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KAJIAN IKATAN HIDROGEN DI DALAM SEBATIAN FENOL-AMINA 

 

ABSTRAK 

 

Lima sampel telah disediakan bagi tujuan mengkaji transisi fasa yang 

disebabkan oleh ikatan hidrogen di dalam sebatian fenol-amina. Sampel-sampel 

tersebut adalah (I) 2-Metilquinolinium 2,4-dinitrobenzoat, (II) 1:1 sebatian asid 3,5-

dinitrobenzoik dan quinolin, (III) Hexametilenetetraminium 2,4-dinitrobenzoat 

monohidrat, (IV) 4-Aza-1-azoniabisiklo[2.2.2]oktan 2,4-dinitrobenzoat dan (V) 

Hexametilenetetraminium 3,5-dinitrobenzoat hemihidrat. Kaedah kristalografi sinar-

X hablur tunggal telah digunakan untuk menentukan sama ada berlaku sebarang 

perubahan parameter kekisi pada suhu bilik dan 100K.  

Beberapa ikatan hidrogen diperhatikan pada kesemua sampel. 

Walaubagaimanapun hanya sampel (V) yang menunjukkan fenomena transisi fasa 

dimana nilai parameter kekisi yang berbeza diperhatikan pada suhu bilik dan 100K 

(gandaan nilai paksi-c). Bagi sampel (V), kajian kebersandaran suhu dijalankan 

untuk mencari suhu kritikal Tc. Dari keputusan yang diperolehi, didapati ianya 

merupakan transisi fasa darjah pertama, dimana perubahan parameter kekisi berlaku 

secara tidak selanjar pada suhu Tc = 129K. Kes darjah pertama ini juga telah 

diterangkan secara makroskopik dengan menggunakan teori fenomenalogikal 

Landau. 

Kaedah alternatif untuk mengira sifat-sifat termodinamik bagi suatu sistem 

transisi fasa darjah kedua yang disebabkan interaksi ikatan hidrogen dan fonon bagi 

hablur juga dilakukan di dalam kajian ini. Kajian tersebut dilakukan dengan 

memisahkan terus pembolehubah pseudo-spin dan hanya mengambil kira 



 xiv

pembolehubah pseudo-spin semasa mengira tenaga bebas. Keputusan yang 

diperolehi bersetuju dengan keputusan yang telah diterbitkan dahulu.  
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STUDY OF HYDROGEN BONDINGS IN PHENOL-AMINE ADDUCTS 

 

ABSTRACT 

 

Five samples have been prepared to study the phase transition caused by 

hydrogen bonds in phenol-amine adducts. Those samples are (I) 2-

Methylquinolinium 2,4-dinitrobenzoate, (II) the 1:1 adduct of 3,5-dinitrobenzoic acid 

and quinoline, (III) Hexamethylenetetraminium 2,4-dinitrobenzoate monohydrate, 

(IV) 4-Aza-1-azoniabicyclo[2.2.2]octane 2,4-dinitrobenzoate and (V) 

Hexamethylenetetraminium 3,5-dinitrobenzoate hemihydrate. Single crystal X-ray 

crystallography method has been used to determine whether there are any changes in 

lattice parameters at room temperature and 100K.  

A number of hydrogen bonds were observed in all the samples. However only 

sample (V) showed a phase transition phenomena in which different lattice parameter 

values were observed at room temperature and 100K (doubling the c-axis value). For 

sample (V), temperature dependence studies were done to find the critical 

temperature Tc. From the result, we know that this is a first order phase transition 

where the changes of the unit cell parameters occur discontinuously at the transition 

temperature Tc = 129K. This first order case is also explained macroscopically using 

Landau phenomenological theory.  

An alternative method of calculating the thermodynamic properties of a 

system with the second-order phase transition caused by interaction of hydrogen 

bonds and phonon of the crystal was also done in this study. This was carried out by 

separating out the pseudo-spin variables completely and using only pseudo-spin 
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variables when calculating the free energy. The results agree with the previous 

published results.  
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 CHAPTER 1 

INTRODUCTION 

 

1.1 Brief Description About Hydrogen Bonding 

Hydrogen bonding plays an important role in molecular structure, including 

the biomolecules and it is still not fully understood. Its presence can affect the 

physical properties of gases, liquids and solids (Jeffrey, 1997). In supramolecular 

chemistry, the hydrogen bond is able to control and direct the structures of molecular 

assemblies because it is sufficiently strong and directional (Desiraju and Steiner, 

1999). In mechanistic biology, it is believed to be responsible for the well-known 

base pairing in nucleic acids and for the secondary structure of proteins. It also 

influences the catalytic action of many enzymes and for the binding specificity of 

enzymes inhibitors (Perrin, 1994).  

The hydrogen bond is said to exist if there is evidence of bond and the bond 

involves a hydrogen atom already bonded to another atom (Pimentel and McClellan, 

1960). Hydrogen bonds are formed when the electronegative atom σ  (σ  = C, O, N, 

S, Cl et al.,) relative to H in σ -H covalent bond is such as to withdraw electrons and 

leave the proton unshielded. To interact with this donor σ -H bond, the acceptor κ  

must have lone-pair electrons or polarizable π -electrons. In general, a hydrogen 

bond can be characterized as a proton shared by two lone electron pairs. Hydrogen 

bond donor strengths are qualitatively proportional to these differences in 

electronegativity, F-H > O-H > N-H > C-H and the hydrogen bond has a directional 

property, being strongest when σ -H…κ  = °180 . The distance between the donor σ  

and acceptor κ  atoms should be less than the sum of the Van der Waals radii of σ  

and κ  (Jeffrey, 1997). 



 2

The typical hydrogen bond can be shown in scheme as follows,  

 

σ -H…κ  

H

θ
d

σ

κ  

Figure 1.1 – Schematic of hydrogen bonds.  

 

σ -H is the covalent bond length, H…κ  is the hydrogen bond length and 

σ …κ  is the hydrogen bond distance. These quantities define the σ -H…κ  

hydrogen bond angle, θ (Fig. 1.1).  

Jeffery (1997) divides the hydrogen bonds into three categories (Table 1.1).  

 

Table 1.1 – Properties of strong, moderate and weak hydrogen bonds. 

 Strong Moderate Weak 

σ -H…κ  interaction mostly covalent mostly electrostatic electrostatic  

Bond lengths σ -H ≈ H…κ  σ -H < H…κ  σ -H<<H…κ  

H…κ  (Å) 1.2 – 1.5 1.5 – 2.2 2.2 – 3.2 

σ …κ  (Å) 2.2 – 2.5 2.5 – 3.2 3.2 – 4.0 

Bond Angles (°) 175 - 180 130 - 180 90 – 150 

Bond energy (kcal mol-1) 14 - 40 4 – 15 < 4 

 

Strong hydrogen bonds (ionic hydrogen bonds) are formed by groups in 

which there is a deficiency of electron density in the donor group ( O H, N H
+ +

− − ≡ − ) 

or an excess of electron density in the acceptor group (
- - -
F,  O H, O C− − ). Moderate 

hydrogen bonds are formed by neutral donor and acceptor groups 
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( O H, N(H) H− − − − ), in which the donor A atoms are electronegative relative to 

hydrogen and the acceptor B atoms have lone-pair unshared electrons. Weak 

hydrogen bonds are formed when the hydrogen atom is covalently bonded to a more 

electro-neutral atom relative to hydrogen ( C H, Si H− − ) or the acceptor group has 

no lone-pairs but has π  electrons, such as C C≡ or an aromatic ring (Jeffrey, 1997).  

 

1.2 Hydrogen Bonding, Phenol-Amine Adducts and Phase Transitions  

 Phenol-amine adducts in solid state form are widely used to study hydrogen 

bonds (Coupar, Glidewell and Ferguson, 1997; Sobcyzk et al., 2000; 

Chantrapromma, 2004) especially hexamethylenetetramine crystals. This is because 

phenol or organic acids and amine bases in solid phase generally interacted by 

intramolecular or intermolecular O-H…O, O-H…N or N-H…O hydrogen bonds 

(Desiraju, 1995; Chantrapromma et al., 2006). From all these previous studies 

(Coupar, Glidewell and Ferguson, 1997; Sobcyzk et al., 2000; Chantrapromma, 

2004), normally in hexamethylenetetramine crystals, there are more than two 

hydrogen bonds that can be observed.  

 Chantrapromma in her thesis (2004) studied the different categories of 

hydrogen bondings formed by adducts possessing different relative strengths of 

acidity (pKa) and basicity (pKb) of the starting materials and also the role of steric 

effect of the components of the adducts. In the study, she and the group found a new 

second order temperature-dependent reversible ferroelastic phase transition which 

was named as FAST (Fun-Anwar-Suchada Transition) occurring in three samples 

[hexamethylenetetraminium 2,4-dinitrophenolate monohydrate (HMTDNP), 

hexamethylenetetraminium 3,5-dinitrobenzoate-3,5-dinitrobenzoic acid monohydrate 

(HMT2DNBW) and quinuclidinium 2,4-dinitrophenolate (QNCDNP)]. There are 
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two types of transition; orthorhombic-to-monoclinic and monoclinic-to-triclinic were 

observed. This newly found phase transition has been explained macroscopically 

using the Landau phenomenological theory (Fun et al., 2003) and also 

microscopically using the pseudo-spin approach (How et al., 2005).  

 The microscopic theory of this new type of phase transition is based on the 

idea that the main mechanism responsible for phase transition is interaction of 

hydrogen bonds with the lattice vibrations or phonons of the crystal. The hydrogen 

bonds are modelled as two-level systems, and described by pseudo-spin variables. 

The starting Hamiltonian used in the model is a combination of harmonic phonon 

Hamiltonian Hp, and the interaction energy of the additional hydrogen bonds Hs 

(How et al., 2005).  

Studies on hydrogen bonding in phenol-amine adducts can be used as a model 

for the more complicated hydrogen bonding in biological systems (Blow, 1976; 

Chantrapromma, 2004). It is worthwhile to understand the phase transitions caused 

by hydrogen bonds since hydrogen bonds occur in a large class of materials.  

  

1.3 X-ray Crystallography 

 X-ray crystallography is a powerful method which enables researchers to 

obtain a detailed picture of the contents of the crystal at the atomic level. By using 

this method, researcher can calculate interatomic distances and bond lengths to get a 

complete three dimensional picture of the molecules inside the crystals.  Other 

features such as planarity of a particular group of the atoms, the angles between 

planes and the torsion angles around bonds can also be calculated.  

However, to use this method, the samples must be in single crystal form. An 

ideal crystal is constructed by an infinite repetition of identical structural units in 
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space. The structure of all crystals can be described in terms of lattice, with a group 

of atoms attached to every lattice point. The lattice is defined by three fundamental 

translation vectors a, b and c. These vectors may also be described in terms of their 

lengths (a, b, c) and the angles between them (α ,β ,γ ) (Fig. 1.2). These lengths and 

angles are the lattice constants or lattice parameters of the unit cell. The volume of a 

parallelepiped with axes a, b and c is 

 

 

 

by elementary vector analysis (Kittel, 1996). 

  

a

b

c

a

b

c

αβ

γ

 

Figure 1.2 – Crystal lattice 

 

X-rays lie in the electromagnetic spectrum between ultraviolet and gamma 

radiation in which the approximate range of wavelengths is 0.1 – 100 Å, depending 

on the energy of the electron that produced the X-ray. X-ray is generated when 

electrons are accelerated by an electric field and directed against a metal target, 

which slows them rapidly by multiple collisions (Stout and Jensen, 1989). This 

produces the continuous spectrum. The characteristic spectrum is produced when the 

CV = a × b× c
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electron in the innermost shells of the atoms are dislodged by the bombarding 

electrons.   

The basic parts of an X-ray tube are source of electrons (cathode electrode) 

and metal target (anode electrode) that emit the X-ray.  Nowadays, the most common 

used X-ray tube is hot cathode tube which was invented by W. D. Coolidge in 1913 

(Figure 1.3). Electrons are liberated from heated filament and accelerated by a high 

voltage towards the metal target. Because of the high voltage through which the 

electrons are accelerated, the power dissipated at the anode is quite large. In order to 

prevent the anode from melting, the X-ray tube is equipped with a cooling system. 

Additional cooling can be achieved by using a rotary anode. The rotating anode can 

handle much higher energy delivered by the electrons and data collections can be 

taken at shorter times compared to those with stationary anodes (Cullity, 1956; Stout 

and Jensen, 1989).  

 

copper
X-rays

X-rays

cooling water

vacuum

beryllium window metal focusing cup

to transformer

glass

electrons

tungsten filament

target

 

Figure 1.3 – Cross section of sealed-off filament X-ray tube (schematic) 
                                (Cullity, 1956).  

 

The details of how this method works shall be explained in chapter 2 and chapter 3. 
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1.4 Landau Theory 

Landau theory is a thermodynamic theory that can be used to explain the 

behaviors of the crystal at phase transition. It is based on a power series expansion of 

the free energy of the crystal with respect to an order parameter of the crystal. By 

using the landau theory, the thermodynamics of the crystal such as free energy or 

heat capacity can be directly linked to crystal lattice parameters and the relation 

between these quantities (crystal thermodynamics and crystal lattice parameters) can 

show how they can be changed by the influence of temperature or pressure (Stanley, 

1971).  

 

1.5 Objectives 

In these studies, X-ray crystallography was used to get a clear picture of the 

molecules, crystal packing and hydrogen bonds in the crystal of some phenol-amine 

adducts. This method was also being used to find whether there was any phase 

transition in the samples studied by looking at the crystal systems and the lattice 

parameters as a function of temperature. The main objective of this study was to find 

more examples of phenol-amine adducts that exhibit the Fun-Anwar-Suchada 

Transition (FAST) phenomena.  

Another objective of this study was to verify the previous calculation of the 

microscopic theory that explains the second order FAST phenomena (How et al., 

2005). For this calculation, we attempted to derive an effective Hamiltonian which 

contains only pseudo-spin variables.  

 This study was to obtain more details on the fundamental knowledge of the 

FAST phase transition in phenol-amine adducts which is caused by the interaction of 

hydrogen bonds and the phonons of the crystals.  
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CHAPTER 2 

PRINCIPLES OF X-RAY CRYSTALLOGRAPHY  

 

2.1 X-ray Diffraction  

 Diffraction can be described as a combination of scattering and interference 

phenomenon (Ladd and Palmer, 1993). Referring to the figure 2.1, consider an X-ray 

beam incident on a pair of parallel plane of A and B separated by the distance d. The 

parallel incident rays 1 and 2 make an angle θ  with the A and B planes. Due to 

interference effects, only the parallel reflections ray 1’ and 2’ at angle θ  will result 

(if the waves represented by these rays are in phase).   

 

A

B
d

θ

θ θ

1

2
2'

1'

plane normal

K

L
M N

 

Figure 2.1 – Diffraction of X-ray by a crystal (Cullity, 1956).  
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 From figure 2.1, it is obvious that MKL = NKL = θ∠ ∠  and ML = NL. With 

this we can derive that, 

 ML + NL = 2ML                (2.1) 

and this equals with the integral number of wavelengths λ  for constructive 

interference.  

 2ML = nλ                  (2.2) 

By using trigonometry law 

 ML / sind θ=   

we get 

2 sin nd θ λ=   →  Bragg’s Law                                          (2.3) 

 

2.2 Argand Diagram  

 An Argand diagram can be used to represent clearly the combination of 

waves. In an Argand diagram, waves are represented as vectors with real and 

imaginary component.  

 1 1 1 1cos i sinf fϕ ϕ= +1f                (2.4) 

 2 2 2 2cos i sinf fϕ ϕ+2f =                 (2.5) 

 1 2F = f + f  

These equations are illustrated in figure 2.2.  

De Moivre’s theorem states that 

 i cos i sinϕ ϕ ϕ± = +e                  (2.6) 

Using this theorem, equation 2.4 and 2.5 becomes 

 1i
1f

ϕ= e1f  ,  2i
2f

ϕ= e2f                 (2.7) 

1 2i i
1 2f fϕ ϕ∴ = +e eF                 (2.8) 
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2 2cosf ϕ1 1cosf ϕ

2 2sinf ϕ

1 1sinf ϕ

1ϕ

2ϕ

 

Figure 2.2 – Combination of two waves, f1 and f2 on an Argand diagram (Ladd 
                         and Palmer, 1993).  
 

2.3 Combination of N Waves  

 Using the same methods, we can combine any number of waves. The 

resultant of N waves is,  

 1 2 i ii i
1 2

j N
j Nf f f fϕ ϕϕ ϕ= + +⋅⋅⋅+ + ⋅⋅⋅+e e e eF               (2.9) 

or  

 i

1

j
N

j
j

f ϕ

=

=∑ eF                 (2.10) 

we can also express this equation using an Argand diagram  

(Figure 2.3, for N = 6).  
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The resultant F is given by 

 F = |F| iϕe                (2.11) 

with |F|2 = FF* and F* = |F| -iϕe  

 

f1

fj

fN

F

Real axis

Imaginary axis

cosj jf ϕ

sinj jf ϕ

jϕ

ϕ

 

     Figure 2.3 – Combination of N waves (N =6), 
6

i

1

j
j

j
f ϕ

=

= ∑ eF  using an Argand 

                          diagram (Ladd and Palmer, 1993).  
 

2.4 Phase Difference  

 The phase difference associated with waves scattered by an atom j whose 

position relative to the origin is specified by the fractional coordinate’s xj, yj, zj is  

 jδ  = ( )j j jhx +ky +lzλ              (2.12) 
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The corresponding phase difference in angular measure is 

 jϕ  = jδλπ )/2(               (2.13) 

or 

 jϕ  = 2 ( )j j jhx +ky +lzπ              (2.14) 

 

2.5 Atomic Scattering Factor  

 Atomic scattering factor is the amplitude of the waves scattered by the atom 

and denoted as θ,jf . Atomic scattering factors are used to evaluate the combined 

scattering from all atoms in the unit cell. Its value depends on the nature of the atom, 

the wavelength of X-ray used and the thermal vibration of the atom (Ladd and 

Palmer, 1993).  

 The number of extra-nuclear electron in the atom can influence the value of 

θ,jf  (maximum value for given atom j is Zj, the atomic number of the jth atomic 

species). Along the direction of the incident beam [sinθ (hkl) = 0], θ,jf  has its 

maximum value,  

, ( 0)j jf Zθ θ = =                (2.15) 

θ,jf  is expressed in number of electrons.  

 The atomic scattering factor is also influenced by the thermal vibration of a 

particular atom in a given crystal. Each atom in a structure vibrates anisotropically 

and the exact description of this motion involved several parameters which are 

dependent upon direction (Ladd and Palmer, 1993). In isotropic vibration (simpler 

case) the temperature factor correction for the jth atom is  

 2 2exp[ (sin ) / ]j,θ jT -B θ λ=               (2.16) 
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where 

 2
j jB = 8π2U  →  temperature factor of atom j           (2.17) 

 2
jU  is the mean-square amplitude of vibration of the jth atom from its 

equilibrium position in a direction normal to the reflecting plane, and is a function of 

temperature. Tj,θ is a function of λθ /)(sin  and hkl. The temperature-corrected 

atomic scattering factor may be written as:-  

 j j,θ j,θg = f T                (2.18) 

(sin ) / axisθ λ

j,θf

θj,Tθ,jf

 

Figure 2.4 – Atomic scattering factors: a) stationary atom, θ,jf , b) atom 
                     corrected for thermal vibration θj,Tθ,jf  (Ladd and Palmer, 1993).  
 

2.6 Structure Factor  

The structure factor F(hkl) express the combined scattering of X-rays for all 

atoms in the unit cell compared to a single electron and its amplitude |F(hkl)| is 

measured in electrons. The value is expressed in term of )( , jjj ggg ≡θ  

and [ ]j j j(hkl)ϕ ϕ ϕ≡  (Ladd and Palmer, 1993). From equation 2.9, the resultant wave 

for the unit cell is therefore  
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i

1

1
exp[i2 ]

j
N

j
j

N

j j j j
j

(hkl) g

g hx +ky +lz )

ϕ

π

=

=

⎫
= ⎪

⎪
⎬
⎪=
⎪⎭

∑

∑

e

(

F
           (2.19)

             

F(hk
l)

(hkl)ϕ

 

Figure 2.5 – Structure factor F(hkl) plotted on Argand diagram; (hkl)ϕ  is the 
resultant phase, and the amplitude |F(hkl)| is represented by length 
of OF (Ladd and Palmer, 1993).  

 

From figure 2.5 

 F(hkl) = A’(hkl) + iB’(hkl)              (2.20) 

where A’ = |A’| and B’ = |B’|.  

 
N

j j j j
j=1

A'(hkl)= g cos2π(hx + ky +lz )∑                        (2.21)  
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and  

 
N

j j j j
j=1

B'(hkl)= g sin2π(hx + ky +lz )∑                        (2.22)  

∴ i (hkl)(hkl) | F(hkl)| ϕ= eF              (2.23)  

where the amplitude is given by  

 2 2 1/2[ ]| F(hkl)|= A' (hkl)+ B' (hkl)             (2.24) 

and the phase by  

 tan B'(hkl)(hkl)=
A'(hkl)

ϕ               (2.25) 

From figure 2.5 it may be seen that  

 cosA'(hkl)=| F(hkl)| (hkl)ϕ              (2.26) 

and  

 sinB'(hkl)=| F(hkl) (hkl)ϕ              (2.27) 

 

2.7 Friedel’s Law  

 A diffraction pattern may be thought of as a reciprocal lattice with each point 

weighted by corresponding value of |F(hkl)| or I(hkl).  

Therefore 2I(hkl) | F(hkl)|∝              (2.28)  

Friedel’s law states the centrosymmetric property of the diffraction pattern as 

 I(hkl) = I( hkl )               (2.29) 

The jg  value is same for the hkl and hkl  reflection since atomic scattering factor is 

a factor of 2])[(sin λθ .  

i.e.  θθ −= ,, jj gg                 (2.30) 
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because reflection from opposite sides of any planes will occur at the same Bragg 

angle,θ . The dependence on the spherically symmetric model of an atom, which is 

generally assumed in the calculation of f  values, should be noted. From 2.19 

 ,
1

exp[i2 ]
N

j j j j
j

(hkl) g (hx + ky +lz )θ π
=

=∑F                      (2.31) 

and  

,
1

exp[ i2 ]
N

j j j j
j

( hkl g (hx + ky +lz )θ π−
=

= −∑F )            (2.32) 

 

From 2.20 

 F( hkl ) = A’( hkl ) + iB’( hkl )             (2.33) 

where A’( hkl ) and B’( hkl ) are given by 2.21 and 2.22, respectively. From 2.21 and 

2.22 we get 

 F( hkl ) = A’(hkl) - iB’(hkl)              (2.34) 

The vectorial representation of F(hkl) and F( hkl ) are shown on Argand diagram on 

figure 2.6. From the figure,  

 ( hkl (hkl)ϕ ϕ= −)               (2.35) 

 2 2 1/2[ ]| F(hkl)|=| F( hkl )|= A' (hkl)+ B' (hkl)                        (2.36) 

From 2.28,  

 I(hkl) = I( hkl )   →    Friedel’s Law                       (2.37) 
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( hkl)F

( hkl)ϕ '(hkl) = '( hkl)A A

'( hkl)=- '(hkl)B B

Real axis

Imaginary axis

(hkl)F

(hkl)ϕ

'(hkl)B

 

Figure 2.6 – Relationship between F(hkl) and F( hkl ) leading to Friedel’s law(Ladd  
                     and Palmer, 1993).  
 

2.8 Electron Density Distribution   

 X-ray are scattered by the electrons associated with the atoms in the crystal. 

Atom with high atomic numbers will give a greater concentration of electrons 

compared to atom with low atomic numbers. This concentration of electrons and its 

distribution around the atom is called the electron density ρ (measured in electrons 

per Å3) (Ladd and Palmer, 1993).  

 The general electron density function is expressed as a three-dimensional 

Fourier series 

 exp[ i2 ]
h k lc

1(x, y,z) (hkl) (hx+ ky+lz)
V

ρ π
∞

∞

= −∑∑∑
-

F          (2.38) 

By using 2.23, 2.38 becomes 

 i i2(hkl) (hx+ky+lz)

h k lc

1(x, y,z) (hkl)
V

ϕ πρ
∞

−

∞

= ∑∑∑ e e
-

|| F                     (2.39) 
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This equation implies that the electron density is a complex function, but it is real 

throughout the unit cell, using 2.6, 2.20 and 2.34 

{ cos[2 ]

sin [2 ]}

h k lc

1(x, y,z) A'(hkl) (hx+ky+lz)
V

B'(hkl) (hx+ky+lz)

ρ π

π

∞

∞

=

+

∑∑∑
-

 

                     (2.40) 

 - summations are taken over the appropriate practical value of h, k, and l.  

Using 2.26 and 2.27, 2.40 becomes  

 cos[2 ]
h k lc

1(x, y,z) (hkl) (hx+ ky+lz) (hkl)
V

ρ π ϕ
∞

∞

= ∑∑∑
-

| -| F                     (2.41)  

 The process of X-ray diffraction corresponds to Fourier analysis or 

breakdown of the object ρ(x,y,z) into its constituent term. However from 

experimental work, only intensities I(hkl) can be measured meaning only the 

magnitude of |F(hkl)| is known since (I(hkl) ∝ |F(hkl)|2) but not the phase. Fourier 

synthesis is equivalent to a summation of F(hkl) in order to reconstruct the object, 

but it cannot be achieved without regaining the phase information. The methods of 

structure analysis seek to extract phase information starting from |Fo=observed| data.  

 Electron density is concentrated in the vicinity of the atoms. Atom appears as 

peaks in the electron density function and the peak position of a given atom is 

assumed to correspond to its atomic center. Generally, the more complete and 

accurate the experimental |F| data, the better will be the atomic resolution and more 

precise the final structure model.  

 The heights of the peaks in an electron density distribution of a crystal are 

proportional to the corresponding atomic number. The hydrogen atom which has the 

lowest atomic number cannot be observed in electron density map because its small 

electron density merges into the background density (Ladd and Palmer, 1993).  
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2.9 Heavy Atom Method 

2.9.1 Patterson Function  

 In 1934, Patterson discover a Fourier series using value of |F(hkl)|2 (which 

can be calculated directly from the experiment intensity data) as coefficient instead 

of F(hkl). However, the result cannot be interpreted as a set of atomic positions 

(because no phase information was included in this series), but as a collection of 

interatomic vectors all taken to a common origin (Ladd and Palmer, 1993).  

 

2.9.2 One-dimensional Patterson Function  

The electron density at any fractional coordinates x and x + u is ρ(x) and 

ρ(x+u) respectively. The average product of these two electron densities in a repeat 

length of a, for a given value of u is,  

1

0
A(u)= ρ(x)ρ(x+u)dx∫              (2.42) 

Using 2.38 (in appropriate 1-D form)  

 
1 -i2πhx -i2πh'(x+u)

20
h h'

1A(u)= (h) (h') dx
a ∑ ∑∫ e eF F            (2.43) 

- index h’ lies within the same range as h.   

Equation 2.43 can be write as 

 
1-i2πh'u -i2π(h+h')x

2 0
h h'

1A(u)= (h) (h') dx
a ∑∑ ∫e eF F            (2.44) 

The integral 
1-i2π(h+h')x1 -i2π(h+h')x

0
0

dx =
-i2π(h+h')∫

ee                        (2.45) 

-i2π(h+h')e  is unity, since h and h’ are integers and the integral in general is zero. 

However, for value h’ = -h, the integral becomes indeterminate.  
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→  by substituting h’ = -h before integration,  

 
1

0
dx = 1∫  

From 2.44, for nonzero values of A(u), when h’ = -h,  

 i2πhu
2

h -h

1A(u)= (h) (-h)
a ∑∑ eF F             (2.46) 

Applying the Friedel’s Law 

 F(-h) = F*(h)  

 2 i2πhu
2

h=-

1A(u)= | (h)|
a

∞

∞
∑ eF              (2.47)   

 2 i2πhu 2 -i2πhu
2

h=0

1A(u)= (| (h)| +| (h)| )
a

∞

∑ e eF F                       (2.48)  

From De-Moivre theorem  

 cos2
2

h=0

2A(u)= (| (h)| 2πhu)
a

∞

∑ F             (2.49)  

∴ the corresponding Patterson function P(u) is usually defined as  

 cos2
2

h=0

2P(u)= (| (h)| 2πhu)
a

∞

∑ F             (2.50) 

 

2.9.3 Three-dimensional Patterson Function  

For three-dimensional Patterson function we replace ρ(x) and ρ(x + u) with 

ρ(x, y, z) and ρ(x + u, y +v, z + w) respectively and integrate over a unit fractional 

volume.  

Three-dimensional Patterson Function 

 [ cos ]2

h k lc

2P(u,v,w)= | (hkl)| 2π(hu+kv+lw)
V ∑∑∑ F          (2.51)  

- the summation range, with most general case over a one half of 

experimental reciprocal space.  
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By comparison with 2.41 and 2.51, this is a Fourier series with zero phases and 

|F(hkl)|2 as coefficients. Since |F(hkl)|2 is F·F* from 2.38, 2.51 represent the 

convolution of the electron density ρ(r) with its inversion in the origin ρ(r). In 

practice, 2.51 may be handled like the corresponding electron density equation with 

u, v and w replacing x, y and z but both functions explore the same thing, the unit 

cell.   

 

2.9.4 Positions and Weights of Peaks in the Patterson Function 

 The positions of the peak in the Patterson function P(u, v, w) can be plotted in 

three-dimension by placing each atom of the unit cell of a structure in turn at the 

origin of Patterson space, in parallel orientation  and mapping the positions of all 

other atoms on the Patterson unit cell. By doing this, we can see that all atoms and 

their translation equivalents produce vector peaks lying on the points of a lattice that 

is identical in shape and size to the crystal lattice.  

 

Figure 2.7 – Effects of symmetry-related and symmetry-independent atoms on  
                     the Patterson function (Ladd and Palmer, 1993).  
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Atom 1 at x, y, z and its translation equivalent at 1’, at x, 1+y, z give rise to a vector 

ending at 0, 1, 0 in the Patterson map [see Figure 2.7(a)]. The height of the origin 

peak is given by, 

 2
0

h=0 k l=0c

2P(0,0,0)= | (hkl)|
V

∞

∑∑∑ F             (2.52) 

Generally, 2.52 is equivalent to a superposition at the origin of all N products like 

ρ(xj,yj,zj) ρ(xj,yj,zj), where N is the number of atoms in the unit cell. Since ρ(xj,yj,zj) is 

proportional to the atomic number Zj of the jth atom,  

 
N

2
j

j=1
P(0,0,0) µ Z∑               (2.53) 

A single vector interaction between two atoms j and k (Figure 2.7b) will have 

Patterson peak of height proportional to ZjZk, Hence, the height H(j,k) of this peak 

will be given by 

 
N

2
j k j

j=1
H(j,k) P(0,0,0)Z Z / Z≈ ∑             (2.54) 

where P(0,0,0) is calculated from 2.52. 

In a structure with N atoms per unit cell, each atom forms a vector with the 

remaining N-1 atoms. Thus we will have N(N-1) nonorigin peaks and N superposed 

origin peaks. The Patterson unit cell is the same size and shape as the crystal unit 

cell, but it has accommodate N2 rather than N peaks and is therefore correspondingly 

overcrowded. Therefore, peaks in Patterson space tend to overlap when there are 

many atoms in the unit cell (Ladd and Palmer, 1993).  

 

 

 

 



 23

2.9.5 Sharpened Patterson Function 

 To reduce overlapping, the sharpened Patterson function is used. In a 

conceptual point atom, the electrons would be concentrated at a point. The atomic 

scattering factor curves (Figure 2.4) would be parallel to the abscissa and f  would 

be equal to the atomic number for all values of λθ /)(sin  an at all temperatures. The 

electron density for a crystal composed of point atoms would show a much higher 

degree of resolution compared to real crystal.  

 Figure 2.8 show a plot of the mean value of | 2
0 |F against λθ /)(sin  for 

typical set of data. The radial decrease in 2
0| |F  can be reduced by modifying 

| 2
0 |F by a function which increase as λθ /)(sin increase. The coefficients for 

sharpened Patterson synthesis may be calculated by the following equation,  

 

 
exp sin

2
2 0

mod N2 2
jj=1

| (hkl)|| (hkl)| =
[-2B( θ) / λ]{ f }∑

FF           (2.55) 

N is the number of atoms in the unit cell and B is an overall isotropic temperature 

factor. 2
mod| (hkl)|F  is used instead of | 2

0 |F  for the sharpened Patterson function.  
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2
0| |F

sinθ / λ

 

Figure 2.8 – Effects of sharpening on the radial decrease of the local average 
                     intensity | 2

0 |F  (Ladd and Palmer, 1993).  
 

2.9.6 Location of heavy-atom, Harker Plane, Harker Lines and Patterson 

Superposition  

 If heavy-atom exists in the crystal, it will dominate the scattering of the 

structure factor. Heavy atoms can usually be located by analysis of a Patterson map 

but it is still being influenced by how many heavy–atoms are present and how heavy 

the atom relative to another atoms.  

 In order to determine the location of heavy-atom in Patterson map, we have to 

know the space group of the crystal and also the elements in the crystal. From the 

elements of the crystal, expected approximate relative heights of typical peaks in 

Patterson map can be calculated which will be dominated by “heavy-atom - heavy-

atom” vectors. From the space group, Harker peaks – the interatomic vectors relating 

the symmetry equivalent atom can be obtained. It will be seen that some of the peaks 
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