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SINTESIS DAN PENCIRIAN TERBITAN ISOFLAVON YANG MEMPAMERKAN 

CIRI-CIRI HABLUR CECAIR 

ABSTRAK 

Sintesis dan kerja pencirian telah dilaksanakan ke atas enam siri hablur cecair  

klasik kalamitik yang berbentuk rod. Komponen tengah bagi kesemua halur cecair tersebut 

mengandungi 3-fenil-4H-4-on-benzopiran atau lebih dikenali sebagai isoflavon. Sintesis 

sebatian-sebatian tersebut melibatkan tindak balas-tindak balas pengalkilan, pengasilan Friedel-

Crafts, penutupan gelang aromatic dan pengesteran. Analisis mikro CHN serta teknik-teknik 

spektroskopi seperti FTIR, 1D- dan 2D NMR telah digunakan untuk menentukan struktur 

molekul bagi sebatian–sebatian tersebut. Suhu peralihan fasa dan nilai perubahan entalpi yang 

berkenaan telah ditentukan dengan menggunakan kalorimetri pembiasan pembezaan manakala 

mikroskop optik terkutub digunakan untuk kerja pemerhatian tekstur. Empat siri pertama, yang 

mana setiap satunya mengandungi lapan homolog, merangkumi isoflavon sebagai komponen 

tengah dengan satu atau dua rantai terminel asiloksi atau alkiloksi yang fleksibel. Rantai-rantai 

asiloksi atau alkiloksi tersebut mengandungi atom karbon yang bernombor ganjil atau genap. 

Sebatian-sebatian dalam keempat-empat siri tersebut mempamerkan fasa-fasa nematik (N), 

smektik A (SmA) dan smektik C (SmC). Sebatian-sebatian dalam siri kelima dan keenam pula 

merupakan terbitan isoflavon yang mengandungi rantai desiloksi di satu belah molekul dan 

pelbagai kumpulan penukar ganti, R, yang mana R = F, Cl, Br, CH3, OCH3 dan H di sebelah 

rantai yang lain. Sebatian-sebatian dengan R = F, Cl dan Br adalah smektogenik dan 

mempamerkan fasa SmA sahaja manakala sebatian dengan R = OCH3 adalah nematogenik. 

Sebatian dengan R = CH3 mempamerkan kedua-dua fasa N dan SmA. Sebatian dengan R = H 

dalam siri kelima bukan mesogenik tetapi sebatian yang serupa dalam siri keenam dengan R = 

H dan lebih panjang molekulnya adalah mesogenik dan menunjukkan fasa SmA. Untuk 

menyiasat susunan molekul yang berkaitan dengan daya tarikan intermolekul dan korelasi 

antara sifat termal molekul-molekul dengan ciri-ciri anisotopi dalam fasa-fasa nematik dan 
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smektik, kajian pembiasan X-ray telah dijalankan ke atas sebatian-sebatian tertentu seperti  7-n-

heksiloksi-3-(4-n-heksiloksifenil)-4H-1-benzopiran-4-on, ALAB-OC6 dan 7-n-heksadesiloksi-

3-(4-n-heksadesiloksifenil)-4H-1-benzopiran-4-on, ALAB-OC16 daripada siri kedua, 7-n-

dekanoiloksi-3-[4’-(3-metilbutiloksifenil)]-4H-1-benzopiran-4-on, MBPB-COOC9 daripada siri 

ketiga, 7-n-dekanoiloksi-3-(4’-metilfenil)-4H-1-benzopiran-4-on, 10PB-CH3 dan 7-(4’’-n-

desiloksibenzoiloksi)-3-(4’-florofenil)-4H-1-benzopiran-4-on, 10BB-F, masing-masing 

daripada siri kelima dan keenam. Daripada data X-ray yang diperolehi, molekul-molekul 

ALAB-OC6 didapati menyusun secara lapisan dalam fasa SmA manakala sudut condong, ?� dari 

garis normal kepada lapisan bagi molekul-molekul tersebut dalam fasa SmC ialah 15°. Nilai 

tersebut direkodkan pada 11°C di bawah suhu peralihan fasa. Walau bagaimanapun, nilai sudut 

condong bagi molekul-molekul ALAB-OC16 dan MBPB-COOC9 tidak dapat ditentukan kerana 

peralihan fasa dari kristal ke SmC bagi sebatian-sebatian tersebut adalah peralihan tertib 

pertama. Analisis pembiasan X-ray turut mendedahkan bahawa molekul-molekul 10PB-CH3 

menunjukkan interkalasi yang kuat dalam fasa SmA. Molekul-molekul 10BB-F disusun secara 

dwilapisan dalam fasa hablur tetapi susunan dalam lapisan tunggal lebih dicenderungi dalam 

fasa SmA. Kajian pembiasan X-ray untuk hablur-hablur tunggal juga dijalankan ke atas 

sebatian-sebatian ALAB-OC6, MBPB-COOC9, 7-n-heksiloksi-3-[4’-(3-metilbutiloksifenil)]-

4H-1-benzopiran-4-on, MBPB-OC6 dan 10PB-CH3, yang mana kesemuanya adalah triklinik. 

Struktur molekul bagi sebatian-sebatian tersebut telah dikenalpasti untuk kali pertama dengan 

menggunakan teknik pembiasan X-ray kristalografi dan didapati bersetuju dengan struktur 

molekul yang disimpulkan menerusi teknik-teknik FTIR dan NMR. Rantai terminel panjang 

bagi kristal-kristal tersebut didapati lurus dengan sepenuhnya, kecuali sebatian ALAB-OC6 

yang mempunyai struktur molekul yang amat tidak teratur. Sebatian 10PB-CH3 mempunyai 

sudut regangan yang paling rendah berbanding dengan terbitan-terbitan isoflavon yang pernah 

dilaporkan. Molekul-molekul bagi sebatian-sebatian tersebut didapati tersusun secara anti selari 

antara satu sama lain. Susunan tersebut distabilkan oleh daya lekatan kristal yang merupakan 
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satu kesan daripada interaksi dipolar antara kumpulan eter atau ester yang disusun secara anti 

selari serta daya tarikan van der Waals antara molekul-molekul.  
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SYNTHESIS AND CHARACTERIZATION OF ISOFLAVONE DERIVATIVES 

EXHIBITING LIQUID CRYSTALLINE PROPERTIES 

ABSTRACT 

Six series of classical rod-like, calamitic liquid crystals had been synthesized and 

characterized. These liquid crystals contained 3-phenyl-4H-4-one-benzopyran or generally 

known as isoflavone within the central moiety. The syntheses of these liquid crystalline 

compounds involved alkylation, Friedel-Crafts acylation, cyclization and esterification reactions. 

CHN microanalysis, FTIR, 1D and 2D-NMR spectroscopic methods were used to elucidate the 

structures of these compounds. The transition temperatures of the synthesized compounds and 

respective enthalpy values were determined by differential scanning calorimetry whilst a 

polarized optical microscope was used for texture observation. The first four series, each 

consisted of eight homologues, incorporated isoflavone within their central cores with either 

one or two flexible acyloxy or alkyloxy terminal chains in odd or even parity. The compounds 

thus obtained exhibited nematic (N), smectic A (SmA) and smectic C (SmC) phases. 

Compounds from the fifth and sixth series, on the other hand, were isoflavone derivatives 

bearing decyloxy chain on one end and different substutuents, R, on the other, of which R = F, 

Cl, Br, CH3, OCH3 and H. Compounds with substituents, R = F, Cl and Br are smectogenic 

displaying only SmA phase whilst compound with R = OCH3 was nematogenic. Compound 

with R = CH3 exhibited both N and SmA phases. Compound with R = H was non-mesogenic in 

the fifth series but the elongated derivative bearing the same substituent was mesogenic 

showing SmA phase in the sixth series. In order to investigate the molecular packing associated 

with the intermolecular attraction as well as the correlation between the thermal behaviour of 

these molecules with their anisotropy properties in N and smectic phases, the X-ray diffraction 

studies had been carried out on representative compounds 7-n-hexyloxy-3-(4-n-

hexyloxyphenyl)-4H-1-benzopyran-4-one,  ALAB-OC6 and 7-n-hexadecyloxy-3-(4-n-

hexadecyloxyphenyl)-4H-1-benzopyran-4-one, ALAB-OC16 from the second series, 7-n-



 xxxii 

decanoyloxy-3-[4’-(3-methylbutyloxyphenyl)]-4H-1-benzopyran-4-one, MBPB-COOC9 from 

the third, 7-n-decanoyloxy-3-(4’-methylphenyl)-4H-1-benzopyran-4-one, 10PB-CH3  and 7-

(4’’-n-decyloxybenzoyloxy)-3-(4’-fluorophenyl)-4H-1-benzopyran-4-one, 10BB-F from fifth 

and sixth series, respectively. From the X-ray data, molecules of compounds ALAB-OC6 were 

arranged in layers in SmA phase whilst the molecular tilt angles, ?� from the normal to layer 

within the SmC phase was approximately 15° as obtained at 11°C below the transition 

temperature. However, the molecular tilt angles, ?� for compounds ALAB-OC16 and MBPB-

COOC9 could not be determined due to a first order transition from crystal to SmC phases in 

these compounds. The X-ray diffraction analyses also revealed that the molecules in compound 

10PB-CH3 were intercalated in SmA phase. Molecules in compound 10BB-F were arranged in 

bilayers in crystal phase but monolayers were favoured in SmA phase. Single crystal X-ray 

diffraction analyses had also been carried out on compounds ALAB-OC6, MBPB-COOC9, 7-n-

hexyloxy-3-[4’-(3-methylbutyloxyphenyl)]-4H-1-benzopyran-4-one, MBPB-OC6 and 10PB-

CH3, wherein all crystals were found to be triclinic. The molecular structures of the earlier 

mentioned compounds were confirmed for the first time by X-ray crystallography and found to 

conform to those as inferred from FTIR and NMR techniques. The long flexible terminal chains 

of these crystals were found to be fully stretched, except for compound ALAB-OC6 which had a 

highly disordered structure. Compound 10PB-CH3 had the lowest torsion angle in any hitherto 

reported isoflavone derivatives. The packing of molecules of these compounds showed that they 

lay anti-parallel to one another and the crystal cohesion resulted from dipolar interactions 

between anti-parallel ether or ester groups as well as van der Waals interaction of neighbouring 

molecules stabilized the packing of the molecules. 
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CHAPTER 1 

INTRODUCTION 

1.1              History of Liquid Crystals 

In 1888, Friedrich Reinitzer (1858-1927), an Austrian botanical physiologist, then 

working at the German University of Prague, was extracting cholesterol from carrots in order to 

determine its chemical formula. Reinitzer found out that cholesteryl benzoate (Figure 1.1), had 

two melting points. At 145.5°C, the crystal of this material melted into a cloudy liquid, and it 

melted again at 178.5°C and the cloudy liquid finally became clear. Later, Reinitzer had 

discovered and described three important features of cholesteric liquid crystals (this name was 

coined by Georges Friedel in 1922): the existence of two melting points, the reflection of 

circularly polarized light and the ability to rotate the polarization direction of light. Further 

investigations of those phenomena were carried out by Otto Lehmann, a German physicist 

(Collings and Hird, 1998). 

 

 

 

 

 

Figure 1.1: Structure of chlolesteryl benzoate. 
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Liquid crystals (LCs) were not popular among scientists in the early 20th century 

and the material remained a pure scientific curiosity for about 80 years. In 1969, Hans Kelker 

succeeded in synthesizing a substance that has a nematic phase at room temperature, MBBA (p-

methoxybenzyliden-p’-n-butylaniline), the well known "fruit-fly" of liquid crystal research, as 

illustrated in Figure 1.2 (Kelker and Scheurle, 1969). The next step to commercialization of 

Liquid Crystal Displays (LCD) was the synthesis of further chemically stable substances, 

leading to the technologically and commercially important class of LCs, for example, 

cyanobiphenyl derivatives with low melting temperatures (Gray et al., 1973). In 1991, when 

LCDs were already well established in our everyday life, Pierre-Gilles de Gennes (1932-2007) 

received the Nobel price in physics for discovering the methods developed for studying order 

phenomena in simple systems which can be generalized to more complex forms of matter, in 

particular to LCs and polymers.  

 

 

 

Figure 1.2: Structure of p-methoxybenzyliden-p’-n-butylaniline, (MBBA) 

A detailed description of the applications and technologies of LCDs had been 

published in "Liquid Crystals for Display Applications" (Geelhaar, 1998). However, LCD 

technology still has a few drawbacks in comparison to some other display technologies. Hence, 

researchers and scientists working in this field are still striving to obtain the liquid crystalline 

materials which possess complex but superior properties to achieve improved device 

performances. 
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1.2              Definition of Liquid Crystals      

LC phase is a phase of matter whose order is intermediate between that of a liquid 

and that of a crystal. They are composed of moderate sized organic molecules, about 25 

angstroms in length or substances which tend to be elongated and shaped like a cigar or of a 

variety of other, highly exotic shapes that exhibit a phase of matter that has properties between 

those of a conventional liquid and those of a solid crystal. For instance, LCs may flow like 

liquids but due to their elongated shapes, under appropriate conditions the molecules can exhibit 

orientational order, such that all the axes line up in a particular direction. To specify 

quantitatively the amount of orientational order in a LC phase, the scalar parameter, S, is 

commonly used. In a perfectly ordered system (such as in a crystal), S =1 whilst an isotropic 

liquid has S = 0 with no orientational order (Singh, 2000). As a consequence, the bulk order has 

profound influences on the way light and electricity behaves in the material. For example, if the 

direction of the orientation varies in space, the orientation of the light (i.e., the polarization) can 

follow this variation. Under other conditions the molecules may form a stack of layers along 

one direction, but remain liquid like (in terms of the absence of translational order) within the 

layers. There are many different types of LC phases, which can be distinguished based on their 

different optical properties (such as birefringence). When viewed under a microscope using a 

polarized light source, different LC phases will appear to have a distinct texture. Each "patch" in 

the texture corresponds to a domain where the LC molecules are oriented in a different direction. 

Within a domain, however, the molecules are well ordered. Liquid crystalline materials may not 

always be in a LC phase (just as water is not always in the liquid phase) it may also be found in 

the solid or gas phase.  

 

 



 4 

1.3              Types of Liquid Crystals 

There are two most common types of LCs though many other different types of 

molecules are able to give liquid crystalline properties. They are: 

i.    Thermotropic LCs which exhibit a variety of phases as temperature is changed.   

Therefore, they are temperature dependent.           

ii.   Lyotropic LCs which consist of two or more components that exhibit liquid-

crystalline properties in certain concentration range.  

1.3.1          Thermotropic Liquid Crystals 

Thermotropic LCs can be divided into two distinct classes, namely the calamitic 

LCs and discotic LCs. A thermotropic LC consists of a rigid central core, generally aromatic 

and a flexible peripheral moiety, most often long alkyl or alkoxy chains.  

1.3.1.1       Calamitic Liquid Crystals 

According to Collings and Hird (1998), calamitic LCs, also known as rod-like LCs, 

are mesogens or mesogenic compounds with elongated shape where the molecular length, L 

being significantly greater than the breath of the molecule, B. The difference in both parameters 

is responsible for the anisotropy of the mesogens.  Figure 1.3 shows a typical shape of a 

calamitic LC. 

 

 

Figure 1.3: Typical shape of a calamitic liquid crystal. 

Rigid core
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1.3.1.2        Discotic Liquid Crystals 

Discotic LCs show several types of mesophases with varying degrees of 

oganization. Disk-shaped mesogens can orient themselves in a layer-like fashion known as the 

discotic nematic phase. If the disks pack into stacks, the phase is called a discotic columnar. The 

columns themselves may be organized into rectangular or hexagonal arrays. Chiral discotic 

phases are also known. 

Similar to calamitic LCs, discotic LCs possess a general structure comprising of a 

rigid planar (usually aromatic) central core surrounded by a flexible periphery chains as 

represented in Figure 1.4. A discotic LC has a molecule wherein the molecular diameter (D) 

which is much greater than the thickness (T). Figure 1.5 shows the first discotic LC reported by 

Chandrasekhar et al. (1997). 

 

 

 

Figure 1.4: General shape of discotic LCs, where D>>T. 

 

 

 

 

Figure 1.5: Structure of first discotic LCs discovered (Chandrasekhar et al., 1977). 
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1.3.2           Lyotropic Liquid Crystals  

In the lyotropic phases, solvent molecules fill the space around the compounds to 

provide fluidity to the system. In contrast to thermotropic LCs, these lyotropic LCs have another 

degree of freedom of concentration that enables them to induce a variety of different phases. An 

example of which is phospholipids present in cell membranes as shown in Figure 1.6. Many 

amphiphilic molecules show lyotropic LC phase sequences depending on the volume balances 

between the hydrophilic tail and hydrophobic head (Bissell and Boden, 1995). These structures 

are formed through the micro-phase segregation of two incompatible components on a 

nanometer scale.  

The content of water or other solvent molecules changes the self-assembled 

structures. At very low amphiphile concentration, the molecules will be dispersed randomly 

without any ordering. At slightly higher (but still low) concentration, amphiphilic molecules 

will spontaneously assemble into micelles or vesicles. This is done so as to 'hide' the 

hydrophobic tail of the amphiphile inside the micelle core, exposing a hydrophilic surface to 

aqueous solution. However, these spherical objects do not orderly arrange themselves in 

solution. At higher concentration, the assemblies will become ordered. At still higher 

concentration, a lamellar phase may form wherein extended sheets of amphiphiles are separated 

by thin layers of water. 

 

 

 

Figure 1.6: Illustration of phospholipids forming bilayers lyotropic liquid crystal, 
                              of which                represents water molecules. 
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1.4              Phase Structures of Achiral Calamitic Liquid Crystals 

Various LC phases (called mesophases) can be characterized by the type of 

ordering that is present. One can distinguish positional order (whether molecules are arranged in 

any sort of ordered lattice) and orientational order (whether molecules are mostly pointing in the 

same direction). Moreover order can be either short-range (only between molecules close to 

each other) or long-range (extending to larger, sometimes macroscopic, dimensions). Two types 

of LC phases commonly exhibited by calamitic LCs are: 

1.4.1           Nematic Phase 

It is the most common phase which is characterized by the orientational order of the 

constituent molecules. The molecules have no positional order, but long-range orientational 

order. Thus, the molecules flow and their center of mass positions are randomly distributed as in 

a liquid, but they all point in the same direction referred to the director, n (Figure 1.7) (Singh, 

2000). Nematic LCs are the most commonly used phase in LCDs, with many such devices using 

the twisted nematic geometry. 

 

 

 

 

Figure 1.7: Illustration of molecular arrangement in N phase with arrow pointing  
                                         towards the director, n. 
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1.4.2           Smectic Phase 

There are different smectic phases, all characterized by different types and degrees 

of positional and orientational order. Generally, this phase occurs at temperatures lower than 

nematogens, form well-defined layers that can slide over one another like soaps. The smectics 

are thus positionally ordered along one direction. The least order orthogonal SmA phase has 

molecules oriented along the layer normal, also known as the director, n, as illustrated in Figure 

1.8 (a) while in the SmC phase they are tilted away from the layer normal, z , shown in Figure 

1.8 (b). 

 

 

 

 

(a) 

 

 

 

 

(b) 

Figure 1.8: (a) Molecular alignment of orthogonal SmA phase where molecules are     
oriented along the director. 

(b) Molecular allignment of SmC phase with a tilt angle, ?�. 
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1.5              Phase Structures of Chiral Calamitic Liquid Crystals 

The two common types of chiral mesophases are the chiral nematic and chiral 

smectic phases.  

1.5.1           Chiral Nematic Phase 

This is the simplest chiral LC phase which is denoted by N*. It is often called the 

cholesteric phase because it was first observed for cholesterol derivatives. The local molecular 

ordering is similar to that of the non-chiral nematic phase, except that it exhibits a twisting of 

the molecules perpendicular to the director, n, with the molecular axis parallel to the director, 

forming helical macrostructures. The finite twist angle between adjacent molecules is due to 

their asymmetric packing, which results in longer-range chiral order. According to Collings and 

Hird (1998), the helixity of the system depends on the absolute configuration of the molecules 

(enantiomers R or S). Figure 1.9 shows a helical structure of the cholesteric phase. 

 

 

 

 

 

 

Figure 1.9: Helical structure of cholesteric phase. 
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1.5.2           Chiral Smectic Phase 

In a chiral smectic phase, for example smectic C* phase, the molecules have 

positional ordering in a layered structure (as in the other smectic phases), with the molecules 

tilted by a finite angle with respect to the layer normal. The chirality induces a finite azimuthal 

twist from one layer to the next, producing a spiral twisting of the molecular axis along the layer 

normal. Hence, the layers are polarized due to their inherent asymmetry (Collings and Hird, 

1998). However, the overall polarization is averaged to zero in the bulk. 

 

 

 

 

Figure 1.10: A chiral smectic C material, denoted by smectic C*. The tilted director 
rotates from layer to layer forming a helical structure. 

 

The chiral pitch refers to the distance over which the mesogens undergo a 

full 360° twist (but note that the structure of the chiral nematic phase repeats itself every 

half-pitch, since in this phase directors at +180° and -180° are equivalent). The pitch 

typically changes when the temperature is altered or when other molecules are added to 

the LC host (an achiral LC host material will form a chiral phase if doped with a chiral 

material), allowing the pitch of a given material to be tuned accordingly. In some liquid 

crystal systems, the pitch is of the same order as the wavelength of visible light. This 

causes these systems to exhibit unique optical properties, such as selective reflection, 

and these properties are exploited in a number of optical applications.      

Full pitch of the helix 
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1.6              Structure of Calamitic Liquid Crystals 

A large number of different molecules have been shown to display various 

calamitic LC phases. All of these share a geometrical anisotropy in shape. Figure 1.11 shows a 

general template that can be used to describe the structure of calamitic LCs.  

 

Figure 1.11: General structural template for calamitic LCs 

The constituent units within this general structure and their combinations determine 

the type of LC phase and the physical properties exhibited by a compound (Collings and Hird, 

1998). Certain rigidity is required to provide the anisotropic molecular structure. This is 

achieved by linearly and directly linked ring systems (A and B) or joined by a connecting group 

(Y) which maintains the linearity of the central core. In order to generate a LC phase, terminal 

substituents (R and R'), which are usually alkyl or alkoxy chains are joined directly to the 

central core or linked via groups X and Z to provide a certain degree of flexibility. This is to 

ensure low melting points and to help stabilise the molecular alignment within the LC phase 

structure. However, one terminal unit may be a small polar substituent. The lateral substituents 

(M and N), whilst generally detrimental to the formation of LC phases, are used to modify the 

mesophase morphology and the physical properties of LCs to generate enhanced properties for 

applications.  

The effects exerted by the connecting groups, X, Y, and Z, terminal substituents, R 

and R’ as well as lateral substituents, M and N are discussed in the following sections. 
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1.6.1           Connecting group(s) X, Y and Z 

Connecting groups, also known as spacer or bridging groups, must produce a linear 

molecule in order to generate or facilitate LC phases generation. Generally, a fairly rigid 

connecting group gives the best mesogens. Numerous functional groups have been used. Table 

1.1 shows some of the more common examples (Neubert, 2001). 

 Table 1.1: Connecting groups and their common names (Neubert, 2001). 

Compounds Common names Compounds Common names 

C
S  

thioester 
C

N  

amide 

N=N  azo -CONH-NH- hydrazine 

N=N

O  

azoxy 
C

O

O

 

ester 

C=N-N=C  azine CH2

O  

ether 

C=C  trans isomer of alkene 

or olefin 
C=C-C

O

O  

trans isomer of 

cinnamate 

C=N  anils or Schiff bases C C  alkyne, acetylene 

or tolane 

C=N

O  

nitrone (CH2)n alkane 
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In order to facilitate the generation of LC phases, a connecting group serves to 

increase the polarizability and length of the core of a mesogen besides maintaining its linearity 

(Collings and Hird, 1998). For example, connecting groups with odd numbers of atoms, such as 

–O- and –CH2- do not generate mesophases but the more flexible ones like –OCH2- and -

CH2CH2- do show mesomorphic properties (Neubert, 2001). For the same reason, an alkene 

where (X=Y=Z= C=C), where cis and trans isomers can exist, only the latter is mesogenic. 

Nevertheless, the trans isomer can be converted to the cis isomer under certain conditions such 

as heat or exposure to UV light.  

1.6.2           Terminal Substituents, R and R’ 

Terminal substituents are used to fine-tune mesomorphic properties. For example, 

straight or branched alkyloxy chains are used to raise or lower transition temperatures, CN or F 

substituents are introduced to create dipoles along or across axis in a molecule, alkyloxy or 

alkyl chains with chirality centres tend to produce chiral mesogens. Terminal substituents also 

enhance the preference of a specific LC phase, for instance, short alkyl chains favour the 

generation of N phase. 

1.6.2.1        Straight Alkyl/Alkoxy Chains 

Alkyl and alkoxy chains are two of the common terminal substituents. Extensive 

studies have been done on the effects of alkyl and alkoxy chains, along with their length, on 

mesomorphic properties. This has been accomplished by determining the mesomorphic 

properties for a wide variety of homologous series of mesogens where the homologues differ 

only in the number of methylene (CH2) groups in an aliphatic chain. As the length of the alkyl 

chain increases, so does the lateral attraction whilst the terminal attraction remains unchanged 

or becomes relatively weaker. Figure 1.12 illustrates both the lateral and terminal attractions. 
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Hence, N phase generally occurs at short to mid-chain length then decreases at longer chain 

length. A reverse trend is usually observed for the smectic LC phases (Neubert, 2001). 

 

  

 

 

Figure 1.12: Illustration of terminal and lateral attractions between mesogens 

The effect of varying the chain length for various compounds has been investigated. 

These studies have shown that the observed LC phases are strongly dependent upon terminal 

chain length. For example, 7-alkyldecyloxy-3-(4-decyloxyphenyl)-4H-1-benzopyran-4-one 

(Figure 1.13).  

 

 

 

 

 

 

where R = CnH2n+1;  n = 3-9 

Figure 1.13: Structure of 7-n-alkyloxy-3-(4-decyloxyphenyl)-4H-1-benzopyran-4-
one (Belmar et al., 1999). 
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1.6.2.2        Branched Alkyl/Alkoxy Chains  

Modifications can be made to the terminal chains, such as the introduction of a 

double bond or chain branching. The former modification reduces the flexibility of the alkyl 

chain. If the double bond is positioned such that molecule remains in an approximately linear 

conformation, then the transition temperatures may be reduced.  

Branching of the alkyl chain, along with introducing chirality into the molecule, 

causes a disruption in the molecular packing which may also reduce transition temperatures. D. 

Vorlander and Apel (1932) found that the introduction of a branched alkyl group strongly 

depressed the clearing temperatures as compared to the analogous n-alkyl isomers. This is 

attributed to the broadening of the molecules of mesogens. A branching substituent can be 

located in any of the carbon atoms in one or both terminal chain(s) as shown in Figure 1.14. 

Studies of the effect of the location of a branching group in esters on the mesomorphic 

properties indicated that a methyl group attached to a carbon atom directly to a benzene ring 

tends to form LC phases only when the other terminal chain is long. However, it is only 

monotropic smectic A phase. A methyl group on either the 2- or 3- position tends to give the 

best ferroelectric liquid crystalline (FLC) properties. 

 

 

 

 

Figure 1.14: Possible location of a branching group (Neubert, 2001). 

 

The position of a branching group affects (i) the type of LC phases observed and (ii) 

the transition temperatures. These temperatures are generally higher when the branching group 

is positioned further from the core along the terminal chain(s). However, mesogens with non-

OCH2CH2CH2CH3 

1 2 3 4
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branched terminal chain(s) will possess relatively higher clearing temperatures as compared to 

those with branching groups at the end of the chain(s).  

If two chiral carbon atoms are incorporated into the terminal chains, be it in the 

same or different chains, the chirality of each branch must be such that a racemic material is not 

formed.  

 

1.6.2.3        Polar Groups 

 

LCs must consist of a terminal polar group (Kelker and Hatz, 1980). However, 

compounds with terminal groups such as OH and NH2 do not always form LC phases.  

 

Schroeder and Schroeder (1974) suggested that phenolic compounds must have 

three benzene rings in order to exhibit liquid crystalline properties. Another criterion is the 

ability of those molecules to form intramolecular hydrogen bonding. For example, they reported 

that p-phenylene di-p-hydroxybenzoate were mesogenic. The structure of the compound is 

illustrated in Figure 1.15. 

 

 

 

 

 

Figure 1.15: The structure of p-phenylene di-p-hydroxybenzoate (Schroeder and 
                     Schroeder, 1974) 

 
 

On top of the criteria suggested by Schroeder and Schroeder (1974), Sakagami and 

Takase (1995) also claimed that phenolic compounds with two benzene rings could also be 

mesogenic (Figure 1.16). Furthermore, in order for compounds bearing OH group to generate 

OH

O

O

O

O

OH
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mesomorphic properties, the OH group must be present at the ortho position, thus forming 

zwitterions via intramolecular hydrogen bonding. 

 

 

 

 

R = CnH2n+1, n = 1 to 18 
 

Figure 1.16: Intramolecular hydrogen bonding in 2-hydroxy-4-n-alkyloxybenzylidene-4’- 
                          hydroxyanilines (Sakagami and Takase, 1995). 

 

Compounds containing certain polar groups show tendency to form dimers, for 

example biphenyl analogous compounds with CN as the terminal substituent (Figure 1.16). The 

length to breath ratio controls the clearing temperatures of a mesogen (Collings and Hird, 1998). 

The correlation between the molecular length to breath ratio and the clearing temperatures can 

be observed in biphenyl analogous compounds with CN as the terminal substituent. The 

possible associates in polar biphenyl analogues are illustrated in Figure 1.17. 

 

 

 

 

 

 

Figure 1.17: Possible dimerization in polar biphenyl analogous compounds. 
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1.6.3           Lateral Substituents M and N 

The inclusion of a polar ester linkage is believed to aid lamellar packing, and, when 

in conjunction with sufficiently long alkoxy chains can generate a variety of LC phases. Finally, 

the structure may be modified by lateral substituents. Molecular breadth is considered an 

important feature in the investigations of the correlation between thermal stability and chemical 

constitution of LC phases (Neubert, 2001). The increase in molecular breadth due to 

substitution on the aromatic cores A and B would normally reduce the anisotropy of molecular 

shape, thus, depressing the stability of the nematic and smectic phases.  

Twisting in biphenyl structures points out that twisting often accompanies 

substitution in these and other molecules. This often increases the molecular diameter and thus, 

lowers the clearing temperatures. The following examples as shown in Table 1.2 give the 

clearing temperature of some nematogens: 

Table 1.2: Examples of nematogens with different lateral substituents and their respective   
clearing temperatures (Neubert, 2001). 

Compound Substituent, X Clearing Temperatures/°C 

COOHH17C8O

X  

H17C8O

X

COOH

 

 

H 

F 

 

H 

Cl 

  Br 

            NO2 

147.0 

120.5 

 

287.0 

248.5 

239.0 

224.0 
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Lateral substituents are introduced in a molecule to facilitate the generation of 

certain types of mesophases. For example, lateral fluoro substitution has been widely used to 

generate materials that exhibit the SmC phase. Whilst the inclusion of lateral substituents 

destabilises the smectic phases, the use of fluorine provides a strong lateral dipole moment 

which is thought to aid the tilting process (Collings and Hird, 1997). An example of a fluoro 

containing compound exhibiting SmC phase is shown in Figure 1.18. 

 

 

 

Figure 1.18: The formation of SmC phase by introducing a lateral fluorine atom at 
95.0°C (Collings and Hird, 1997). 
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CHAPTER 2 

LITERATURE REVIEW 

2.1              Liquid Crystals Incorporating Isoflavone Within The Central Moiety  

It has hitherto been documented that the understanding of liquid crystalline 

compounds is very important towards the continual development especially in the field of 

molecular engineering. The effort in modifying the existing molecules particularly on the 

natural products has well been considered as a viable approach to lead to some products 

showing liquid crystalline properties (Hirose et al., 1989). Isoflavone made up the largest group 

of natural isoflavoids (Aldercreutz et al., 1986). The pharmaceutical properties of isoflavones 

have been reported (Boland and Donelly, 1998). Similar to many natural products possessing 

heterocycles in their structures including flavone and coumarin derivatives, isoflavone-based 

compounds in biological systems show remarkable liquid crystalline properties (Hirose et al., 

1989). Figure 2.1 depicts a general structure of isoflavone.  

Chudgar et al. were the first researchers who synthesized and characterized liquid 

crystals derived from isoflavone (1991). In recent years, the mesogenicity of several isoflavone 

derivatives with classical calamitic structure containing one or two terminal chains have been 

documented (Chudgar et al., 1991; Belmar et al., 1999). The introduction of heterocycle within 

the central moiety and the linking groups (ether or ester linkage) between the central moiety and 

terminal chains have been proven to influence the mesomorphic behaviour of classical calamitic 

mesogens and determine the variety of mesomorphism displayed due to the dipolar moment 

associated with the heterocyclic ring as well as these linking groups.  

 

 

 

 

 
Figure 2.1: General structure of isoflavone (3-phenyl-4H-1-benzopyran-4-one). 

O

O
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In this project, six series of liquid crystalline compounds with classical calamitic 

structure containing one or two terminal chains incorporating isoflavone within the central core 

have been synthesized and characterized.  

The introduction of heterocycles within the central moiety of isoflavone derivatives 

strongly influence their mesomorphic behaviour (Belmar et al., 1999). The molecular structure 

of these compounds can be carefully modified in order to generate types of mesophase which 

are sustainable and useful in the application of liquid crystals since the current application of 

liquid crystals on display devices rely on N, SmA and SmC materials (Sage, 1987). 

 

2.1.1           Series 1: 7-n-Acyloxy-3-(4’-n-acyloxyphenyl)-4H-1-benzopyran-4-one 

In recent years, the mesogenicity of several classical calamitic isoflavone 

derivatives containing one or two terminal chains had been documented (Chudgar et al., 1991, 

1995; Belmar et al., 1999). Chudgar et al. synthesized and characterized two series of mesogens 

derived from isoflavone with only one terminal chain in the years 1991 and 1995, respectively. 

Later, in the year 1999, mesogens bearing isoflavone within the central core with two terminal 

chains were synthesized and studied by Belmar et al. Both the present series and the earlier 

reported 7-acyloxy-3-(4’-decylphenyl)-4H-1-benzopyran-4-one (Belmar et al., 1999) share 

similar core structures. Whilst the latter possess an acyloxy and alkyloxy linkages in the 

terminal alkyl chains, compounds in the present series consist of acyloxy linkages in both 

terminal chains. Infrared and nuclear magnetic resonance spectroscopy as well as elemental 

analysis are employed to characterize these mesogens. Chudgar et al., and Belmar et al., also 

reported the liquid crystalline properties of these mesogens based on differential scanning 

calorimetry (DSC) data as well as liquid crystal textures observed under a polarizing optical 

microscope (POM). In current work, a series of mesogens incorporating isoflavone within the 

central moiety and two terminal chains have been synthesized and characterized using similar 
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methods. Figure 2.2 shows the structure of mesogens derived from isoflavone synthesized by 

Belmar et al., in 1999.  The structure of mesogens of Series 1 is illustrated in Figure 2.3.  

 

 

 

 

 

 

 

 

 

where R = CnH2n+1;  n = 3, 4, 5, 6, 7, 8, or 9 

Figure 2.2: Structure of 7-n-acyloxy-3-(4’-decyloxyphenyl)-4H-1-benzopyran-4-one 
                            (Belmar et al, 1999). 
 

 

 

 

          Compound                  R 
ACAB-COOC3                  C3H7 
ACAB-COOC5                  C5H11 
ACAB-COOC7                  C7H15   
ACAB-COOC9                  C9H19 
ACAB-COOC11                C11H23 
ACAB-COOC13                C13H27 

      ACAB-COOC15                 C15H31                                                                    
ACAB-COOC17                 C17H35 

   

Figure 2.3: Structure of 7-n-acyloxy-3-(4’-n-acyloxyphenyl)-4H-1-benzopyran-4-one. 
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2.1.1.1        Objectives of Series 1 

The objectives of Series 1 are: 

1. To synthesize a novel series of mesogens derived from isoflavone with ester 

linking groups and terminal chains of varying number of carbon atoms, 7-n-

acyloxy-3-(4’-n-acyloxyphenyl)-4H-1-benzopyran-4-one. 

2. To characterize the liquid crystalline properties of the titled compounds using 

DSC and POM techniques. 

3. To elucidate the structures of the titled compounds using CHN microanalysis, 

FTIR and NMR techniques. 

4. To study the influence of structural changes on the liquid crystalline properties 

of the titled compounds. 
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2.1.2          Series 2: 7-n-Alkyloxy-3-(4’-n-acyloxyphenyl)-4H-1-benzopyran-4-one 

A series of novel mesogens containing isoflavone core and two terminal chains 

have been synthesized and characterized using various methods which include CHN 

microanalysis, FTIR and NMR spectroscopy. DSC and POM techniques are employed in order 

to study the liquid crystalline properties of the titled compounds. In this series, the effects of 

connecting groups as well as the influence of the length of terminal chains on mesomorphic 

properties are investigated. Belmar et al. reported in the year 1999 a series of mesogens 

incorporating isoflavone within the central core with two terminal chains (Figure 2.4). The 

influence of the connecting groups and length of one of the terminal chains on the mesomorphic 

properties are studied. In the present series, the lengths of both terminal chains are changed. X-

ray crystal structure elucidation of titled compounds is carried out in order to study their 

conformation in solid state. Furthermore, the layer spacing of titled compounds during 

transitions of several mesophases over a range of temperatures are also measured by XRD. 

Figure 2.5 illustrates the structure of compounds in the present series. 

 

 

 

 

 

 

 

where R = where R = CnH2n+1; n = 3, 4, 5, 6, 7, 8, or 9 

Figure 2.4: Structure of 7-n-alkyloxy-3-(4’-decyloxyphenyl)-4H-1-benzopyran-4-one 
                           (Belmar et al., 1999). 
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