural networks is that they
often lack robustness unless a proper network training
and validation procedure is used. Robustness of the
model can be defined as one of the baseline fo judge
. the performarice of the neural network models and it is
really related to the learning or training classes as
what Bishop [12] described:

“The importance of neural networks in this
context is that they offer very special powerful and
very general framework for representing non-linear
mappings from several input variables to several
output variables, where the form of the mapping is
governed by a number of adjustable parameters.’

Therefore a lot of techniques have been
introduced to improve the generalisation capability of
neural network models like regularisation techniques
[e.g.13,14,15] Bayesian Learning [e.g. 16,17] and also

—.—-by using_the parsimonious_ networksstructure {18}

The most exceptional model for this approach is
network pruning techniques and sequential orthogonal
training techniques. A sequential orthogonal training
techniques gradually builds up a neural network
model and avoids unnecessarily large networks
structure [19,20]. -

However, single neural networks sometimes
lack robustness when the data is insufficient especially
when dealing with real world data due to the fact that
the robustness. of the network is related to the
representativeness of the training data [12]. Single
neural networks sometimes suffer badly when applied
to unseen data where some neural network might fail
to deliver the correct result due to the network training
converged to undesired local minima, overfitting or
noise in the data [e.g. 21,22). Therefore the
combination of multiple neural networks using simple
averaging approach is implemented in this paper with
the aim of enhancing the single neural network
robustness.

2. Multiple Neural Networks

The idea of multiple neural networks came
up from Wolpert [23] where he described about
stacked generalisation which is a technique for
combining different representations to improve the
overall prediction performance. It can also be
described as architecture of network consisting of
several sub-models and a mechanism which combines
the outputs of these sub-models [24]. There are
several types of multiple neural networks but the
underlying ideas are basically similar and the main
difference is on how to create the sub-models as
shown in Figure 1 and combined those output to get a
single output.

Figure 1. Combining’multiple neural networks

current literature can be divided into linear and
nonlinear combinations. The common linear
combination is averaging and weighted averaging.
The linear combination of multiple outputs is to create
a single output as a final prediction. In weighted
averaging, individual network outputs are multiplied
by appropriate weights and then combined to give the
final model prediction. Weighted averaging includes
PCR and MLR approaches. Zhang [18] used PCR
approach to select the combination weights. Another
combination scheme is by Wolpert [23] which
combines the networks with weights that vary over the
feature space. The output from a set of level 0
generaliser are used as the input to level 1 generaliser,
whigh is trained to produce the appropriate output.
Nonlinear combination techniques, include
Demspter-Shafers belief based method [25], majority
voting [e.g. 26], and also Bayesian model averaging.
The Demspter-Shafers belief based method is quite
complex and it have to deal with the uncertainty and
ignorance of the classifiers. This approach is usually
used in model classification or pattern recognition

- ——--Methods-of combining-multiple networks in "~



when each network or model represents a character of
the image, same as the majority voting combination
for example in handwritten recognition [27]. For this
paper, simple averaging combination technique is
employ to get a final single output. This method is the
most common method in combining several model
outputs with the weights fixed as shown below:

Y= w,y1+w2y2 +o.twW, ¥ (1)
where y,. is the network prediction from the ith
network, n is the number of networks to be combined,

Y is the final prediction output, and w; = 1/n is the
weight for combining the ith network. In this paper the
number of network to be combined is 20. In this
approach all the networks have the same contribution
to the final prediction output even though some of the
networks might have better predictions then others.

3. Case study: pH Neutralization Process

The experimental data employed for modeling was
obtained from a pH neutralization rig shown in Figure
2. A feed sodium hydroxide (NaOH) solution is fed to
the CSTR by a diaphragm pump (metering pump). At
the same time, a feed sulphuric acid (H,SO,) solution
is fed to the CSTR by a diaphragm pump (masterflex
pump). A stream leaves the CSTR is called
neutralization effluent of the H,SO; and NaOH
solution. These NaOH stream and effluent stream
passes through.a pH sensor to measure its pH values.
In this case study, 20 networks with fixed identical
structure were developed from boostrap re-samples of
the original training and testing data. In re-sampling
the training and testing data using bootstrap re-
sampling techniques, the training and testing was
already in discrete time function, therefore by re-
sampling discrete time function it’s not effect the
sequence of input-output mapping of the prediction.

Then the individual networks were trained by the
Levenberg-Marquardt optimisation algorithm with
regularisation and “early stopping”. All weights and
biases were randomly initialised in the range from —
0.1 to 0.1. The individual networks are single hidden
layer feed forward neural networks. Hidden neurons
use the logarithmic sigmoid activation function
whereas output layer neurons use the linear activation
function. Instead of selecting a single neural network
model, a combination of several neural network
models is implemented to improve the accuracy and
robustness of the prediction models.
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Figure 2. Advapced pH control schematic diagram

There were fours strokes percent for the metering:
pump during the data generation. The stroke
percentages are 40, 60, 90 and 100 respectively. While
the stroke length percent and stroke per minute for the
masterflex pump are constant at 20 percent during the
experiment. The other parameter such as NaOH
concentration, H,SO4 concentration and H,SO, stream
stroke are also remain constant. The duration of each
manipulated- variables percent changes was 4 min. The
process was allowed to reach steady state for perfect
mixing during the first three minutes followed by pH
evaluation of the effluent for the next one minutes.
The pH value for the effluent was then obtained
automatically through the pH sensor and the signals
transmitted by the pH transmitter to the recorder and it
have recorded in every two seconds. Then, the data
generated from the experimental rig were divided in to
training, testing and validation where in this case
study the training data is based on the data taken from
the strokes of 40 %, testing data from strokes 100 %
and the remaining data is for validation.

This case study apply a one-step-ahead predictions
approach where , the process output at time (t-1), y(t-
1), is used as a model input to predict the process
output at time t, y(t), as follows:

y(t) = fly(t=D,ul¢t =D, u2(t -1, (2

where ul(t-1) -and u2(t-1)is the process input at
time (t-1) which is the acid flow and the pump strokes,
(1) is the predicted process output ( pH) at time t ,

the lags for this model is 1 for both input and output.



4.0 Results and discussion

Initially, the network was trained using all
1166 data points based on the 40 % stroke of the

masterflex pump for single and multiple neural

networks. By using the LM optimization method, the
training stopped after 100 iterations with the sum
square error SSE value of 0.0392 and the correlation
coefficient R-square equal to 1.00. The trained
_network was simulated by feeding it with all of the 40
percent stroke data. Then, the model was tested using
100 percent stroke data which contains 1086 data
points.

The testing also stopped after 100 iterations
with the sum square error SSE value of 0.6935 and the
correlation coefficient R-square equal to 0.9994.
Figure 3 presents a plot of the pH value for both
network outputs (predicted pH value) and the targets
(actual pH value) versus the data points- for single
neural networks and assumption has been made that
by duplicating this individual network using bootstrap
re-sampling method, the multiple neural networks
model will perform as closed as possible to this model
or better after combination. In this case, all predicted
points are close to the actual, which means that the
network has learned the input-output mappings with a
good degree of accuracy.
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Figure 3. Training and testing graph in pH (scale)

The model has been validated using 60 %
and 90 % stroke data which contain around 1000 data
points in each set. The validation data will determined
whether the generalization capability of the model
developed using 40 % and 100 % data for training and
testing is acceptable.
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Figure 4. Validation output for 60 % stroke data
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Figure 5. Validation output for 90 % stroke data

Figure 4 and Figure 5 shows the model and actual
output in the validation data for single neural networks
(SNN). It clearly seen that the single neural networks
was performed quite well. The predicted model output
showed quite the same as the experiment data, but
there is some errors occurred at the low pH region as

well as at the end of the high region and also at the

transition between the low region and middle region.

This might be due to the transition of the pH’
especially from low region to higher region where the
neutralization process was very fast, small changes in

the input (acid flow) give a lot of affect to the process.

Then multiple neural networks (MNN)

combination approach is applied and the result was
shown in Figure 6 and Figure 7 for 60 % and 90 %
stroke data respectively. It clearly seen that from

Figure 6 and Figure 7, multiple neural networks
prediction is significantly better than single neural
networked. The predicted and the experiment value
can be seen exactly matching for both data.

5



s L . . N s L P
200 400 600 800 1000 1200 1400 1600 1800 2000
Samples

Figure 7. Multiple Neural Networks validation output
for 60 % stroke data

——— Experiment
12} —— Model

'

e x L L, — L.
100 200 300 400 500 600 V00 800 500 1000
Samples

Figure 8. Multiple Neural Networks validation output

for 90 % stroke data
0.25, - T - T -r
———— MNN
o.Zr- e SNN

<

X | e—— o ' L s SR SO S
" 200 400 600 800 1000 1200 1400 1600 1800 2000
Samples
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Figure 10. Residue for multiple neural networks
(MNN) and single neural network (SNN) prediction
for 90 % stroke data

The performance of MNN combination is
encouraging especially based on the residue analysis
which is shown in Figure 9 and Figure 10. The residue
is constant for MNN but for SNN is quite inconsistent
especially in the transition of low and upper region.
This contributed to the large number of SSE for SNN
prediction.

In order to test further the performance of the
model, statistical analysis was carried out which is
sum square error (SSE), mean square error (MSSE)
and relative correlation R-square analysis as well as
residue analysis.

The overall statistical analysis result of SSE,
MSSE and relative correlation R-square shown in the
Table 1 and Table 2. It is clearly shown in Table 1 that
the SSE and the MSSE is quite small and in Table 2,
the relative correlation (R-square) is nearly to 1 for
MNN while in SNN prediction, it’s slightly larger for
SSE and MSSE. It is shown that the MNN
combination model can predict significantly well even
though using real process data.

Table 1. Result of the output based on the single and
multiple neural networks application on the validation -

data.
SSETv MSSETv
Data
SNN MNN SNN MNN
60 2.6757 0.0880 0.0013 - 4.4234¢-005
90 0.4584 0.0458 4.64E-04 . 4.6383e-005

Table 2. Result of the output based on the single and -
multiple neural networks application on the validation
data for R-square.

RsquareTv
Data
SNN MNN
5
60 0.9977 0.9999
90 0.9996 “1.0000




5. Conclusion

A multiple neural network (MNN) was
developed to model the performance of a pH
neutralization process using experimental data, which
was subjected to a series of different stroke percent for
sodium hydroxide stream. The inputs to the network
were the sodium hydroxide stream flow rate and
metering pump percent stroke, and the output was the
pH values of the effluent. The Levenberg-Marquardt
optimization technique was used together with the
‘early stopping’ and regularisation methods to
improve the robustness of the network.

Application to the real pH neutralization
process shows that combining multiple neural
networks (MNN) increased the robustness of neural
network models compared to single neural network
(SNN). The SSE is decreased as well as the increment
of R-square analysis compare to single neural
networks in all validation data. The result for multiple
neural networks combination was consistent especially
in residue analysis as well as in R-square and it’s
concluded that combining multiple neural networks
can significantly produced a better models.
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ABSTRACT

Neural networks are a very powerful tool for modeling proved by their capability of modeling
extremely complex functions and processes. They ‘are very useful in modeling non-linear models. that
linear models are incapable of. Other features of neural networks that gain interest among researchers are
the ease of developing models using neural networks and the fact that they learn through examples. They
collect data and carry out an algorithm from the data then automatically learn the structure of the data.
The fact that they gain interest among researchers has created a phenomenal atmosphere of research in
neural networks field. Therefore, this paper tries to venture into this phenomenal atmosphere of research
by reviewing some of the crucial aspects in neural networks research field. One of the shortcomings of
neural networks js their lack of robustness and the fact that they need proper network training and
validation procedure. Drive by the latter, this paper also reveals the way of improving the robustness of
neural networks. Incidentally, employing neural networks scheme as a tool in modeling;or process control
may be the best way to drag the system to almost perfect circumstance but applying the correct neural
networks scheme to the system is one of a very fundamental aspects that need to be mulled. Single neural
networks and multiple neural networks can. be very useful to both modeling and process control
applications. Single neural networks scheme may not give reliable result as perfect neural networks are
literally difficult or almost impossible to develop. Thus, combining individual neural networks is the
method to elevate the reliability of neural networks by combining their results to give the overall results.
The combined neural networks are known as multiple neural networks.

Keywords: Neural Networks, Multiple Neural Networks, Non-linear Process Modeling, Process Control

L INTRODUCTION

Neural networks have been used for more than fifty years. They started in 1940°s where McCulloch
and Pitts [Mc Culloch and Pitts, 1943] introduced the idea of studying the computational capabilities of
networks composed of simple models of neurons. Hebb [Hebb, 1949] introduced the idea of his
unsupervised learning rules which became the root of other development of neural networks. Hebb also
came up with the ideas of the reinforcing association between those neurons that are active at the same
time.

Neural networks are related to the basic principle of brain [Patterson, 1996] and try to mimic how
brain works. They have been developed since 1940 after World War 2 when industrialization was
growing rapidly. Neural networks are generally structured in layers of which all the neurons are
connected between the adjacent layers. Common layers that build neural networks are input, hidden and
output layers. Hidden layer comprises of activation function that converts input to nonlinear output. A
typical neural networks structure can be depicted in Figure 1.
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Figure 1: A typical structure of neural networks

After sometimes, neural networks evolved one step ahead by Rosenblat’s research [Rosenblat, 1958]
in the late 50’s where the study of a new concept of neural networks called ‘perceptron’ also known as
‘multilayer feedforwards networks’ in today’s neural networks’ term, Rosenblat also introduced various
adaptation rules which include a stochastic technique or what called today as ‘backpropagation’. Minsky
and Papert {Minsky and Papert, 1967} showed the mathematical limitation of the perceptron and also
about the problem behind the perceptron techniques.

During 1970’s, a lot of researchers carried out analysis on neural networks especially Grossberg
[Grossberg, 1972 and 1973] who attempted to produce differential equation models of various
conditioning phenomena. Then, Kohonen [Kohonen, 1982] camme up with the idea of feature extractlon
and clustering which is more to unsupervised learning methods.

In 1980’s, neural networks’ research field started to show a distinction among the researches Neural -
networks research scope can be separated into two major areas. One is by Hopfield [Hopfield, 1982) on
the design of associate memories, and later the solution of optimization problems, using the special type
of recurrent networks. The other is development based on Rosenblat’s ideas on feedforward neural
networks, by using differentiable or what we call a ‘sigmoidal’ activation function. Differentiability
makes it possible to employ steepest descent training on the weight (parameter) space, in order to find the
neural networks that compute the desire function or interpolate at the desire values. The term
‘backpropagation’ came up from this ideas and it involves computing the gradients of an error criterion
with respect to parameters, via the chain rule, and ‘propagating backwards’ the vector that correspond to
the error at the network output.

Onward in the 1990°s there were a lot of researches going on in neural networks like the works of
Wolpert [Wolpert, 1992], Sharkey [Sharkey, 1999], Hashem [Hashem, 1997}, Sridhar et al. [Sridhar ef -
al., 1996] and more. Most of the researches are concentrating on how to increase the robustness of the
neural network models either by improving the learning algorithm performance or by lmprovmg the
generalization capability of the models.

These chronicles have benefit many people since neural networks have become a powerful tool for -
both modeling and process control applications. Neural networks have been employed in myriad
applications such as pattern recognition, speech production, real-time control e.g. [Zhang ef al., 1998a;
Jayazeri-Rad, 2004], business (e.g. {Fletcher. and Goss, 1993; Desai and Bharati, 1998} and also signal
processing (e.g. [Larsson et al., 1996). In pattern recognition for instance neural networks have been used
broadly especially in automated recognition of spoken words (e.g. [Baig et al., 1999; Furlanello et al.,
1999], fingerprints identification, handwritten text and moving targets on a static background (e.g.
[Srinivas and Kabuka, 1995; Seong-Whan, 1996; Chen et al., 1997]. Even in geology, people tend to
applied neural networks scheme as a system to distinguish layers on a bed-to-bed basis so that the
complete system can find spatio-temporal eruption from stratigraphic patterns [Bursnk and Rogova,
2006].



Neural networks also have been used in manufacturing area where a model was developed to predict
fine pitch stencil-printing quality in surface mount assembly. Such model was developed to overcome
soldering defect problems that can attribute to solder paste stencil printing process. Neural network model
comes. as the savior to improve the quality of solder-paste stencil-printing [Yang er al., 2004]. Other than
their wide scope of implementation, neural networks also can be combined or embedded into other
control schemes such as predictive control, inverse-model-based control and adaptive control [Hussain,
1998].

There are so many evidences to prove that neural networks are technically superior to their
competitors. Neural networks are also easy to develop and they learn by themselves through examples.
Such advantages have attracted researchers to explore into neural networks fields and successfully make.

__use of them into diverse areas. Despite of the fact that they are. superior to their competitors, neural
networks also suffer from glitches such as their lack of robustness. Even though neural network models
are very powerful non-linear modeling tools, noises in the input data sometimes cause the model over
fitting [Mc Loone and Irwin, 2001]. Over fitting and under fitting is the main problem in developing
neuaral network model. o

Due to this defect, researchers have come up with some methods to enhance their robustness.
Regulation (e.g. [Girosi et al., 1995] and the early stopping method (e.g. [Morgan and Bourlard, 1990]
are among the anonymous methods that are suggested. Meanwhile, Ohbayashl [Ohbayashi et al., 1998]
implemented the universal learning rule and second order derivatives to increase the robustness in neural
network models.

20 SINGLE NEURAL NETWORKS

As mentioned earlier in the previous section that neural networks have been widely used not only in
engineering filed but also in other applications like in remote sensing (e.g.[Hussein, 1999]),
transportation, power system (e.g. [Kiartzis ef al, 1997], medicine ( e.g. [Lo et al., 1998; Brameier. and
Banzhaf, 2001], telecommunication, banking and also application in robotics and vision techniques
[Pham and Liu, 1995]. The growing interest in applying neural networks are due to the computing system
that growth rapidly which enable the behavior of the complex system to be modeled and predicted
accurately. Furthermore, the characteristic of neural network models themselves that learn from examples. -
rather than having to program the complex system also contributed the application of the models. Single
neural networks are widely employed both modeling and process control applications. The architecture of
single neural networks vary from multilayer perceptron to radial basis function (RBF) and also recurrent
neural networks models (e.g. [Hagan er al., 2002].

21 GENERAL APPLICATIONS OF SINGLE NEURAL NETWORKS

Most of the applications of neural networks are concentrated on the modehng and control of chemical
processes using multilayer perceptron networks. The common systems used in the. chemical processes
are distillation columns, and reactor systems (continuous stirred tank reactor (CSTR), bioreactor, and
neutralizing reactor). These processes are usually very nonlinear and nonlinear models have to be
developed. Currently, applications of single neural networks in process modeling and control are quite
significant in industry especially in model based predictive control (MBPC) (e.g. [Chen and Yea, 2002;
Xiong and Jutan, 2002]) and this is due to the ability of neural networks in modeling nonlinear processes
(e.g. [Shaw et al., 1997)).

In process modeling Aldrich and Slater [Aldrich. and Slater, 2001] model the fractional hold-up and
drop size in the reactor using single neural networks and the results are quite good. Single neural
networks also have been used to predict the heat reléased by a chemical reactor as developed by Xiong
and Jutan [Xiong and Jutan, 2002] as well as Aziz et a/ [Aziz et al., 2001]. The prediction of heat
released was compared to the actual heat released in the reactor and the single neural network model
performed quite well and promoted to the significant performance on the model predictive control. Other
research in chemical reaction in CSTR for examples was done by Shaw et al [Shaw et al., 1997] where
single neural networks have been used to model the reactor temperature and the result was quite
convincing.

Single neural network has also been used to model complex systems in bioprocess, for example by
Lobanov et al {Lobanov et al., 2001] where single neural networks are used as a biosensor to predict the



glucose and ethanol in certain range of substrate and the accuracy of the estimation was quite good.
Scheffer and Filho [Scheffer. and Filho, 2001] apply single neural networks with the extended Kalman
filter in the training to predict the production of the penicillin in a batch process. It is shown that the
single neural network predictions were quite good even in the real data.

Other applications of neural networks were reported by Lennox et al [Lennox et al., 1998] where
single neural networks have been used to model a vitrification process using real world data. This process
was very nonlinear and single neural networks performed well in predicting and monitoring the
vitrification process and at the same time can be employed as a detector to detect any failure in the
process.

30  MULTIPLE NEURAL NETWORKS

The idea of combined neural networks also known as multiple neural networks was introduce by
Wolpert [Wolpert, 1992] where he described about stacked generalization which is a technique for
combining different representations to improve the overall prediction performance. It can also be
described as ‘an architecture of network consisting of several sub-models and a mechanism which
combines the outputs of these sub-models [Eikens. and Karim, 1999]. A typical combined neural network
can be depicted in Figure 2 below.

Figure 2: A combined neural networks

There are several types of multiple neural networks but basically they lie underneath the same
objective. They made distinction on how to create their sub-model. There are mainly two types of
multiple neural networks. The first category is where the training data are totally different in building the
individual networks which can be built using different inputs in different regions of operation (e.g. [Chen
and Narendra, 2003; Nguyen and Chan, 2004]. The idea of this approach is to adapt different information
by using different inputs, and by combining this information a better prediction can be obtained (e.g.
[Hashem, 1997; Eikens. and Karim, 1999]. Other multi mode! approach are introduced by Jacobs [Jacobs
et al., 1991] by using the ‘mixture of local expert’. Then, Jordan and Jacobs [Jordan and Jacobs, 1994]
came up with the hierarchical mixture of neural networks. In this-case they basically discuss about the
supervised learning algorithm and how the divide and conquer method works. Other is stacked neural
networks where it describes as the individual neural networks and trained using different training data
sets and /or from different initial weights, then combined [Zhang et al., 1998b). Instead of choosing the
best neural network model among the networks, all the neural networks are combined.



The second category is to creating multiple models using the same training data but re-sampled or
partitioned using particular algorithms (e.g. [Zhang, 1999b; Cunningham et al., 2000]. There are three
main algorithms being used to re-sample or partition the training data which are bagging or bootstrap
(e.g. [Brieman, 994; Zhang, 1999a; Cunningham et al., 2000; Wehrens er al., 2000], adaboost (e.g.
[Freund and Schapire, 1996; Schwenk and Bengio, 2000] and randomisation (e.g. [Dietterich, 2000]. The
motivation of creating those different inputs or partitions is to create the effective network ensembles
[Sharkey, 1999]- Bootstrap application or bootstrap technique was first introduce in 1979 as a computer
based method for estimating the standard error of empirical distribution [Dupret. and Koda, 2001]. In
neural networks, bootstrap basically relates or deals with the sampling to create random data sets for
training and testing. The bootstrap or bagging basically refers to replication of a training data set where -
the bootstrap algorithm re-samples the original training data set. Some of the data samples may occur
several times, and other may not occur in the sample at all. The individual training sets are independent
and the neural-networks can be trained in parallel.

Adaboost or ‘adaptive boosting’ on the other hand constructs a composite classifier by sequentially
training classifier while putting more and more emphasis on certain patterns [Schwenk and Bengio,
2000}. The probability distribution over the original training data was maintained in this approach where
the network is trained with respect to this distribution. In other words the networks are dependent to each
other, while randomisation just randomly selects the original training data in each training data and each
network can be trained parallel.

3.1 GENERAL APPLICATIONS OF MULTIPLE NEURAL NETWORKS

Multiple neural networks can contribute to almost the same applications as single neural networks.
They have been applied in many fields such as in pattern recognition where different models represent
different image classification (e.g. [Rogova, 1994; Giacinto and Roli, 2001; Cho and Lee, 2003]. Medical
application of multi models is presented by Jerebko er al [Jerebko et al., 2003} where different
classifications of polyps as single neural network models using different inputs are combined and better
prediction rate is obtained. It has also been used in other medical fields like in diagnosis application and -
in detecting the lung cancer ( [Hayashi and Setiono, 2002; Zhou et al., 2002]. Multiple: models have also”
been applied in time series forecasting [Nguyen and Chan, 2004]. In this case each model forecasts a -
difference time series prediction or prediction horizon and this reduces the recursive prediction promoted-
to reducing the recursive error occurred in the long range prediction.

3.2 MULTIPLE NEURAL NETWORKS VS. SINGLE NEURAL NETWORKS

Instead of broad implementation of single neural networks, people prone to find better solution with
hope that it will attain better results. Research in neural networks area is one of the continuously
developed in searching better and better and eventually best solution to gain best results. Lately,
researchers discovered that combined individual neural networks improve robustness of the models. The
continuous development of computer and it affiliates-also seems to spark the development in multiple
neural networks. They have been employed ubiquitously in many applications. The fact that they are
superior compare to single neural networks also seems to be acknowledged by many people. In fault
diagnosis for instance, multiple neural networks already gave convincing results compare to single neural
networks where they detected the fault faster than single neural networks [Zhang, 2006]. In fact, they also
give the accurate results which is desirable in any filed of applications.

The fact that multiple neural networks give better results compare to single neural networks has
spawned the idea of improving robustness of multiple models. As stated in previous chapter, robustness
in one of the crucial aspects in developing a ‘successful’ neural networks model. Overfitting and
undefitting are the major problem in applying neural networks. Robustness is technically referred to
generalization capability of a neural network model. Therefore, quite a number of techniques have been
developed to overcome this defect. Regularization and Bayesian method are among common techniques
in improving neural networks’ robustness. Despite of these techniques, a combined neural network also
has been approved as one of the way to improve overall performance of neural network model [Wolpert,
1992].



Combining the networks improves the generalization capability of the neural networks models in such
a way that it guards against the failure of individual components networks. This is because that some of
the neural networks will fail to deliver the result or output prediction due to limited training data set (e.g.
[Hashem, 1997; Mc Loone and Irwin, 2001]). Many techniques for combining neural networks have been
developed since the results are very convincing. Researchers tend to venture into area where methods of
improving the combination of neural networks are devised.

Dempster-Shafer belief method is one of the methods used to combine complex model. Selective
combination of neural networks has been proposed and seems to attract researchers based on the fact that
it reduces the number of shared failure among networks. Other selective combination methods also has
been introduced by Perrone and Copper [Perrone and Cooper, 1993] using a heuristic selection method,
combining two alternative selection algorithms [Hashem, 1997] and Rogova, Zhang, Ahmad share the
same idea by combining less correlated networks to enhance neural networks’ output [Rogova, 1994;
Ahmad and Zhang, 2003].

4.0 CONCLUSION

Based on the latter section, multiple neural networks are indeed getting popular and most of their
application it gives better results as well as improving model’s robustness. Even though single neural
networks have been proved to be a powerful tool in both modeling and control applications, people will
never satisfied on current technology if they can find and successfully develop a better technology in
order to improve current technology’s performance. This willingness has spawned a brand new
- technology based on combination of neural networks that in fact give better results and has been
benefited many people in this area. Multiple neural networks can be said as the ultimate achievement in
this neural networks research field where continuously improvement is welcomed as technology needs a
fresh and reliable idea.to ease human’s life.
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Abstract: Combining multiple neural networks appears to be a very promising approach in improving
neural network generalization since it is very difficult, if not impossible, to develop a perfect single
neural network. In this paper, individual networks are developed from bootstrap re-samples of the
original training and testing data sets. Instead of combining all the developed networks, this paper
proposed backward elimination, In backward elimination, all the individual networks are initially
aggregated and some of the individual networks are then gradually eliminated until the aggregated
network error on the original training and testing data sets cannot be further reduced. The proposed
techniques are applied to nonlinear process modeling and application results demonstrate that the
proposed techniques can significantly improve model performance better than aggregating all the
individual networks.

Keywords : NMPC, multiple neural networks, nonlinear process, feedforward neural networks

1. Introduction

Artificial neural networks have been increasingly used in developing nonlinear models in industry and
model robustness is one of the main criteria that need to be considered when judging the performance
of neural network models [1, 2). Model robustness is primarily related to the learning-or training -
methods and the amount and representativeness of training data {3]. Even though neural networks have
a significant capability in representing nonlinear functions, inconsistency of accuracy still seems to be
a problem where neural network models may not perform well when applied to unseen data.
Furthermore, advanced process control and supervision of industrial processes require accurate process
models promoting investigations on the robustness of neural network models [4]. Lack of robustness in
neural network models is basically due to the over-fitting and poor generalisation of the models (e.g.
[5]). Therefore, many researchers have been investigating on how over-fitting can be alleviated
through improving network learning algorithms or through combining multiple imperfect neural
networks (e.g. {6-11]). In view of improving network learning algorithms, a number of techniques hav.
been developed like regularisation and early stopping method (e.g. [12, 13]). Ohbayashi et al. [14]
implemented a universal learning rule with second order derivatives to increase the robustness in
neural network models.

Fig. 1 An aggregated neural network
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Among those approaches for improving neural network generalisation, the combination of multiple neural
networks seems to be very effective. Fig. 1 shows how multiple neural networks are combined. The
“individual networks in Fig. 1 model the same relationship and are developed from different data sets and/or
different training algorithms. They can also have different structures. Instead of choosing the single “best”
neural network model, all the individual neural networks are combined. There are a number of methods in
combining the networks like stacked neural network and bootstrap aggregated network where multiple
networks are created on bootstrap re-samples of the original training data [8, 15-19]. The main objective of
this approach is to improve the generalization capability of the neural network models in such a way that it
will guard against the failure of individual component networks. This is because of the fact that some of
the neural networks will fail to deliver the correct results or output predictions due to network training
converged to undesired local minima, over-fitting of noise in the data, or the limited training data set (e.g.
[6, 20D).

In most of the reported works on aggregating multiple neural networks, all the developed individual
networks are combined. However, some neural networks may not contribute to improving model prediction
performance when combined with other networks. This could be due to several reasons, such as these
networks severely over-fit the data or the information captured by these networks has already been
r'epresented by other networks included in the aggregated network. Excluding these networks could further
improve the generalisation capability of the aggregated network. Perrone and Cooper [21] suggests a
heuristics selection method whereby the trained networks are ordered in terms of increasing mean squared
errors (MSE) and only those with lower MSE are included in combination. However, combining these
networks with lower MSE may not significantly imprové model generahsatlon since these networks can be
severely correlated. In this paper, backward elimination (BE) methods in statistical regression [12] -are
proposed for selective combination of neural networks. The paper is organized as follows. Section 2
presents BE selective combination methods for aggregating multiple neural networks. Section 3 presents
the case study to test the proposed techniques. Some results and discussions on the case study are given in
Section 4. Finally, the last section concludes this paper. '

2. Selective Combination of Multiple Neural Networks

Suppose that neural network models are to be developed from the data set {X, ¥}, where XeRV? is the
input data, YeR™ is the output data, N is the number of samples, p is the number of input variables, and ¢
is the number of output variables. To develop an aggregated neural network model containing » individual
networks, the original data set can be re-sampled using bootstrap re-sampling with replacement to form »
replications of the original data set [15]. The n replications can be denoted as {Xay Yoy}, X, Yo}, -5
{Xe Yi}, where XpeRY?, Y,eRY, i=1, 2, ..., n. A neural network model can be developed on each of
these replications, which can be partitioned mto a training data set and a testing data set if cross-validation
is used in network training and network structure selection. If the predictions of these # networks on the

original data set are denoted as )4 , Y, 5 e IA’n , then the sum of squared errors (SSE) of the ith network can
be calculated as

SSE, = trace[(Y ~ F,)" (¥ - ¥,)] M

For the sake of simplicity in illustration, the simple average method is used in combining the selected
networks. If all » networks are combined, then the aggregated network output is:

p=1 ZY e



2.1 Backward Elimination

The BE approach begins with the aggregated neural network containing all the individual networks and
removes one network at a time until the SSE on the training and testing data cannot be further reduced. The
network deleted at each step is such selected that its deletion results in the largest reduction in the
aggregated network SSE on the training and testing data. The BE method is summarised as follows:

Step 1 Generate n replications of the original data set using bootstrap re-sampling, {Xq), Yoy}, {Xe)» Y}
voos § Xy Yy}, and develop a neural network on each replication. Denote the prediction of the ith network
on the original data set as Yi. Calculate the SSE of these networks on the original data using Eq (1).

Step 2 Set j=1 and denote I as a set containing the indices of the networks currently included in the
aggregated network and I=[1, 2, ..., n]. Denote J as a set containing the indices of the networks currently

and SSE(j) as,

~

deleted from the aggregated network and J=[], i.e. J is initially empty. Denote Y

a.j

respectively, the predictions and SSE of the aggregated network at stage j.

SSE( _f) = trace[(%Zf}i —Y)T(%Zf’,- ~-1)]

-+ el iel

Step 3 If n-j=0, then go to Step 5;

else
=i+
foriel
YY) = Y,
“ n- J Ig;i
end

k = arg mintrace[(7)) ~ V)" (1) ~1)]
SSE(j) = trace[(?jj) -1 (¥ -1)]

Step 4 If SSE(j)=SSE(j-1), then go to Step 5;
else
I=I-k (i.e. remove k from set I)
I=[1,k}
go to Step 3.

Step 5 Stop

2, Case Study

5
The case study chosen is pH neutralization process. The neutralization process takes place in a CSTR and
 there are two input streams to the CSTR as shown in Figure 1. One is acetic acid of concentration C, at
flow rate F; and the other is sodium hydroxide of concentration C, at flow rate F, [23]. The mathematical
equations of the CSTR can be found in reference [23]. To generate training, testing and validation data,
multi-level random perturbations were added to the flow rate of acetic acid while other inputs to the reactor
were kept constant.



Fig. 2 CSTR for pH neutralisation process

The pH measurements were corrupted with normally distributed random noise with zero mean and a
standard deviation of 0.2. The dynamic model representing the neutralization process is of the form:

(O = I3 =1, (¢ = 2),u(t - 1),u(t - 2)] (€)]
where J(t) is the pH prediction in the reactor at time # and %(?) is the acid flow rates at time ?.

For long range predictions or multi-step-ahead predictions, the current and past model predictions are used
to predict the future values of the model outputs:

PO = Iy =1, 9 = 2)seeeeee, Y& = B, ult = 1), u(t = 2),.....u(t — m)] 0)

where the model prediction, $(f—1)to P(f—n), are used in place of the process outputs, (t —l)to
y(t n) to predict P(¢) as shown for pH prediction in Eq (3).

In this case study, 20 networks with fixed identical structure and 20 networks with various structures were
developed and the individual networks were trained by the Levenberg-Marquardt optimisation algorithm
with regularisation and “early stopping”. The individual networks are single hidden layer feed forward
neural networks. Hidden neurons use the sigmoid activation function whereas output layer neurons use the
linear activation function. To cope with different magnitudes in the input and output data, all the data were
scale to zero mean and unit standard deviation. The data for neural network mode! building need to be
divided into: 1). Training data (for network training); 2). Testing data (for cross-validation based network
structure selection and early stopping); and 3). Unseen validation data (for evaluation of the final selected
model). In networks with fixed structure, the network structures, i.e. the number of hidden neurons, were
determined through cross validation. Single hidden layer neural networks with different numbers of hidden
neurons were trained on the training data and tested on the testing data. The network with the lowest SSE
on the testing data was considered as having the best network topology. In assessing the developed models,
SSE on the unseen validation data is used as the performance criterion.



Fig. 3 Long range prediction with feedback before the combination of individual networks

Accurate long range predictions are much more difficult to achieve than accurate one-step-ahead
predictions due to the accumulation of the errors in the recursive predictions [22]. To obtain long range
predictions from an aggregated network, two types of network output feedback schemes can be used but
only feedback as shown in Fig. 3 is used. This is equivalent to combining the long range predictions of
individual networks. To test the performance of the proposed selective combination schemes, the following
combination schemes are investigated: '

Median : Median of the individual networks;
Average : Average of all networks;
BE : Average of selected networks using the BE method.

In order to further study the capability of the proposed method, five additional runs with different initial
network weights were carried out. These different initial weights were generated using different seeds in
the MATLAB random number generator and applying different scaling factors to the generated random
numbers. ‘

4. Result and Discussion

It is well known that the dynamics of pH is highly nonlinear. In this case study 20 networks with fixed
number of hidden neurons (5) and 20 networks with varying number of hidden neurons (between 1 and 10)
were developed. Again in the fixed structure, the number of hidden neurons was determined through cross
validation. Fig. 4 shows the long range prediction performance of individual neural networks. It can be seen
from Fig. 4 that the individual networks give inconsistent long range prediction performance on the training
and testing data and on the unseen validation data. For example in Fig. 4 shows that network number 14
among the networks with various structures gives the worst performance on the training and testing data.
However, its performance on the unseen validation data is quite good. This demonstrates the non-robust
nature of individual networks.

Fig. 5 shows the SSE of long range predictions from aggregated neural networks with various structures.
The aggregated networks under selective combination scheme give quite consistent prediction performance
on the training and testing data and on the unseen validation data. This patent was also observed for the
fixed structure.
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Fig. 4 SSE of long range predictions from individual neural networks in pH neutralization process
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Fig. 5 SSE from aggregated neural networks with various structures in pH neutralization process

Table 1 gives the SSE on the unseen validation data of different combination schemes. It can be seen that
the worse one of BE selective combiriation schemes gives better performance than combining all the
networks and the median of individual networks. In the BE selection methods 5 networks (networks 1, 6,
11, 14, and 17) and 7 networks (networks 1, 5, 7, 11, 17, 18, and 20) were combined for fixed and various
structures. The median of the individual network SSE on the unseen validation data for fixed and various
structures aré 90.44 and 90.52 respectively.

Table 1. Overall Results for pH Neutralisation Process

Combination schemes ® SSE on validation
data
Median Fxxc?d structure 90.44
Various structures - 90.52
Feedback Fixed structure 57.31
Average | before Various
combination structures - 43.84
Feedback Fixed structure 41.77
BE before Various
Combinaﬁon structures 3 744
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Fig. 6 Long range predictions from the best aggregated neural network combination

Table 2 Mean and Standard Deviation When Varying the Parameter in Neural Network Modeling

Combination schemes Mean IS)t:viation
. Fixed structure 93.48 3.52
Median Various structures A 9443 - 4.38
Feedback Fixed 59.16 4.99
Average | before stru\c/tufe
combination arious 51.36 4.41
structures
Fixed
BE befl(;‘::dback stru\stufe' » 50.47 3.14
combination arious 38.37 1.29
structures

The best combination scheme in this case is “BE with fixed structures with feedback before combination”
with an SSE of 37.44 on the unseen validation data. Fig. 6 shows the long range predictions from this
aggregated neural network. Lastly, the initial parameter was change in order to test whether the proposed
methods can get a consistent result even though some of the condition is different. The result is quite
consistent for BE selection method where the mean and standard deviation is smaller compare to median
and averaging methods as shown in Table 2.

5. Conclusions

Backward elimination methods for the selective combination of multiple neural networks ate proposed in
this paper in order to improve the model generalization performance. In the BE method, initially all
individual networks are included in the aggregated network. Individual networks are then eliminated one at
a time from the aggregated network until the aggregated network error on the original training and testing
data cannot be further reduced. BE selective combination methods have shown their superlorlty compared
to the combination of all networks and the median in this case study. :
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Abs‘traét

| This paper focused on factors that improved the performance of PID controller in controlling
pH neutralization process which is frequently used in treating wastewater. The performaﬂce of PID
controller at diﬁerent tank capacities and stirring rates had been studied in order to find the optimum
tank capacity and sﬁrring rate in pH cont‘ro.lling system. Strong acids, 0.0IM H,S0, and stro_rig base,

0.1M ‘NaOH were react in different tank capacities at constant rrstirriﬂng speed followed by using

different stirring speeds at constant tank capacity. The PID controller performance was based on set
points tracking and disturbanc_:e'rejection. In the largest tank, the controller showed an excellent set
point tracking with minimum oscillations and shortest time in réjecting disturbance. An almost the
same result were displayed by using the highest stirring rate while poor performances 1n controller
response were observed in a lowest tank capacity and stirring rate. Thus, it can be concluded that larger
tank_ dampen out oscillations and reduced the effect of disturbance while at a higher stirring fate, it gave
a cb_mplgte mixing and thus accurate measurement of pH which improved significantly the controller
performance, 7 -

k3

Ke‘ywordsf pH control, PID controller, CSTR, capacities, stirring rates

1.0 Intrdduc‘tion 7

The pH control is very important in many processes. In the wastewater treétment and the cell
growth rate the accurate stabilization of pH at an o.pﬁma] level often determines the efficiency of the
bioprocesses.. Abcording to nowadays legislation the restrictions on effluent discharges are very tight
and pH control in these discharges becomes more important. Heavy metals must be recovered and one .
frequently employed method is to control pH to minimize the solubility of the metals. The most
common pH process is the neutralization of an acidic or a basic waste stream for the next reasons: (i) to
prevent corrosion (ii) to protect the aquatic life and the human welfare according to ecological iow, (iii)
as a preliminary treatment in bioprocess (iv) to provide neutral pH water for recycle.

On the chemical process side pH neutralization is a very fast and simple reaction. However it

was recognized as a very difficult control problem which arises mainly from the strong process



nonlinearity (the process gain can change ten or more times) and the time varying properties due to
frequent load and/or component concentration changes. Several strategies have been proposed for a
nonlinear pH control. Lee and Choi (2000) propose a simple nonlinear adaptive control system for pH.
processes which uses the in-line mixer to control the pH value in the stirred-tank reactor. Regunath and
Kadirkamanathan (2001) had presented a fuzzy non-uniform grid scheduling approach for controlling
pH neutralization process while Faanes and Skogestad (2004) addresses control related design issues,
such as tank sizes and number of tanks, for neutralization plants. Go'mez et al. (2004) pfese‘nted a
Wiener model identification and predictive control of a pH neutralisation process. Akesson et al.
(2005) studied the computational issues of model predictive control (MPC) of nonlinear sampled-data
systems and also neural network approximation of nonlinear model predictive controllers. Syafiie et al.
(2007) applied model-free learning control (MFLC), based on reinforcement learning algorithms and
hierarchical feinfo_rcement learning, Altmten (2007) studied pH control of a neutralization process by
using generaliied predictive control (GPC) method. The below researches were focused on treating
wastewaster by controiling pH. '

Ishak et.all. (2001) study the dynamics and control of a semibatch wastewater neutralization
process in modeling and simulation with a digital PI control algorithm was used as the controller, and
the control simulation was performed in Matlab’s Simulink environment. The control studies were
done to include the effect of changes in process dead time, base concentrations and base flowrates to
the controllability of the semibatch system. From the simulation study, it was found that an increase in
process dead time would result in process instability while, an increase in base concentratién. and flow
rate would result in faster neutralization time. For a given set of condition, the process dead time gave
no effect td the volume of wastewater accumulated in the tank. Naohiro (2003) investigate the
effectiveness of Qxidation-reduction potential (ORP), pH and dissolved oxygen as parameters for
indicating denitrification followed by nitrification in sequencing batch reactors (SBRs) for swine
wastewater treatment, With a low C/N ratio, and using a suitable C/N ratio adjustment control, ORP
and pH could be used as monitorih; and control parameters in both the anoxic and oxic phases for
practical swine wastewater treatment. Most of the studies on the effect of pH on enhanced biological
phosphorou_siemoval were conducted with the acetate wéstewater, and the pH was controlled during
the entire anaerobic and aerobic stages but Yan Liu (2006) investigated the influence of anaerobic
initial pchAo_ntrol, which will be more practical than the entire process pH controi strategy, on enhanced
biological phosphorus removal from wastewater containing acetic and propionic acids. The optinial
initial pH for higher soluble ortho-phosphorus (SOP) removal efficiency should be controlled between
6.4 and 7.2. This pH control strategy will be easier to use in practice of wastewater treatment plant.
Zeybeck (2006) presents an experimental application of AHCC to study the coagulation process of
wastewater treatment in a dye plant. Also this study includes a series of tests in which an AHCC
controi was uséd’ for pH control. The performance results of the AHCC controller are compared with
the results obtained by using a conventional proportional-integral-derivative (PID) algorithm. Although
the removal of pollutants from wastewater is similar with AHCC aﬁd PID, the results show excellent

AHCC performance in the region where conventional PID control fails.



In this paper two scopes of studies related to performance of pH control in a continuous stirred
tank reactor (CSTR) by using a PID controller were investigated. Case Study 1 is to learn the effect of
different CSTR capacities in control]in-g pH. In simple words, this study is to verify whether a small or
a larger tank should be used in mixing of acid and base in order to achieve a certain value of pH. It will
also observe the performance of PID. controller at achieving different set points and rejecting
disturbance in the systein. In Case Study 2, the effect of controller performance at different stirring
rates will be studied. The controller peffdrmance in reaching the set points and rejecting disnlrbénce is

compare at higher and lower agitation rates.

2.0 Experimental Setup 7

A schematic sketch of the experimental set up is shown in Figure 1. It consists of a 2L
continuous stirred tank reactor (CSTR), .suf)ply tanks, pumps, pH electrodes (pHE), pH' transmitter
(pHT), a recordef (pHR) and a controller (pHIC). Agitation is provided in the reactor by means of a

. mechanical stirrer.
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Figure 1: Schematic sketch of the experimental set-up

This experiment was run to control a pH progess between H,SO, and NaOH in a continuous
stirred tank reactor (CSTR) with PID open' loop controller. The influent acid stream acted as
disturbance, influent alkaline stream as manipulated variable‘while the controlled variable was the pH
value of the effluent. The concentrations of influents were used af constant 0.01M of H,SO, in Tank 1
and 0.1M of NaOH in Tank 2. First, the CSTR was filled in until 1.0L of H,SO, at constant flow rate.
At the controller, an auto mode was chosen and set point was set at pH 7. The stirrer was start at
constant 350 rpm and the metering pump was switch on. Automatically, the base flow rates were
manipulated until it slowly reached pH 7 and remained steady. After several minutes at steady state

condition, the controller mode was changed to manual. Step changed was introduced by increasing the



bése flow rate and a new steady state was achieved. This data was plotted to obtain a setting for tﬁe
PID controller by using S-curve method. This PID setting will be applied through out the experiment.
Again, the CSTR was filled in with 1.0L of H,SO, at stirring speed of 350rpm. By using an auto mode
controller, pH 7 was set as set point and metering pump was switch on. As base flows in the tank, the
tank volume was maintained at 1.0L by manually adjusting the exit valve. Once the set point was
achieved, it was remained steady for a while before new set points was set at pH 9 followed by pH 5.
This is repeated at different tank capacity of 0.5L and 1.5L. Next, the tank capacity was remained at
1.0L but the stirring rates were changed‘ from 350rpm to 450rpm and 150rpm. All the data recorded in

the recorder were then plotted.

3.0 Result and Discussion
This section discussed the resulfs of studying the effect of tank capacities as Case Study 1, and
stirring rates as Case Study 2, in controlling pH with PID controller. The controller performances in

both studies were evaluated based on its response to set point changes and rejecting disturbance.

3.1. Case Study 1: Reactor Tank Capacities

| The set points in pH adjustment processes are usually at the steepest part of the titration curve,
near the neutral pH of 7. The. process has extremely high gain or sensitivity at this point meaning a
small amount of changes in reagent will cause remarkable changes in pH value. To study the effect of
tank capacities on the system response, three different pH tracking were used. The servo. was varied
after 30 minutes at each set point from pH 7 to 9 followed by pH 5. Figure 2 shows the performance of
the pH process under different tank capacities for servo control problems with the correspoﬁding base
flow rate is given in Figure 3.

When the set point tracking behavior of each tank was compared, the system was more
capable of bringing the pH to the set points in the largest tank, 1.5L. By using this tank, PID showed a
faster response with minimum osci_llaﬁons and over/undershoots and settling times less than 10 minutes
toward the set point than did in the 1.0L and 0.5L tank as in Figure 2. The errors caused by the set point
changes were ins_tantaneously sensed by the controller and immediate corrections in the base flow were
taken as can be seen in Figure 3. This was probably because in 1.5 L tank capacity with 350 rpm
stirring rates, the mixture of acid and base was well mixed. As base flows in the tank, the pH changes
gradually resulting excellent pH control at each set point.’

In 1.0L tank with 350rpm stirring rates, PID also showed good control performance but with
oscillations and over/undershoots especially at set point pH 5. This was due to severe changes of base
flow rates into the reactor had caused the pH suddenly changes until the controller finally reached a
suitable flow rates of base. This had taken a longer time especially in obtaining an acidic solution of pH

5. As the controller was manipulating the base flow rates, a high amount of base was used.
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-M_eanwh-ile, in tank of 0.5L, PID showed very slow response with extremely poor
performance. This was most probably because as the tank volume is smaller, minor changes of base
flow rates will caused major changes of pH in the mixture. The controller could not obtain the suitable
amount of base needed in this small volume of mixture as the pH was fluctuating. A high amount of
base had been used in this brocess without success.

In order to assess the robustness of the controller at different capacities of tanks, its ability to
maintain the pH value of the effluent stream at the neutral value of pH 7 in the presence of disturbances
was examined. Instead of keeping the acid flow rate constant, it was changed from 1.5 ml/s to 3.4- ml/s
for 15 seconds. It was disturbed respectively at time 30 minutes which wés after it reached steady state
at pH 7. This characteristic is important in applications, such as waste-water treatment, where
disturbances should not cause the pH value of the effluent stream to deviate too much from the set
point.

Figure 4 displayed the drop of pH caused by disturbance while Figure 5 showed the controller
performance in rejecting disturbance. Tank A showed a small change of pH value because the
disturbance was introduced only for a short time of 15 seconds, thus it took only 4 fninutes to return
back to pH 7. The pH Avalue' of Tank B drop to pH 5 with 7 minutes needed to recover back to the
process pH while Tank C took 10 minutes to trace the set point from pH 3.5. All three different tank

capacity managed to reject the disturbance but at different range of time.
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Figure 4: Disturbance effect at different tank capacities, Time (min) versus pH value
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Figure 5: Changes of base flow rate, MV % versus time (min)

3.2. - Case Study 2: Stirring Rates

The set points were changed similar to the first experiments which were pH 5, 7 and 9 to

evaluate the controller response at different stirring rates. The servo was varied after 30 minutes at each

set point from pH 7 to 9 followed by pH 5. Figure 6 shows the control of pH at different stirring rates

with the corresponding base flow rate is given in Figure 7.
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Figure 7: Changes of base flow rate, MV % versus time (min)

Overall, at 450rpm in 1.0L tank, the controller was able to control the pH value at different set
points with minimum oscillations and over/undershoots. This resulted from a complete mixing in
which acid and base molecules were dissociated completely and the pH changes are instantaneous. This
vigorous mixing ensures uniform composition through out the reaction tank thus an accurate
measurement of pH was obtained and consequently an easier and accurate control of pH value.
Referring to Figure 7, it can be seen that the controller was able to manipulate and maintained the base
flow rates efficiently at each set point.

At rate 350rpm, the set point tracking response was not as good as at 450rpm especially at pH
5. In obtaining pH 5, the flow rateg of base was decreased, thus stirring rate plays a crucial role in
mixing this less amount of base in the mixture in a short time. This is probably the reason at 350rpm,
the mixing was not fully complete and thus more time is needed to perfectly mix the acid-base mixture.
Therefore, a longer time needed by the controller to reach the set points.

The mixing process with rate 150rpm was inadequate therefore it exhibited a poor controller
performance. Inadequate mixing resulted inaccurate reading of pH measurement. Since this controller
responded based on error of measurement and set point, it will proceed with its action. Therefore, as
shown in Figure 7, several actions taken were inappropriate such as low amount of base were feed in,
in order to obtain an alkaline solution of pH 9.

To study the controller ability to maintain the pH value of the effluent stream at the neutral
value of pH 7, disturbance was introduce by increasing the acid flow rate for 20 seconds. The result
was showed in Figure 8 and the controller response as in Figure 9.

From the below Figure 8, at Rate 3, 150rpm, the pH changes faster followed by Rate 2 and
then Rate 1. However, the rejection of disturbance at the three different rates was almost the same, after

10 minutes, the disturbance was rejected and back to its initial set point. Therefore, even though Rate 3



showed faster changes of pH, the time it took to reach the original pH is the same as Rate 1. Thus, Rate

1 can still be considered as the best stirring rates in rejecting disturbance.
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4.0 Conclusion
4.1. Case Study 1: Reactor Tank Capacities

Hig._h capacity is favorable for effective control since it levels out abrupt changes and gives
time for mixing. It is concluded that Tank A, 1.5L with stirring rates of 350rpm, is the optimum tank
capacity in controlling pH of effluent with a PID controller. It gives excellent set point tracking from
neutral (pH 7) to alkaline (pH 9) and acidic mixture (pH 5) with ‘minimﬁm oscillations. Moreover, it
reduces the effect of disturbance forming a good disturbance rejection in a short time. It also minimizes

the amount of reagent required in the process.

42.  Case Study 2: Stirring Rates

Agitation serves the purpose of equalizing the hydrogen or hydroxide concehtra_tion profile
within the reaction vessel as the influent is dispersed in the tank. The optimum stirring rate in
controlling pH is Rate 1 at 450rpm. The controller performance in tracking set point and rejecting
disturbance was good due to complete mixing of acid and base. It blends é]l reactants efficiently in
minimum' time and ensures all the tanks contents are well blended thus obtaining an accurate
measurement of pH which leads to an easier controlling of pH. A faster control of pH will minimizes

the amount of reagent needed.
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