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SIMULASI PENJANAAN, PERAMBATAN DAN ELEVASI 
MUKA AIR TERTINGGI DISEBABKAN TSUNAMI ANDAMAN  

26 DISEMBER 2004 
 

ABSTRAK 
 

Tsunami Andaman 26 Disember 2004 telah membawa kesengsaraan kepada 

komuniti yang tinggal di kawasan persisiran pantai yang terjejas. Sejak itu, ahli sains 

dan komuniti tempatan berusaha sedaya upaya untuk menghasilkan langkah mitigasi 

tsunami. Pelbagai rancangan yang membina telah dibangunkan untuk tujuan ini, 

seperti pembinaan sistem amaran tsunami dan pembangunan model simulasi tsunami 

untuk menghasilkan peta evakuasi tsunami bagi kawasan yang terjejas. Fokus utama 

dalam tesis ini ialah pemodelan simulasi berangka bagi tiga fasa evolusi tsunami: 

penjanaan, perambatan dan elevasi muka air tertinggi. Untuk tujuan tersebut, satu siri 

model simulasi berangka tsunami bernama TUNA telah dibangunkan. TUNA 

memberikan kebolehan simulasi tsunami yang lengkap, bermula dengan pemodelan 

sumber tsunami yang disebabkan oleh gempa bumi dan berakhir dengan simulasi 

elevasi muka air tertinggi apabila menghampiri persisiran pantai. Satu model 

penjanaan yang bernama TUNA-GE dibangunkan mengikuti konsep Okada dalam 

tesis ini. Model perambatan tsunami bernama TUNA-M2 yang dibangunkan dahulu, 

kini ditingkatkan kebolehan dalam keupayaan memilih grid terkandung untuk 

meningkatkan kejituan simulasi. Sumber tsunami yang disimulasi oleh model 

TUNA-GE digunakan untuk menghasilkan sumber permulaan bagi simulasi 

perambatan tsunami tersebut merentasi Laut India dengan menggunakan model 

perambatan tsunami TUNA-M2. Elevasi muka air tertinggi model TUNA-RP 

digunakan untuk simulasi elevasi muka air tertinggi dan elevasi muka air terendah 

untuk tsunami pada persisiran pantai yang cetek. TUNA-RP dibangunkan dengan 

berdasarkan persamaan air cetek tak linear dan keadaan pergerakan sempadan 



xiii 
 

digunakan untuk grid yang kecil. Model TUNA-RP digunakan untuk simulasi 

ketinggian elevasi muka air tertinggi untuk tsunami dan pembanjiran pada persisiran 

pantai di Pulau Pinang dan Langkawi, dengan menggunakan ketinggian perambatan 

gelombang yang disimulasi oleh TUNA-M2 pada kadalaman laut 50 m sebagai 

input. Ketinggian elevasi muka air tertinggi di kawasan persisiran pantai Pulau 

Pinang dan Langkawi yang disimulasi mempunyai persetujuan yang baik dengan 

ketinggian elevasi muka air tertinggi yang diukur. 
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SIMULATION OF GENERATION, PROPAGATION AND 
RUNUP DUE TO THE 26 DECEMBER 2004  

ANDAMAN TSUNAMI 
 

ABSTRACT 
 

The 26 December 2004 Andaman tsunami has resulted in much suffering 

among affected coastal communities. Since then, concerted effort among scientists 

and local communities has been devoted to provide tsunami mitigation measures. 

Several constructive programs have been developed for this purpose, such as the 

setting up of tsunami warning systems and the development of tsunami simulations 

models to produce tsunami evacuation maps for affected regions. The primary focus 

of this thesis is the numerical simulation of three distinct phases of tsunami 

evolution: generation, propagation and runup. For this purpose, a series of in-house 

numerical models TUNA has been developed. TUNA provides a complete suite of 

tsunami simulation capability, beginning with modeling the tsunami source 

generation resulting from an earthquake and ending with simulating runup along the 

coast. A generation model TUNA-GE is developed following the concept of Okada 

in this thesis. Previously developed tsunami propagation model TUNA-M2 is 

enhanced by the incorporation of nested grids to improve simulation resolutions. The 

tsunami source simulated by TUNA-GE model is used to provide the initial source to 

simulate tsunami propagation across the Indian Ocean by means of the enhanced 

propagation model TUNA-M2. The in-house runup model TUNA-RP is then used to 

simulate tsunami runup and rundown along shallow beaches. TUNA-RP was 

developed based upon the nonlinear shallow water equation with moving boundary 

condition using small grids. TUNA-RP model is used to simulate tsunami runup 

heights and inundation distances along the Penang and Langkawi beaches, using 

propagation wave height simulated by TUNA-M2 at 50 m depth as input. The 
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simulated runup height along Penang and Langkawi beaches are in good agreement 

with the survey runup heights. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 General Introduction to Tsunami 

The term tsunami was coined from the Japanese words consisting of harbor 

(tsu) and wave (nami). Tsunamis are also frequently referred as tidal waves, an exact 

translation from the ancient Greek name for a tsunami. But in actual fact, tsunami is 

not related to any tidal characteristic; hence, to avoid confusion with the tides, the 

term tidal wave is not used in scientific circles. Most tsunamis are triggered by 

underwater earthquakes (Satake, 2003); therefore, the term seismic sea waves are 

more appropriate in describing the tsunamis, although this term is seldom used.  

A tsunami is a series of ocean waves formed when the sea floor is suddenly 

vertically shifted thereby creating an abrupt vertical displacement of huge volume of 

seawater. Earthquake, submarine landslide, volcanic eruption, meteorite impact, and 

human activities such as nuclear explosions in the ocean are some commonly known 

causes that may generate tsunami waves. Many tsunamis have occurred in the past 

ten decades; however, tsunamis are rare events as compared to other natural hazards 

such as earthquake and storm surge. Some of the largest historical tsunamis are the 

effect of earthquakes such as the Aleutian Earthquake and subsequent tsunami that 

occurred on 1st April, 1946 (Dudley and Lee, 1998), the Kamchatka Earthquake and 

Tsunami that occurred on 4 November, 1952 (USGS, 2008), the Aleutian Earthquake 

and Tsunami on 9 March, 1957 (Johnson et al., 1994). More recent tsunamis include 

the Chilean Earthquake and Tsunami on 22 May, 1960 (Dudley and Lee, 1998) and 

the Great Alaska Earthquake and Tsunami that occurred on 28 March, 1964 (USGS, 

2008) and the most recent Andaman Earthquake and Tsunami that occurred on 26 
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December, 2004. Some of these tsunamis have caused casualties of hundreds of 

thousands people, injuries and tremendous damages to infrastructures and properties. 

The Andaman tsunami, which occurred on 26 December 2004, is one of the most 

devastating tsunami in the history of mankind. This tsunami was triggered by a 

mega-earthquake with the Richter scale of 9.3, off the west coast of northern 

Sumatera near the Province of Aceh and resulted in fatalities of about 250, 000 in 

more than ten countries. This tsunami has awakened countries around the Andaman 

Sea regarding the hazards of tsunamis and the needs of mitigation actions. Since then, 

numerous researches on tsunami such as the development of tsunami simulation 

models have been undertaken in order to mitigate the adverse impacts of tsunamis in 

the near future. Coupled with these researches, there are numerous other efforts put 

up by concerned community and governments such as the setting up of early warning 

systems, community education, disaster evacuation planning and preparedness to 

face the potential impacts from this Mother Nature’s disaster.  

There are scientific indications that tsunamis are very likely to recur and pose 

great risks and hazards to those countries encircling the Andaman Sea, as there are 

high possibilities that earthquakes will occur again in this region. Since the region is 

sensitive and theoretically vulnerable to tsunami’s strikes, it is essential to construct a 

comprehensive tsunami mitigation plan based on possible risks that a tsunami may 

pose. Hence, the aim of this thesis is to formulate a credible and realistic modeling of 

the 26 December 2004 Andaman tsunami for the location of peninsular Malaysia. In 

Figure 1.1, the rectangle is the map of the study area. This thesis also discusses about 

the nature and basic characteristics of a tsunami and the potential risks it poses to 

those affected areas. 
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Figure 1.1 Map of Study Area (Wikimapia, 2008) 
 
 
1.2 Tsunami Formation 

The most common tsunamigenic events are underwater earthquakes that 

could produce a co-seismic deformation that causes displacement of a huge body of 

water, as shown in Figure 1.2 (Dias, 2008). This seabed deformation is normally 

caused by a subduction when two oceanic plates slip through each other at the 

contact region known as the plate boundary. The energy of that fault is transferred to 

the water and elevates the water upward exceeding the normal sea level (Koh et al., 

2007). The length scale of this sea floor deformation is much larger than the water 

depth, which forms the initialization of the tsunami wave generation called the 

initial-conditions. It is presumed that the initial sea surface deformation is equal to 

the co-seismic vertical displacement of the sea floor. This is the birth of the seismic 

waves. Tsunamis may also be triggered by a violent horizontal displacement of water 

such as submarine landslide in the ocean as shown in Figure 1.3 (ISDR, 2008). For 

tsunami generated by submarine landslides, the initial waveforms at the source are 

more difficult to derive. The wavelengths are shorter, implying the increased 

significance of wave dispersion in subsequent propagation.  
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Subsequent to the vertical uplift, the displaced water column then splits into 

two opposing directions. The transoceanic tsunamis waves can travel at high speeds 

exceeding 100 m/s, with long period and long wave-length in a deep ocean. This 

stage is known as tsunami propagation as shown in Figure 1.2(c) and 1.3(c). The 

travelling speed depends on its wavelength, water depth, friction and slope. As the 

wave’s propagation reaches the shallow coastal areas, the wavelengths are reduced 

thus slowing down the wave but are amplified in heights and velocities to reach the 

maximum vertical heights onshore, creating a destructive situation that can pose 

great danger to humans and properties. This final stage of a tsunami’s evolution 

creates a dissemination of the waves with different frequencies or spectra and with 

different propagation speeds. This is known as tsunami runup and inundation. 

Tsunamis generated by the sudden vertical elevation of water column such as 

those caused by earthquakes are far better understood than those caused by 

submarine landslides (Teh, 2008). Submarine landslides are oftentimes the aftermath 

events that accompany major earthquakes, which are very likely to add up the overall 

power of a tsunami or creating additional tsunami waves. The most dangerous and 

devastating tsunami is a tsunami generated by submarine landslides located nearby to 

the coastal areas with distance less than several hundreds km and is known as near-

field tsunami. These types of tsunamis are considered more dangerous than those 

created in deep ocean uplift of similar volume because the potential energy of these 

tsunamis could be much higher and more focused. Reason for this to happen is 

because the slide depth could be in the order of thousands of meters, as compared 

with uplift, which is capped by the vertical displacement of the seafloor, which rarely 

exceeds 10 m. Hence, near field tsunami triggered by submarine landslides can be 

devastating.  
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        Figure 1.2 Tsunami wave generations by earthquake (Dias, 2008) 
 

 
 

Figure 1.3 Tsunami wave generations by submarine landslides (ISDR, 2008) 
 

1.3 Tsunami Modeling 

After the devastating 2004 Andaman tsunami, tsunamis have become a major 

topic of concern among researchers, geologists and oceanographers. There are 

scientific indications that tsunami of similar magnitude may recur in this region due 

to the energy that has yet to be released. In fact, earthquakes of lesser scale have 

triggered several tsunamis after the 2004 Andaman tsunami. This includes the Java 

earthquake at the southern Java, Indonesia with the magnitude of 7.7 on 17 July 2006 

and the Solomon earthquake of magnitude 8.1 on 2 April 2007 in Solomon Islands. 

Hence, sensitivity to the needs for preparedness and mitigation to face potential 

hazards posed by future tsunamis has been a driving force for developing tsunami 
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resilience communities. Various efforts on community disaster management and risk 

mitigation capabilities are undertaken by government and concerned communities in 

order to help mitigate the potential impacts and risks on coastal communities. 

Numerical simulations of tsunami risks are one of the integral components of the 

capacity building for community disaster management. These numerical simulations 

are crucial in developing inundation and evacuation maps for the purpose of 

providing effective mitigation measures and to help developing risk management 

strategies. Moreover, numerical simulations can provide scientifically sound tsunami 

data such as wave amplitude, arrival times as well as current velocities of tsunamis, 

which are vital in spearheading the process of protecting, rescuing and recovering 

operations before and after the strikes. In this regards, tsunami modeling is a topic 

that is worthy to be researched in details because of its pragmatic considerations. 

 
1.4 The Unpredictability of Tsunami 

Indeed, there are scientific ways to identify the fault areas that could cause 

earthquakes that are very likely to accumulate enough energy to lead to more quakes 

in future. But predicting when exactly it will happen is not easy. The missing part to 

pinpoint the next quakes or tsunamis is not the mathematical formulas, but the real 

data, which lies too far out of reach, miles deep in the earth. Therefore, it is hoped 

that tsunami modeling could help in the mitigation process in reducing the 

devastating impact since preventing it is impossible. 

Since it is difficult to predict when a tsunami will occur, much effort are 

turned to warning system which ideally could notify coastal communities for 

evacuation before the arrival of the devastating waves.  However, it should be noted 

that early warning system are designed to be sensitive as it cannot afford to miss any 

real encounter, therefore triggering a false alarm is a norm, with the Pacific Ocean 
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early warning system's false alarm rate been estimated at 75 percent. One of the 

examples was the Bengkulu earthquake, which occurred on 12 September 2007. The 

earthquake with the magnitude of 8.4 Richter scale and the aftershock of magnitude 

6.6 Richter scale generated a tsunami alert that was subsequently called off. This 

happened mainly due to different variations in coastal amplification factors and 

because seismic data often translate to tsunami data imprecisely. False alarms are not 

only costly in term of money; a statewide evacuation of Hawaii was estimated at 

USD 68 million (Teh, 2008). But false alarms that recur too frequently may 

desensitize response to future real alarms, causing people to ignore these real alarms, 

thus rendering the early warning system ineffective to protect communities affected. 

In this regards, it is hoped that early warning system can be enhanced by using 

tsunami modeling in order to reduce errors and costs. For this purpose TUNA was 

developed by a team of modelers in the Universiti Sains Malaysia (USM) to provide 

a complete package of capability to simulate the entire process of tsunami generation 

at the source of earthquake, propagation in the deep ocean and final runup along 

shallow beaches. We envisage that in the near future we will incorporate other 

physical and ecological process sub models into TUNA so that it has the additional 

capability to simulate sediment transport associated with tsunami, as well as to 

simulate environmental and ecological processes such as storm surge and water 

quality.  

 
1.5 Objectives of Thesis 

The objectives of this thesis are as follows: 

1.   To develop tsunami generation model TUNA-GE; 

2. To implement tsunami generation model TUNA-GE for the purpose of  

  generate credible source trigger by earthquake; 
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3.   To enhance tsunami propagation models TUNA-M2 by utilizing nested grid  

  for improving simulation resolutions; 

4.   To implement an enhanced tsunami propagation model TUNA-M2 for the  

  purpose of simulate tsunami wave heights offshore the Langkawi and Penang  

  coast; 

5.   To implement tsunami runup model TUNA-RP for the purpose of simulate  

  tsunami runup heights and inundation distances along the Penang and  

  Langkawi beaches. 

 
1.6 Methodology  

1. Generation model is developed based on principles in earlier theoretical  

studies in the literature.      

2. Finite difference technique is used to solve linear and nonlinear shallow water 

equations, based on staggered scheme and developed computer simulations to 

simulate tsunami propagation and runup.   

3. Enhancement of propagation model based on linearly interpolation technique 

for the boundaries and finite difference technique for the inner grids.  

4. A soliton is prescribed as a single hump of the Gaussian in the runup model 

as the initial condition. Moving boundary condition is imposed in the runup 

model to resolve the shoreline movement problem and allow the tsunami 

wave to propagate over a dry bed region. Radiation boundary condition is 

imposed in the runup model to allow the waves to pass through the open 

boundary freely without reflection. 

5. Computational results of a generated ideal situation are compared with 

known analytical solutions. Comparison is made also with other model 

(COMCOT) and in order to validate the accuracy of enhanced TUNA model.  
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6. Simulated results with real case’s parameters from literature are compared 

with survey data for the 2004 Andaman tsunami. 

 
1.7 Scope and Organization of Thesis   

This thesis has been designed to consist of six chapters. In Chapter 1, a 

general introduction to tsunami is given. The overall theme of this research is then 

discussed in this chapter. The objectives, scope and organization of this thesis are 

presented at the end of this chapter.  

Chapter 2 presents literature review of the tsunami wave generation, 

propagation and runup. Some existing numerical models are briefly discussed in this 

chapter. Moreover, some other method for describing multi-grid coupled model is 

presented in this chapter.  

 Chapter 3 begins with a brief introduction to the 26 December 2004 

Andaman tsunami and to study tsunami generation. Some review of source 

generation term produced by an earthquake is briefly presented here. Combination of 

a variety of source generation is considered in order to generate a credible source for 

the 2004 Andaman tsunami. In this chapter, a generation model following the 

concept of Okada is incorporated into an in-house tsunami generation model named 

TUNA-GE. Before the TUNA-GE model is developed, a review of the Okada 

concept is described. Some experimental studies and explanation of the surface 

deformation are briefly explored in this chapter.  This chapter ends by simulating 

tsunami propagation for the 2004 Andaman tsunami by using the credible source 

generated by TUNA-GE model. 

 We continue with Chapter 4 by enhancing the in-house propagation model 

TUNA-M2 by incorporating nested grid in order to improve the simulation 

resolutions. This chapter begins with the introduction to the shallow water equations 
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that are employed in TUNA-M2 model and the finite difference method that is used 

to solve the shallow water equations. This chapter continues with some validation of 

the enhanced TUNA-M2 model by several methods such as analytical model in one 

and two dimensions and by comparison with other existing models like COMCOT. 

This chapter ends by simulating the 2004 Andaman tsunami with the initial condition 

obtained from TUNA-GE model. 

 In Chapter 5 a well-tested in-house runup model TUNA-RP is used to 

simulate the runup heights and inundation distances along the beaches in Penang and 

Langkawi. This chapter begins with an introduction to nonlinear shallow water 

equations and the explicit finite difference method used in TUNA-RP model. Two 

boundary conditions are imposed in TUNA-RP model, which are open radiation 

boundary condition and moving boundary condition, which will be described in this 

chapter.  Runup heights and inundation distance along the beaches of Penang and 

Langkawi are obtained at the end of this chapter, using as input the offshore wave 

heights obtained earlier in Chapter 4. The simulated tsunami runup heights and 

inundation distances along the Penang and Langkawi beaches are then compared 

with the surveyed runup heights and inundation distances observed by a survey team 

from USM conducted.  

 Chapter 6 discusses the overall conclusions of this thesis. Some expositions 

and recommendations for further research on enhancing tsunami modeling are also 

provided in this final chapter.    



11 
 

CHAPTER 2 

LITERATURE REVIEW 

 

2.1       Introduction 

The Sumatra-Andaman earthquake on the Richter scale of 9.3 occurred on 26 

December 2004, off the west coast of northern Sumatera near the Province of Aceh. 

This earthquake triggered off a series of large tsunamis that caused tremendous 

damage to properties and resulted in fatalities of around 250, 000 along the affected 

coastal regions. Although Malaysia was previously perceived as safe from tsunami 

hazards, Penang, Langkawi and parts of northwest Malaysia were not spared the 

agony caused by the tsunami. A total of  68 persons were killed in Malaysia, with 32 

death in Penang alone (Koh et al., 2007). There are scientific indications that 

significant tsunamis may occur again and pose great risks and hazards to this region 

in the near future. Precise assessment of tsunami impacts and risks is crucial in 

identifying mitigation measures that could be carried out in order to reduce the threat 

of tsunami toward coastal communities. However, essential information such as the 

likelihood of occurrence, magnitude, shape of the sea bed deformation, topography 

and location of tsunamigenic events are rarely available before any tsunami strikes, 

thus complicating the process of risk maps creation. However, as more information 

becomes available in the future, tsunami assessments using computer models should 

increase in accuracy.  

Presently, several numerical models have been developed to simulate 

specifically a few or entire phases of a tsunami evolution. These numerical models 

can be used to determine the tsunami wave heights, the travel time and the potential 

impact that a tsunami could cause. These numerical models include COMCOT 



12 
 

(COrnell Multigrid COupled Tsunami) model (Liu et al., 1998; COMCOT, 2007), 

MOST (Methods of Splitting Tsunami) model developed by Titov and Synolakis 

(1998), TUNAMI-N2 models developed by Imamura of Tohoku University 

(Imamura et al., 1988) and TUNA model developed by Koh et al. (2005). Although 

Malaysia was previously perceived as safe from tsunami threat, the 2004 Andaman 

tsunami has caused agony to the communities of Malaysia. Consequently, tsunami 

simulation model became an urgent necessity in mitigating tsunami impact. 

However, due to proprietary ownership of other simulation models, TUNA model 

was developed as an in-house simulation tool to prevent copyright issues. Further 

discussions regarding these numerical models will be briefly touched on in next 

section.  

 
2.2       Numerical Models 

Tsunami numerical models are mainly designed with the objective of 

simulating a past event to further understand the behavior of tsunami, to analyze or to 

predict future impacts on potentially vulnerable areas. Several numerical models 

have been developed worldwide by universities and research centers. Numerical 

models are also widely used in tsunami forecasting systems.  

 
COMCOT 

The numerical model COMCOT was created by Liu et al. (1998) of Cornell 

University.  This model is used for simulating tsunami generation, propagation and 

runup. The initial source generation for earthquake, submarine landslide, wave maker 

and initial surface file are developed and can be used in this model. Linear shallow 

water equations are used to simulate distant propagation of tsunamis while nonlinear 

shallow water equations are used to simulate tsunami runup and inundation. In this 
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model, different coordinate systems such as Cartesian coordinate system or Spherical 

coordinate system can be utilized. Linear or nonlinear shallow water equations are 

discretized by using explicit leap-frog finite difference scheme, the convective term 

in the nonlinear shallow water equations are discretized by using an upwind scheme. 

This model has incorporated a nested multi-grid system and can be applied in 

specific sub region for the purpose of accuracy, the details of which will be discussed 

later. A moving boundary treatment is applied to track movement of the shoreline. 

The COMCOT model has been used to simulate the 1960 Chilean tsunami (Liu et al., 

1994), the 1986 Hwa-Lien Taiwan tsunami (Wang and Liu, 2005), the 2004 

Andaman tsunami (Wang and Liu, 2006; 2007) and also the Ping-Tung Taiwan 

submarine earthquake that occurred on December 26, 2006 (Chen, 2007), even 

though this earthquake did not cause any tsunami hazards, but the tidal gages had 

recorded long water waves near the epicenter. 

 
MOST  

The method of splitting tsunami model (MOST) was developed by Titov and 

Synolakis (1998). This model was developed also based upon the shallow water 

equations. This model is able to compute all three phases of tsunami evolution, 

which are tsunami generation, propagation, and runup, thus providing a complete 

tsunami simulation capability. The Pacific Disaster Center in Hawaii utilizes MOST 

model to develop tsunami hazard mitigation tools. This model is associated with the 

activities of the Tsunami Inundation Mapping Efforts (TIME). MOST does not 

include bottom friction term in its formulation as it is not an important factor in deep 

oceans and it is very difficult to determine the friction coefficients a priori.   
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TUNAMI-N2 

TUNAMI-N2 is another well-known tsunami model, developed by Imamura 

of Tohoku University (Imamura et al., 1988). It is provided through the Tsunami 

Inundation Modeling Exchange (TIME) program (Goto et al., 1997). This model 

includes friction term, which is omitted in MOST and is optional in TUNA models. 

TUNAMI-N2 model is used for studying tsunami propagation and runup. Several 

real case studies have used TUNAMI-N2 to model tsunami wave field such as the 

Mediterranean (Pelinovsky et al., 2002), the Carribean Sea (Zahibo et al., 2003), the 

Black Seas (Yalciner et al., 2004) and the Java Sea (Zahibo et al., 2006). 

 
COULWAVE  

The name of the model, COULWAVE (Lynett and Liu, 2004) came from 

Cornell University Long and Intermediate Wave Modeling Package. Lynett et al. 

(2002) used depth-integrated model for waves in intermediate water and linear 

interpolation for waves near the wet-dry boundary. This model was developed based 

upon the Boussinesq-type equations for weakly dispersive waves. The Boussinesq-

type of equations used is shown as follows: 

             
  (2.1) 
 
      
  (2.2)  

 
  (2.3) 

 
where  

η – water elevation above the mean sea level, m; 

h – water depth, m; 

H – total water depth, m; 
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M – discharge flux term in the x- direction, m2s-1; 

N – discharge flux term in the y- direction, m2s-1; 

ε – amplitude / depth; 

μ – depth / length; 

The right side of the Equations (2.2) and (2.3) are frequency dispersion while 

the left side of the Equations (2.2) and (2.3) are shallow water equations. The 

Boussinesq-type equation with frequency dispersion caused the model computation 

to be extremely slow and may not be suitable to simulate transoceanic wave (Horrillo 

and Kowalik, 2006; Liu et al., 2008). Hence, Boussinesq-type of equation is beyond 

the scope of this thesis. However, this model has been applied to one-dimensional 

and two-dimensional cases where the moving boundary technique achieves 

numerical-stability. The comparison results indicate a significant improvement over 

weakly nonlinear Boussinesq equation results of Zelt (1991). 

 
TUNA  

TUNA model developed by Teh et al. (2005; 2006) is a tsunami simulation 

model, consisting of two components namely TUNA-M2 and TUNA-RP. TUNA-M2 

model is a tsunami propagation model developed by Teh et al. (2005) following the 

guidelines of UNESCO/IOC working group (IOC, 1997) to simulate tsunami wave 

height off the coast at a depth of about 30 m. The model uses elliptical 

hump
22 )/()/( yx yx eae σση −− ×= , where a is the wave amplitude, xσ  and yσ are the 

standard deviations in x- and y- directions respectively, to fit the initial wave (Yoon, 

2002), as the source generation or initial water surface disturbance. The shallow 

water equations are used to describe the subsequent tsunami propagation in the deep 

ocean, since tsunami wavelengths (of hundreds of km) are typically much larger than 

the ocean depths (kms), which in turn are much larger than the wave heights (m), 
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tsunamis are categorized as shallow water wave (SWW). In TUNA-M2 model, an 

explicit finite difference method is used to solve a set of partial differential equations 

that describe shallow water equations. The model has been used to simulate the 2004 

Andaman tsunami with a source near the Province of Aceh, propagation towards 

peninsular Malaysia (Teh et al., 2005; Koh et al., 2008a) and propagation towards 

Bay of Bengal by Cham (2007). TUNA-RP model is also an in-house model that is 

used to simulate tsunami runup heights and inundation distances by using the input 

wave height off shore at 50 m depth derived from the TUNA-M2 model. This 

TUNA-RP model is executed by using one-dimensional nonlinear shallow water 

equations, which is also solved by using explicit finite difference method. A moving 

boundary condition is used in this model to simulate tsunami runup height and 

inundation distance along the beaches. This model has been used to simulate tsunami 

runup and inundation along the Penang beaches by Teh et al. (2006; 2008).  

 
2.3   Tsunami Generation 

 In this section, we will review some methods to represent tsunami generation 

caused by an earthquake. When an earthquake occurs near the seabed, caused by a 

sudden slip of a fault, it triggers a perturbation of the sea floor that produces a co-

seismic deformation. The sea floor disturbance will reshape the sea surfaces into 

tsunami waves where the initial sea surface displacement will lead to tsunami being 

generated. Due to the incompressibility of sea water, this sea surface displacement is 

assumed to be equivalent to the seabed displacement. According to Mansinha and 

Smylie (1971), co-seismic deformation is usually caused by strike-slip fault and dip-

slip fault. 
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                                          [Stein and Wysession, 2002] 

 
Figure 2.1 Strike-slip faults (top) and dip-slip faults (bottom) 

 A closed form analytical expression for the displacement field for strike-slip 

fault and dip-slip fault was given by Mansinha and Smylie (1971). The model is 

known as elastic half-space dislocation model. The elastic dislocation model is 

developed based upon the theory of elastic dislocation, which uses dislocation to 

determine the displacement field in a uniform half-elastic, and is given as below: 
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where juΔ is the elementary dislocation, jkδ is the dip angle, idS  is the dislocation 

surface, vk denotes outwards normal vector to surface Σ,  λ and µ are the Lamé 

constants for area, j
iu  is a ith component facing a point force of unit magnitude at (ξ1, 

ξ2, ξ3) acting in the j-direction that causes the displacement at (x1, x2, x3). There are 

other fault models such as Okada model (Okada, 1985) which will be discussed in 

later chapter.  
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Figure 2.2 Faulting geometry and coordinate system by  
Mansinha and Smylie (1971) 

 
The geometry of the finite rectangular faulting source model and the 

coordinate system used in Mansinha and Smylie (1971) are shown in Figure 2.2. In 

this coordinate system, the analytical expressions for the displacement field of the 

strike-slip fault and dip-slip fault caused by a uniform slip are given as follows: 
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in which the elementary dislocations 1U  and U correspond to stike-slip and dip-slip 

respectively. The symbol δ denotes dip angle and the finite rectangular fault surface 

is assumed to cover the range of -L  ≤ ξ1 ≤ L and d ≤ ξ ≤ D as in Figure 2.2. The 

integrals of the strike-slip and dip-slip displacements can be obtained in Mansinha 

and Smylie (1971).  
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2.4   Tsunami Propagation 

Tsunami propagation is the second phase of tsunami evolution. In this stage, 

the wave propagation begins from the source generated by an earthquake towards the 

offshore of the coast, with the tsunami as the medium to transfer the seismic energy 

away from the source. Tsunami is considered a shallow water wave since the 

wavelengths are much larger than the ocean depths; hence, linear shallow water 

equations are used in numerical simulation to express tsunami propagation. The 

shallow water equations that describe the conservation of mass and momentum can 

be depth averaged (Hérbert et al., 2005) and are usually represented in Cartesian 

coordinate form as Equations (2.7) to (2.9) (Ippen, 1966; IOC, 1997) or in Spherical 

coordinate form as Equations (2.10) to (2.12) (Nagano et al., 1991;Titov et al., 2005). 
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where 

η = Water elevation above mean sea level (MSL), m; 

h  = Water depth, m; 

g  = Gravitational acceleration, ms-2; 

n  = Manning Roughness coefficient, m-1/3s; 

D = h+η= Total water depth, m; 

M = uD = Discharge flux in the x- direction, m2s-1; 

N = vD = Discharge flux in the y- direction, m2s-1; 

u = Velocity of x- direction, ms-1; 

v = Velocity of y- direction, m2s-1. 

 (2.7) 
 
 
 (2.8) 
 

 (2.9) 
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where  
 
θ = Latitude; 
 
φ = longitude; 
 
Re = Radius of the Earth; 
 
f = 2ωe sin θ = Coriolis parameter; 
 
ωe = Earth rotation frequency; 
 
M = Discharge flux along the latitude; 

N = Discharge flux along the longitude; 

h(x,y) = unpertubed water depth. 

 COMCOT (Liu et al., 1998; COMCOT, 2007) is one of the numerical 

simulations that uses both coordinate systems. Spherical coordinate system is used 

when a curvature of the earth is considered important for waves propagate over a 

long distant from approximately 1000 km up to 10000 km. There are a lot of existing 

numerical simulations available to simulate tsunami propagation. 

In the natural environment, bathymetry varies from one location to another. In 

other words, it will not be constant. In the case when the water depth is shallow, a 

smaller grid size for numerical simulation is required in order to obtain a better 

resolution.  Hence, a refinement of the numerical mesh used in simulations may be 

needed for these purposes. The COMCOT model (Liu et al., 1998; COMCOT, 2007) 

is capable of making refinement by incorporating nested multi-grid system, which 

 
 (2.10) 
 
 
 (2.11) 
 
 
 (2.12) 
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can be applied in specific region, especially for the shallow depth. Next we will 

discuss the Multi-grid coupled model applied in the COMCOT model.  

 
Multi-grid Coupled Model  

As we have mentioned before, COMCOT incorporates a nested multi-grid 

system that can be applied in specific subregion. The options of linear or nonlinear 

shallow water equations with different subcoordinate system such as Cartesian or 

Spherical can also be chosen and applied to each specific subregion. In between two 

adjacent subregions, any ratio of grid sizes are flexible to be used and all these 

subregions are dynamically connected. Below is the algorithm describing the 

technique for exchanging information in between two subregions of different grid 

sizes. In this case, a small grid system is nested in a large grid system with the ratio 

of grid size set to be equal to 1:3. Suppose all flux values in the outer region are 

known at time level t = t1. The values at the next time step t = t2 are to be determined 

for the inner and the outer regions. The time step used in a smaller grid system is 

smaller than the time step used in larger time step system, to satisfy the Courant-

Friedrichs-Lewy stability condition, 1/ <× dxdtc  (Liu et al., 1998).  

The algorithm for exchanging information between two subregions of different grid 

sizes is given below: 

1.  After the flux values for the outer region at t1 are obtained, the free surface   

     elevation at t1+1/2 in the outer region can be solved by using continuity  

     equation (conservative of mass).  

2. The flux values in the inner region at time level t = t1 are obtained by  

     solving the momentum equation. But the flux values along the connected  

     boundary at this time level must be obtained by linearly interpolating the  

     flux values in the outer region at the same time level, which is t = t1.  The  
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     interpolated values obtained are then assigned to the boundary for inner  

     region. 

3. The flux values in the inner region at t1 are used to solve the free surface  

     elevation at t1+1/4 in the inner region by solving continuity equation. 

4. After the free surface elevation at t1+1/4  is obtained, the flux values at the  

    next time step t1+1/2 (for small region) is solved by using the momentum  

    equation. The flux values along the connected boundary for this time level  

    may not be obtained in this step. The next step will describe how to get the  

    flux values along the connected boundary. 

5. By using the flux values at t1 and free surface elevation at t1+1/2, the flux  

    values along the connected boundary at t2 for the outer region can be  

    obtained locally by solving the momentum equation. Next, the flux values  

    along the connected boundary in the outer region at time level t = t2 are   

    then linearly interpolated and the interpolated values obtained are then  

    assigned to the boundary for inner region at t2. Time averaging is used for  

    the flux values in the outer region at t1 and t2 and the time averaged values  

    are then assigned to obtain the flux values in the inner grid at the boundary  

    t1+1/2. 

6. The free surface elevation at t1+3/4 in the inner region can be obtained by  

     solving the continuity equation with the flux values for inner region  

     obtained in Step 4 and 5.  

7. Up to this step, the flux values for the inner region at t1, t1+1/2 and free  

     surface elevation for the inner region at t1+1/4, t1+3/4 is obtained. The values  

     are needed to transfer back from the inner region to the outer region to  

     update the outer region. Hence, the free surface elevation in the inner  
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     region is spatially averaged over the grid size of the outer region. Next,  

     time averaging is used again for the averaged elevation at t1+3/4 with the  

     free surface elevation at t1+1/4 in the inner region. These spatially and time  

     averaged elevation values in the inner region are then used to update the  

     free surface elevation values at t1+1/2 in the outer region.   

8. The flux values at t2 in the inner region can be obtained by solving the  

     momentum equation. 

9. The flux values at t2 in the outer region can be also obtained by solving the  

     momentum equation. 

 
2.5       Tsunami Runup and Inundation 

As the tsunami wave propagates up to shallow beaches, the linear shallow 

water equations (LSWE) that is normally used for the tsunami propagation over the 

deep ocean is no longer valid. In this phase, a nonlinear shallow water equations 

(NSWE) with its convective inertia force and bottom friction with the seabed needs 

to be considered. Many researches recently have concluded that the neglect of 

nonlinearity for runup simulation will tend to underestimation of the predicted 

maximum wave height. NSWE including bottom frictional effects is sufficient in 

describing the flow motion of the coastal zone (Liu et al., 1994). A simple NSWE 

(Marchuk and Anisimov, 2001; Gedik et al., 2005Marchuk) is as follows: 

                                                                                                      
                                                                                    (2.13) 

 

                                                                          (2.14) 

 
where  

η = surface elevation, m; 

u = velocity, m/s; 
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h = water depth, m; 

g = gravitational acceleration, m/s2; 

t = time, s; 

x = distance, m.  

There are also numerical models developed based on other equations such as 

the Boussinesq equations and the Reynolds-averaged Navier-Stokes (RANS) 

equations. Petit et al. (1995) developed the model SKYLLA based on RANS and 

FLAIR method for simulation of runup on coastal structure. A numerical technique 

based on volume of fluid (VOF) for simulating the high wave of distorted water-air 

interfaces was proposed in Sabeur et al. (1997). Kawasaki (1999) proposed a two-

dimensional numerical wave model that combines the VOF method with a non-

reflective wave generator. Lin and Liu (1998) have proposed a RANS based 

numerical model with k-ε equations to study the evolution of wave train, shoaling 

and breaking in the surf zone. Xiao et al. (2007) proposed a numerical model based 

on RANS and k-ε equations to simulate solitary wave runup and forces acting on an 

idealized beachfront house on a plane beach.    

In numerical models, moving boundary technique is often used to investigate 

wave runup and rundown with depth integrated equations such as in Lynett et al. 

(2002). Some researchers added bottom friction and eddy viscosity into momentum 

equations in order to reduce the computational instabilities. 

Other than numerical solutions, there are also theoretical formulations that 

describe the maximum runup of solitary wave on impermeable plane slope. 

Nonlinear shallow water equations may be approximated by analytical approaches to 

study the maximum runup of solitary wave, disregarding dispersion and other higher 

order effects for simplicity (Yeh et al., 1996; Xiao et al., 2007). Synolakis (1986; 
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