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Pcp the cumulative maximum posterior probability

Pcpi the cumulative maximum posterior probability for a particular agent behaviour subtype i

Pcp f the cumulative posterior frequency

Pcl the cumulative maximum normalized likelihood

Pcli the cumulative maximum normalized likelihood probability for a particular agent

behaviour subtype i
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Pcl f the cumulative likelihood frequency

Pavg the average probability of the mean data for every likelihood distribution

Dµ the mean data of the likelihood distribution

Pmin the minimum probability of all the likelihood distributions for all the agent behaviour

subtypes

Pth the threshold probability which is the probability value that determines whether a given

probability is small enough to be considered as anomalous

γp the level of partial anomaly

γt the level of total anomaly

ref the reference model

DKL(U ||L) The Kullback-Leibler divergence of U from L

DKL(L||U) The Kullback-Leibler divergence of L from U

βre f The normalized likelihood for data Dr conditioned on the reference model

βhigh The normalized likelihood probability for data Dr conditioned on the rare model
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UKURAN BARU KEHAIRANAN DAN
KETIDAKLAZIMAN BAYESIAN UNTUK

PENAAKULAN DAN PROSES PEMBUATAN
KEPUTUSAN AGEN KOGNITIF

ABSTRAK

Kehairanan Bayesian (Bayesian Surprise) ialah satu kajian tentang kejadian kehairanan dan

sebagaimana yang pernah dikaji oleh pengkaji-pengkaji lain sebelum ini, kejadian-kejadian

yang jarang berlaku dianggap sebagai suatu yang menghairankan juga. Namun, daripada ka-

jian ini, kami dapati bahawa kehairanan dan ketidaklaziman adalah berbeza dari segi konsep,

maka itu kedua-dua tanggapan ini telah dipisahkan. Memandangkan tanggapan kehairanan

dan ketidaklaziman kini tidak lagi dianggap sama, kami telah mereka bentuk kaedah pengiraan

yang baru dan berasingan bagi setiap tanggapan dan kami namai kaedah kami Ketidaklaziman

Kehairanan Bayesian (Bayesian Surprise Rareness - BSR). Pada dasarnya, pengiraan kami

adalah berasaskan taburan kemungkinan, tidak seperti kajian-kajian lalu yang mengukur ke-

hairanan daripada taburan sebelum dan taburan selepas. Pengiraan berasaskan kemungkinan

ini dilakukan oleh sebab taburan sebelum dan selepas tidak dapat menggambarkan setiap satu

kejadian kes-kes yang jarang berlaku. Pengiraan kehairanan juga adalah berasaskan taburan

kemungkinan memandangkan kaedah taburan mampu untuk benar-benar menggambarkan ni-

lai kebarangkalian suatu data yang diperhatikan. Konsep serta pengiraan ketidaklaziman dan

kehairanan kemudiannya diaplikasikan pada sistem multiagen yang akan meramalkan peri-

laku agen. Suatu agen yang sedang diramalkan mungkin mempamerkan perilaku yang tidak

lazim dan mungkin memberikan tindak balas yang menghairankan yang perlu dikenal pasti

serta dinyatakan kuantitinya. Selain daripada itu, kami juga menunjukkan kepentingan uku-
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ran BSR dalam proses pembuatan keputusan suatu agen dengan menunjukkan kebergunaan-

nya dengan menggunakan hasil pengiraan tersebut untuk menentukan strategi optimum agar

keputusan yang tepat boleh dibuat. Kami menggunakan gambar rajah pengaruh untuk memo-

delkan ramalan kami dan proses pembuatan keputusan. Namun, gambar rajah pengaruh yang

sedia ada tidak boleh menggambarkan kaedah-kaedah pengiraan kami dan dengan itu kami

telah meluaskannya agar merangkumi pengiraan kehairanan dan ketidaklaziman. Represen-

tasi grafik yang baru ini dikenali sebagai Gambar rajah Pengaruh Merangkumi Kehairanan

dan Ketidaklaziman Bayesian (Bayesian Surprise Rareness Incorporated Influence Diagram -

BSRIID). Kajian-kajian telah dijalankan untuk mengesahkan ketepatan kaedah-kaedah pengi-

raan kami dan sebagaimana yang dilihat dalam suatu situasi khas, proses pembuatan keputusan

kami yang menggunakan BSRIID untuk memilih sejenis cadangan tidak langsung telah menun-

jukkan ketepatan setinggi 14.48% berbanding dengan cara yang tradisional. Kemudian apabila

taburan selepas digunakan sebagai kaedah pengiraan untuk mengesan kejadian kehairanan dan

ketidaklaziman, hanya sebanyak 9% dapat dikesan tetapi apabila kaedah BSR digunakan, seti-

ap satu kejadian mampu dikesan.
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THE NEW BAYESIAN SURPRISE RARENESS (BSR)
MEASURE FOR COGNITIVE AGENTS’
REASONING AND DECISION MAKING

ABSTRACT

Bayesian Surprise is the study of surprise occurrence and as previously studied by others,

occurrences that were rare are considered surprising as well. However, through our study we

have found surprise and rareness to be conceptually different, thus both these notions have been

separated. Since the notions of surprise and rareness are now no longer considered the same,

we therefore have designed separate and new methods of computation for each notion and we

have named our method as Bayesian Surprise Rareness (BSR). Basically our computation is

based on the likelihood distribution unlike past works which measure surprise from the prior

and posterior distributions. The computation is based on the likelihood is due to the prior and

posterior distributions being not able to reflect every single occurrence of surprise and rare

cases. The concepts and computation of rareness and surprise are then applied to a multi-agent

system where the behaviours of agents are predicted. An agent that is being predicted may

exhibit rare behaviour and may give surprising responses which need to be identified and quan-

tified. Apart from that we also show the importance of the BSR measure in an agent’s decision

making process through demonstrating its usefulness by using the result of the computation

to determine the optimal strategy so that accurate decisions can be made. We use influence

diagram to model our prediction and decision making process. However the existing influ-

ence diagram is not able to reflect our computation methods and therefore we have extended it

to accommodate the surprise and rareness computations. The new graphical representation is
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known as the Bayesian Surprise Rareness Incorporated Influence Diagram (BSRIID). We have

performed experiments to verify our computation methods and in one instant, decision making

for selecting a hint type using BSRIID is 14.48% more accurate then the traditional or standard

influence diagram. Then when the posterior is used to detect events that are surprising or rare,

only 9% are detected but as for the BSR measure, all events are detected.
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CHAPTER 1

INTRODUCTION

In the field of artificial intelligence, researches that are related to probabilistic reasoning such

as those that are based on Bayesian statistics have been gaining momentum in the recent years

and it has been viewed as an area of much potential.

Another field in artificial intelligence that has been gaining attention is the study on intel-

ligent agents which has been garnering a wide interest among researchers and it is an area that

is extensively researched upon thus bringing many new developments.

In the research that we have performed, our scope of study is mainly within the area of

Bayesian reasoning and decision making under uncertainty with minor inclusion of other areas

that are also related to Bayesian statistics. It is important to note that Bayesian statistics is a

wide area of research which has accorded numerous studies and extensions even from areas

that are of different domain.

In the following sections, we describe our research background and this is followed by the

problem definition, objective, research methodology and proposed solution. This chapter will

end with summary of research contributions and a description on the thesis outline.

1.1 Research Background

The agent environment of our research is a multi-agent system where every agent belongs to a

particular organization structure (Kollingbaum and Norman, 2005; Hoogendoorn et al., 2004;
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Jonker et al., 2003). An organization would have its own organizational beliefs, desires and

intentions or goals which we called them as the external beliefs, desires and intentions. In our

environment all the agents are socially committed to adhere to the beliefs, desires and intentions

of their organization.

In this research we study how an agent of an organization could predict another agent’s

behaviour through its communication with it. The goal or intention of the predictor agent

is to find and select another agent which does not belong to its organization but has the right

behaviour that is acceptable by the organization. However in the multi-agent domain not all the

agents behave in the exact straight-forward manner. There may be several agents occurring with

rare and surprising behaviours every now and then and the main purpose of this study generally

is to identify and quantify occurrences of surprise and rareness in a consistent manner. The

prediction process of the agents is performed through inference or update using Bayes’ theorem

which is an increasingly popular graphical framework for Bayesian reasoning, a probabilistic

approach to inference based on combining prior knowledge with observed data.

Other than prediction of behaviour along with identification of surprise and rareness, the

predictor agent in our application also has the task of making decisions. The decisions that

it makes need to also consider the occurrences of surprise and rareness so that only the right

decisions will be made. For this purpose, the influence diagram is used to represent the deci-

sion making of the agent. However we have discovered that the influence diagram is unable

to handle sequential inference process with decision making performed at the last inference

iteration or inference round. Hence to overcome this problem, the Bayesian Surprise Rareness

Incorporated Influence Diagram (BSRIID) is introduced.
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1.2 Problem Definition

The following are the limitations that we have encountered in the existing methods:

i. In order to perform prediction, the Bayesian inference is used where the final maximum

posterior value is regarded as the final prediction result. However the final maximum

posterior value may not accurately reflect the actual behaviour of the agent being pre-

dicted. This is because it is usual to find that every now and then between few inference

rounds, other models are instead represented as the maximum posterior. The inconsis-

tencies such as this where different models are involved at every inference round show

that it is necessary to have a method to track the occurrence of these inconsistencies.

ii. If any of the previous methods were to be used, surprise and rareness that should have

been identified in the agent’s response would not have been consistently identified due

to their method of computation being different from ours as it is based on concepts that

are also theoretically different from ours.

iii. The work by Bayesian Surprise (Itti and Baldi, 2005a) considers rare occurrence to be

surprising. However we find that rareness and surprise are two different notions and

either one might occur by itself or it could also occur together. The cause of rareness

is found to be different from the cause of surprise and hence both these notions should

not be combined and since it is based on different causes it then should be computed

separately.

iv. The most common form of graphical representation for decision making process which

is the influence diagram (Howard and Matheson, 2005) is found not to be suitable for

the decision making process that we have implemented as it cannot represent a decision

making process which occurs once at the end of a sequential prediction.
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1.3 Objective

The objective of this research generally is to overcome the limitations that have been encoun-

tered and listed in the previous section:

i. Devise a method to obtain accurate inference result. To achieve this we base our predic-

tion result on a model which we called as the reference model that takes consideration of

all the posterior and likelihood probabilities involved in the inference.

ii. Devise a method that is able to consistently identify and quantify all surprising and rare

events in order to contribute to more accurate prediction result. The method of measuring

is known as the Bayesian Surprise Rareness(BSR) measure.

iii. Devise a new method of measuring which considers surprise and rareness as different

notions.

iv. Devise a new decision making graphical representation which is able to handle all the

agents’ application requirement which is known as Bayesian Surprise and Rareness In-

corporated Influence Diagram(BSRIID).

1.4 Research Methodology

To achieve the overall objective of accurate prediction and decision making result, we have

designed a new computation called the BSR measure which is carried out during prediction

process that is performed through Bayesian inference. The method of our design is then applied

on an agent application where agents have roles such as predictor and respondent and where

prediction of behaviour will be carried through a sequential question and answer session. The

result of the BSR measure will also be used in the decision making process which is carried

out by the predictor agent. To verify the performance of our measure, we have performed
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experiments and also perform comparison between our work and the related works.

1.5 Proposed Solution

In this section we firstly describe what is actually meant by surprise and rareness which are the

two concepts that contribute to our propose measure. Our description is within the context of a

multi-agent system where our BSR measure has been implemented.

So to illustrate what is meant by rareness in an agent environment, let’s say that the re-

spondent agent for some time had been consistently predicted as an agent that is very altruistic.

We need to recall that the prediction is performed through a series of questions and answers

by the predictor agent. That means the respondent agent had been giving a series of answers

that each time consistently categorizes it to be of the particular behaviour subtype called very

altruistic. But let’s say there was once or twice during the question and answer session, the

respondent agent was found to be giving answers that had categorized it to be of the behaviour

subtype that belongs to another kind such as the very selfish behaviour subtype, then in this

case to the predictor agent, a rare occurrence is considered to have happened and that which

is based on its belief model. This is because the predictor agent had been updating its belief

based on a series of incoming data that had consistently deduced the respondent agent to be of

the very altruistic behaviour subtype. However there were several times where the data from

the respondent agent’s answers had caused the occurrence of another behaviour subtype which

so far had not occurred or seldom occurred to be inferred. So the predictor agent regards this

as rare occurrences as it now has to consider the case where the respondent agent may have

infrequent occurrence of some other kind of behaviour subtypes. Therefore it has to take note

of these rare occurrences and update its belief accordingly.
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As for surprise let’s say that the respondent agent has a belief model for every answer

that it receives with reference to the behaviour subtype. And from its belief model it has the

knowledge that the respondent agent will always answer according to its behaviour subtype.

Therefore a certain type of answer may refer more to a certain particular kind of behaviour

and for some other answers it may reflect other kinds of behavior subtype. However from its

experience, the predictor agent also believes that there are some types of answers given by

the respondent agent as a response to a certain type of questions which are extremely unlikely

for any respondent agent belonging to any kind of behaviour subtype or at least the behaviour

subtype that is expected to be predicted. So such occurences are considered as surprising to the

predictor agent. In short the predictor agent considers surprise has happened when there is an

occurrence of an event which is extremely unlikely to happen and which is due to the answer

given by the respondent agent of any kind of behaviour subtype or at least the behaviour subtype

that is expected to be predicted.

So the BSR measure that we have designed is carried out during a prediction process per-

formed by the predictor agent where a series of questions will be posed to the respondent agent.

We make the assumption that the other agent called as the respondent agent will answer every

question asked, so therefore no questions will be unanswered. Every answer by the respondent

agent will be used as evidence to update the belief of the predictor concerning the behaviour of

the respondent agent. It is assumed that the answers will always reflect the respondent agent’s

behaviour. By the end of the question and answer session, the predictor will generally have a

belief that had been updated numerous times through inference and hence the final inference

result is due to have some degree of accuracy. This agent behaviour prediction process is illus-

trated in Figure 1.1 and we can see that surprise and rareness are identified and quantified for

every response received from the respondent agent which otherwise might had been overlooked

if the BSR measure was not part of the prediction process.
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Figure 1.1: Identifying and Quantifying Rareness and Surprise During Agent Behaviour Pre-
diction

The inference process is specifically based on Bayesian theorem and the prediction result

will be derived from the result of final inference round. Then appended to this result would

be the additional information derived from the BSR computation which will contribute the

complete picture concerning the hypothesis being inferred which in this case is the respondent

agent’s behaviour. With such an implementation, the predictor agent will be alerted of both

surprise and rare occurrences of the respondent agent’s behaviour that it is predicting. And

as a result, the predictor agent is also enabled to perform accurate decision making as the

results derived from the BSR computation are used for the decision making process performed

by the predictor agent to determine the suitability of the respondent agent to be part of the

organization.

As mentioned, the decision making process is graphically represented by the adapted in-

fluence diagram called the BSRIID that is able to incorporate the results of the BSR measure.

In fact this is part of the effort in achieving our objective of introducing a better decision mak-

ing approach. Through the decision making process, the importance and the value of the BSR

measure are demonstrated and we have shown in our experimentation that without the BSR

computation, the decision making process might be erroneous. So with these improvement
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measures that we have introduced such as the computation methods, the concept re-definition

and also the adapted decision making graphical model, our propose method is expected to over-

come the limitations that we have mentioned and which has actually been verified through the

results derived from our experimentations.

1.6 Summary of Research Contribution

In this research, we have contributed to a new method of computation to identify and quantify

surprise and rare occurrence called as the BSR measure which has overcome the limitations

found in the Bayesian inference technique and also the previous computation methods.

This new method of computation is based on proposed method where the notions of rareness

and surprise are considered as two separate notions and by doing so our work differs from pre-

vious work which considers both this notions to be the same. Now with the notions being

separated has lead to the computation of rareness and surprise to be separated as well.

However as mentioned, since the current graphical representation for decision making

known as the influence diagram (Howard and Matheson, 2005) is unable to accommodate the

BSR concept and computation, we therefore have introduced a novel graphical representation

model for decision making called the BSRIID which is an adaptation of the influence diagram.

The BSRIID is able to make use of the result of the BSR quantification in the decision making

process which in turn prevent erroneous decision making from occurring.
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1.7 Thesis Outline

In this chapter, we have presented the scope of our research, the objective, problems encoun-

tered and the proposed solution. We also have briefly described the contributions of this re-

search.

In the next chapter, we give a comprehensive overview of our research domain and also

describe the extended areas. We discuss the application environment that would be used in this

study’s implementation. We also include discussion on past works and contributions given by

others and highlight the problems faced. Apart from that, we also look into the specific area

that we had focused upon and had made our contributions.

In Chapter 3 the BSR computation method is described with specific details on the compu-

tational steps and justification of our design.

Chapter 4 presents the experimental results, complexity analysis and thethe implementation

of our BSRIID in an agent’s decision making process. The chapter ends with describing the

recommendations for how the BSR computation can be implemented in different scenarios and

conditions.

Chapter 5 concludes the thesis by discussing general issues of our research work which we

have done and also the future work. In this chapter we will also revisit the contributions.
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CHAPTER 2

LITERATURE REVIEW

This chapter firstly gives readers an understanding of our research domain that is within the

field of artificial intelligence, where we give an overview of where our research domain is

generally situated besides including some description on its extended areas. We had also in-

cluded discussions on past works and the contributions made by others besides highlighting the

problems that exist.

2.1 A Brief Description of our Research Domain

Before we proceed describing our research area and its extended areas we would like to briefly

highlight that this research is conducted within a combination of different fields that are found

within artificial intelligence. Our problem definition and proposed solution lie within the area

of probabilistic reasoning which is known as Bayesian reasoning and also within the area of

decision making under uncertainty. Our solution is then applied to an environment of a multi

agent system. The subjects of Bayesian reasoning, decision making and agents are within the

area of artificial intelligence (Russell and Norvig, 2003).

The probabilistic reasoning and decision making involved in this study are based on the

Bayesian approach that based on statistical methods. Therefore in this thesis, the scope of our

study is sometimes generally referred to as Bayesian statistics.
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2.1.1 Reasoning with Uncertainty

Bayesian reasoning is one of the methods found under the field of reasoning under uncertainty

(Russell and Norvig, 2003). Though initially Bayesian looked promising as a method of un-

certainty reasoning that is probabilistic based, it fell out of favour because of the intractable

calculations involved and these are due to the exponential number of probabilities needed in

the full joint distribution. But later it gained acceptance and then increased in its popularity

when efficient inference algorithms were introduced.

During the time when Bayesian lost its popularity other alternative approaches under rea-

soning under uncertainty were introduced and that includes both probabilistic and logical rea-

soning approaches. The approaches that were introduced are rule-based methods, Dempster-

Shafer theory and fuzzy logic (Russell and Norvig, 2003). However, it is a known fact that

among all the approaches the Bayesian method of reasoning is currently found to be more

favourable when compared to the other alternatives. In the following a description for each of

the alternative approach is given along with the description concerning the limitations found in

them which we also use as the basis to support our reason for choosing Bayesian reasoning as

the reasoning approach for our research.

i. Rule-based system:

Uses if-then-else rule statements in representing problem-solving knowledge where ‘if’

means ‘when the condition is true’ whereas ‘then’ means ‘actions are to be taken’ and

‘else’ means ‘to take an alternative action if condition is found to be false’ . This method

is considered as logical reasoning method (Luger, 1989).

Limitation: If the environment calls for two rules, it is found that these two rules form

a feedback loop and it is unable to keep track of the paths where evidence is propagated

(Luger, 1989).
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ii. Dempster-Shafer Theory:

It is a probabilistic framework that is based on lower and upper bound on probabilities.

It is designed to consider the difference between uncertainty and ignorance. This is a

probabilistic reasoning method (Russell and Norvig, 2003).

Limitations: Computational complexity grows exponentially with the number of hy-

pothesis and there is a problem of connecting belief to action. And it also faces difficulty

in deciding when to acquire evidence if more evidences are needed (Russell and Norvig,

2003).

iii. Fuzzy logic

It is a method for ‘reasoning with logical expressions describing membership in fuzzy

sets’ and it can be considered as a truth-functional system. It uses probabilities in its

reasoning (Russell and Norvig, 2003).

Limitations: Since it is considered as a truth-functional system, it therefore has the

inability to take into account the correlations or anti-correlations among its components

propositions (Russell and Norvig, 2003).

We chose our research domain in an area related to probabilistic reasoning because besides

being a field that is gaining attention among researchers, it is known and claimed since the

1970s that strict logical reasoning, is impractical for most real-world domain as it has a very

limited scope. It is limited because it infers from a proposition that needs to be true but the

usual case is we are never able to be certain about a proposition and yet we still need to perform

inference based on uncertain and incomplete knowledge. This is especially true in human

reasoning and due to this reason probabilistic reasoning is widely used especially in the medical

domain.
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Probabilistic reasoning means reasoning under uncertainty through representations and in-

ference algorithms with accordance to the laws of probability theory (Russell and Norvig,

2003). Probabilistic reasoning could be based on the current state of the environment alone or

it could be based on both the current state and the previous state. When the previous state is

considered along with the current state, then this method is known as probabilistic reasoning

over time. The reason that the previous state is considered is because the previous state has an

influence on the current state and this is actually the Markov assumption (Russell and Norvig,

2003). There are several methods of probabilistic reasoning over time and those widely used are

Hidden Markov Models, Kalman Filter and Dynamic Bayesian Network. The Hidden Markov

Model(HMM) is a statistical tool for modeling generative sequences that can be characterized

by an underlying process generating an observable sequence. HMMs have been applied in

many areas such as signal processing, and in particular speech processing (Blunsom, 2004).

Kalman Filters is a method of representation and inference algorithms that is able to estimate

the state of a physical system from noisy observation over time whereas Dynamic Bayesian

Network is actually a Bayesian network that has been specially designed to represent temporal

probability model where states are dynamically and rapidly changing over time (Russell and

Norvig, 2003).

The main focus of this study is to introduce methods of computation for surprise and

rareness. The method of computation that we introduce could actually be applied in either

type of probabilistic reasoning that is with time involvement or without. However we have

chosen an application that although makes use of time slice, each of the time slices is inde-

pendent from one another. Therefore the time slice in our work is not based on the Markov

assumption. Therefore any of the probabilistic reasoning over time methods mentioned above

is not suitable for our application. Hence we are using an object-oriented method (Bangso and

Wuillemin, 2000) to graphically represent our application. And among the various types of
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probabilistic reasoning methods which we have discussed in this section, we had chosen the

Bayesian approach because the other probabilistic reasoning approaches had limitations which

we have described above.

2.1.2 The Bayesian Approach

In this section, we will describe all the various sub-areas found under the area of Bayesian

statistical reasoning and through the description given, one would be able to understand the

scope which has many different sub-areas existing which had been researched upon. However

before describing each of the sub-areas we would first like to give a general description on

Bayesian reasoning.

Bayesian Reasoning

The probabilistic reasoning of Bayesian has a qualitative aspect and also a quantitative aspect

to it. The qualitative aspect is the probability distribution and the quantitative aspect is the

graphical model which is also known as the Bayesian network (Kjaerulff and Madsen, 2005).

Bayesian reasoning is based on probability theory that refers to subjective probability in-

stead of the frequentist probability. Briefly, subjective probability is belief based probability

and frequentist probability is based on empirical results where its value is based on the number

of event occurrences (Leonard and Hsu, 1999).

Bayesian Network

i. Definition (Jensen, 2001): A Bayesian network consists of the following:

• A set of variables and a set of directed edges between variables.

• Every variable has a finite set of mutually exclusive states.
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• The variables and the directed edges form a directed acyclic graph(DAG). (A di-

rected graph is acyclic if there is no directed path).

• Attached to each variable A with parents B1,..., Bn is a potential table P(A| B1,...,

Bn).

ii. Reasons to choose Bayesian network as the modeling framework:

• Intuitive and compact representation of cause-effect relations and conditional de-

pendence and independence relations.

• Efficient solution to the queries given the occurrence of evidence.

• Ability to support different types of analysis for the result produced. These analysis

are such as conflict analysis and sensitivity analysis.

• Coherent and mathematically sound handling of uncertainty.

iii. Causal independence in Bayesian network

With causal independence the number of variables involved in the joint probability com-

putation are reduced, thus making computation more tractable.

Object-oriented Bayesian Network

In the recent years there had been extensive research on various adaptations to Bayesian net-

work. Such adaptations were introduced mainly with the purpose of having a network that is

suitable for the application to be implemented. It is important to note that Bayesian network

can at times be found limited and therefore it is not able to properly represent the applica-

tion environment. So the object-oriented Bayesian network (Bangso and Wuillemin, 2000) has

proven itself to be useful especially for applications that not only evolve over time but are com-

plex with several different occurrences of instantiations at a given time. Take note that these

instantiations would not be well represented by a normal Bayesian network.
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An object-oriented Bayesian network is a framework to support systems that are com-

posed of similar or identical components (Kjaerulff and Madsen, 2005). So it allows a very

compact specification of knowledge especially if it contains repetitive structures (Bangso and

Wuillemin, 2000). In another words it allows the Bayesian network to be implemented piece by

piece and to use a piece any number of times in any step of the construction process, meaning

the pieces are reusable (Bangso and Wuillemin, 2000).

The object-oriented Bayesian network actually has several variations to it as it had been

studied by many and mostly contributed by (Bangso and Wuillemin, 2000; Koller and Pfeffer,

1997).

Decision Making

Usually the probabilities provided by the Bayesian network are used to support some kind

of decision making. There are several types of graphical representations for decision making

and those commonly used are decision trees (Jensen, 2001) and influence diagram (Howard

and Matheson, 2005). Lately influence diagram is beginning to be widely used. In a way

it is similar to Bayesian network as it is also represented as a causal model plus it describes

the dependence relations between entities of a domain. The difference of the influence diagram

from the Bayesian network is the involvement of precedence ordering which specifies the order

on the decisions, the observations and the preference of the decision maker. Besides that it

also has additional nodes and these are the decision nodes and utility function nodes. The

decision nodes represents the various actions which the decision maker would take whereas the

utility function represents the preferences of the decision maker. Basically the steps to solve a

decision problem are: determine the optimal strategy that had maximized the expected utility

and compute the maximal expected utility adhering to this strategy (Kjaerulff and Madsen,

2005).
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Modeling Techniques

Many modeling techniques have been introduced to suit the different types of environment that

the network is representing as some environments have large set of cases and are complex.

There could be techniques to cater for cases where there are a large number of parent nodes in

the network and where all of these nodes point to a single child node. Other than that there are

also techniques to cater for cases where the parent node configuration is too small or where the

domain that is involved evolves over time.

To specifically cater for these varied requirements, there are many different modeling tech-

niques and we name a few such as the divorcing technique, noisy-or, experts disagreement, etc.

(Jensen, 2001)

Inference

There are several inference algorithms to perform reasoning under uncertainty and we describe

them as follows:

i. Bayes theorem

Bayes theorem bases its inferred result on the posterior probability. The posterior prob-

ability states the probability of the model hypothesis given the occurrence of data or

event. The result of the posterior probability P(M|D) which is the probabability of the

hypothesis model or model given data is derived from the multiplication of the likelihood

probability and the prior probability. The likelihood probability P(D|M)is the probabil-

ity of the event given the occurrence of a model whereas the prior probability P(M) is

the probability of the hypothesis model based on the prior belief one had concerning the

hypothesis. The result of the multiplication is then divided by the normalized value of

the likelihood probability of the observed data of all the hypothesis models. And the

variable that is normalized or summed is the variable referring to the model.
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ii. Exact Inference

The joint probability in the computation of Bayes theorem increases exponentially with

the number of variables. A joint probability is needed to answer all possible inference

by summing or marginalizing irrelevant variables. However because it increases expo-

nentially due to the fact that a joint probability distribution is of the size O(2n), where

n is the number of nodes and assumption is made that each nodes may have 2 states,

more efficient exact inference methods are needed. Examples of these methods are junc-

tion trees (Pearl, 1982) and variable elimination (Zhang and Poole, 1994). However no

methods guarantee a tractable calculation task.

iii. Approximate Inference

Exact inference may be intractable for multiple connected, repetitive structured Bayesian

networks. Therefore in such cases approximate inference is needed. Examples of ap-

proximate inference are likelihood weighting, Gibbs sampling and loopy belief propaga-

tion (Murphy, 1998.).

Statistical Learning

Statistical learning is learning the probability theories of a domain from experience. The

Bayesian view of learning is able to give general solutions to the problem of noise, overfitting

and optimal decision (Russell and Norvig, 2003). There are basically four types of learning

Bayesian networks from data:

• Known structure and observable variables

• Unknown structure and observable variables

• Known structure and unobservable variables

• Unknown structure and unobservable variables
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Learning can also be understood as parameter learning and structure learning where the former

is the estimation of the conditional probabilities and the latter is the estimation of the links or

topology of the network (Hertzman, 2004).

Analysis Tools

Analysis tools are used to analyse whether the evidence entered into the Bayesian network

is coherent as there may be occurrence of flawed data that needs to be traced. Besides that

analysis tools are also needed to identify evidence that are in favour or against a hypothesis and

the tool for this is called conflict analysis. Analysis tools are also used to analyse which parts of

the evidence have an impact on the hypothesis and it is also used to identify the parameters that

are most influential on the posterior probability of a hypothesis given the evidence. The tool

for such purpose is called sensitivity analysis. There is also a tool called value of information

analysis that is used for analysing the potential usefulness of additional information before the

information source is consulted (Kjaerulff and Madsen, 2005).

Bayesian Surprise

The function of this analysis is to identify and quantify the occurrence of surprise with the

computation based on the prior, posterior or likelihood distributions (Itti and Baldi, 2005; Box,

1980; Rubin, 1984; Bayarri and Berger, 1997).

Bayesian statistics distribtution : The Beta distribution

Beta distribution is commonly used in Bayesian parameter learning (Russell and Norvig, 2003)

and it is defined by parameters a and b such that

beta[a,b](K) = αKa−1(1−K)b−1

For K is in the range [0,1] (Russell and Norvig, 2003).
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Beta distribution is widely used in Bayesian statistics since the beta distribution is the

conjugate prior distribution to the binomial distribution. ‘In Bayesian probability theory, a

conjugate prior is a family of prior probability distributions which has the property which

specifies that the posterior probability distribution will also be belonged to the family of prior

probability’ (ML Pedia) So the beta family has this wonderful property where if a K has a

prior beta(a,b), then after a data point is observed the posterior distribution for K is also a beta

distribution’ (Russell and Norvig, 2003).

Before we illustrate how a beta distribution is used in a Bayesian parameter learning, we

would like to show examples of beta distributions with different parameters for ’a’ and ’b’ and

it is as follows:

i. The diagram below, Figure 2.1 is an example of beta distribution with a uniform dis-

tribution. A uniform distribution will have the parameters ’a’ and ’b’ of ’beta(a,b)’ as

’beta(1,1)′.

Figure 2.1: The graph of Beta(1,1)
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ii. The distribution of ’beta(1,5)’, ’beta(5,1)’, ’beta(3,3)’ and ’beta(8,10)’ are respectively

shown in Figures (2.2(a),(b),(c) and (d)).

Figure 2.2: Beta distributions representing various types of parameter values,

‘Let’s say the x-axis represents the parameter K which is the probability that a randomly

selected piece of candy is cherry flavoured and now suppose we observe a cherry candy, then:

P(K|data1 = cherry) = P(data1 = cherry|K)P(K)

= α ′K ·beta[a,b](K)

= α ′K ·Ka−1(1−K)b−1

= α ′Ka(1−K)b−1

= beta[a+1,b](K)

Thus, after seeing a cherry candy, we can simply increment the ’’a’ parameter to get the

posterior; similarly, after seeing a lime candy, we increment the ’b’ parameter. By examining
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a sequence of beta distributions for increasing values of ’a’ and ’b’, keeping the proportions

fixed, we can see how posterior distribution over the parameter K changes as data arrive’ (Rus-

sell and Norvig, 2003). So to put it simply, in order to obtain the posterior by updating the

prior, all we do is add to the parameters of ’a’ and ’b’.

2.2 The Chosen Application Domain

The purpose of designing an agent scenario as described in the following is to show the use-

fulness of the surprise and rareness computation. So the agent environment is specifically

designed to depict a real-world environment as much as possible so that it will highlight plus

demonstrate the usefulness, capability and effectiveness of the method of our computation.

We chose an agent based environment based on concepts such as cognition, social influ-

ence, social reasoning, organization structure, etc. as these are well studied areas which are

still undergoing extensive research. Besides that, it also has the capability to contribute to

other types of domain such as the field of science and education.

In this section we give an overview of the agent that has been studied by others and as it is a

large area of study with rapid, extensive development, it is therefore impossible to cover every

area. We therefore give a general introduction on the agents and then describe the features and

capabilities found in them. We have focused our discussion not only on the state-of-the-art

features but those features that we have adapted in our design of agents.

Once again we stress on the point that the agent environment described here is not the

main focus of this research and it is not the area of contribution as well instead it is used to

describe the usefulness of our contributions in this research. Therefore in our agent design, we

have selected and incorporated those features that are able to highlight our contributions as a
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solution to the problems which we had found and which we had mentioned in Chapter 1.

2.2.1 Software Agents

An agent can be defined as a ‘computer system that is situated in an environment, and that

is capable of autonomous action in this environment in order to meet its design objectives’

(Weiss, 1999). We consider an agent to be intelligent when it is equipped with the capability

to flexibly perform autonomous actions that would meet its design objectives. The flexibility

of an agent can be understood as the agent’s reaction which is its capability of responding as it

perceives the environment and it does it in a timely fashion to satisfy its objectives. Flexibility

can also mean that the agent’s proactiveness in taking initiatives which demonstrates its goal

directed behaviour. Besides that flexibility it is also the agent’s social ability which is the

agent’s capability of interaction with other agents or humans.

There are several types of agent architectures such as logic-based agents, reactive agents

and Belief-Desire-Intention (BDI) agents. Logic-based agents make decisions through logic

based deductions whereas reactive agents’ decision making process is through some form of

direct mapping from situation to action. An agent with Belief-Desire-Intention (BDI) architec-

ture makes decision based on the manipulation of data that are based on the beliefs, desires and

intentions of the agent.

In our work we design our agent with reference to the BDI architecture which is based on

the cognitive concepts of human behaviours and actions. BDI architecture has been known to

be a popular architecture for agent design. Huhns and Singh (1998) states that the basis of

ascribing belief, desires and intentions to an agent is due to the fact that the agent design is

specified and commanded by human. Since humans actions use cognitive terms such as belief,

desire and intention, therefore it is found to be natural for agents to use the same cognitive
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terms. For an agent to perform proper actions in an ever changing environment, the agent needs

to have information of its environment. Due to the fact that all information pertaining to the

state of the environment is according to how the agent perceives, this information is therefore

termed as the belief of the agent. As for the agent’s desire, it describes the preferences of the

agent towards the environment state. Finally an agent’s intention is pertaining to the state of

environment that the agent is attempting to achieve. Agents intentions should be consistently a

subset of agent’s desires and it is also should be directly related to agent’s actions.

The applicability regarding the cognitive basis for an agent is evident when the agent is

commissioned to serve as a personal assistant in a user interface. Besides that, it also useful

in simulated environment of complex social phenomena such as the evolution of roles and or-

ganization structures for the purpose of investigation of social aspects of intelligence (Weiss,

1999). Examples of agent applications based on this simulated environment are such as training

agents or virtual tutors for simulation based on military training or a human performance mod-

eling agents in a dynamic and adaptive human behavorial simulation for the study of human

psychology in a tense environment (CHI System: Cognitive Agent Development, 2008). And

other examples of systems that are based on agent technology are such as automated scheduling

coordination, electronic procurement activities by manufacturing supplier and etc.

2.2.2 The Multi-agent System(MAS)

During the 1990s, multi-agent system (MAS) emerges as one of the most important research

and development area that had seen a rapid growth. Multi-agent system is where we find

many intelligent agents interacting with one another. The interaction amongst them can either

be cooperative or selfish. Cooperative means the agents are willing to share common goal

whereas selfish means agent are interested only to pursue their desires. The study of MAS is

not just confined within artificial intelligence but ideas are also drawn from other disciplines
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