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STUDIES ON THE PERFOFMANCE OF MILD STEEL-ALUMINA JOINING  
FABRICATED VIA FRICTION WELDING 

 
ABSTRACT 

 
 
Joining of metal-ceramic can be done by different techniques such as brazing, 

diffusion bonding and friction welding. The joint strength of metal and ceramic 

has been studied extensively due to the differences in their mechanical and 

chemical properties. However, the mechanism of metal-ceramic joining has not 

yet fully understood. In this study a 10 mm diameter of mild steel rods were 

friction welded with 10 mm diameter of alumina rods. Aluminum sheets with 

thickness of 0.3 mm, 0.5 mm and 1.5 mm were used as an interlayer. Friction 

and forging pressures of 20 MPa and 40 MPa were applied, respectively. The 

rotational speeds of 900, 1250, 1800 and 2500 rpm were used. The friction 

durations were varied accordingly from 2 s to 20 s with an interval of 2 s. Four 

points bending test was used to measure the strength of the joints. For the 

effect of friction times to the joint strength at various rotational speeds (900, 

1250, 1800 and 2500 rpm), the bending strength is in the range of 50 – 190 

MPa, 90 – 206 MPa, 100 – 195 MPa and 60 – 195 MPa, respectively were 

obtained. For the effect of interlayer thickness to the joint strength, it is obtained 

that the interlayer thickness of 1.0 mm produced the best joint strength for all 

the rotational speeds. The bending strength obtained is in the range of 130 – 

190 MPa, 150 – 195 MPa, 150 – 180 MPa and 150 – 195 MPa, respectively. 

The optimum rotational speed to produce good joint strength for all interlayer 

thickness is 1250 rpm.  The bending strength obtained is in the range of 120 – 

150 MPa, 150 – 195 MPa and 150 – 205 MPa, respectively.  Fracture surface 

analysis was carried out after the bending test. Microhardness and thermal 



 xxi

expansion tests were carried out on the joining sample. Most of the fracture 

occurred at the adjacent interlayer with small amount of alumina part attached 

to the aluminum interlayer. Microhardness test and thermal expansion show 

insignificant changes. By using optical microscope, the interlayer thickness was 

determined. The friction times, initial interlayer thickness and speed rotation 

significantly affected the average thicknesses of the interlayer. The average 

thickness interlayer of 100 to 200 μm produced better joint strength. 

Deformation of the aluminum interface was clearly observed under FESEM. 

Mechanical interlocking and close contact between mild steel-aluminum and 

aluminum-alumina interfaces were observed at magnifications of 2000X. 

Therefore, the strength of alumina-mild steel bonding is much dependent on 

speed rotation, friction time and the thickness of aluminum interlayer. It is also 

much dependent on the wettability of the alumina surface by the partially molten 

aluminum interlayer and the existence of mechanical interlocking between 

interlayer and mild steel. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 xxii

KAJIAN KE ATAS PRESTASI SAMBUNGAN BESI KELULI-ALUMINA YANG 
DIHASILKAN MELALUI KIMPALAN GESERAN 

 
ABSTRAK 

 
 

Sambungan seramik-keluli boleh dilakukan dengan menggunakan pelbagai 

teknik seperti pateri keras, ikatan resapan dan kimpalan geseran. Kajian 

tentang kekuatan sambungan keluli dan seramik telah banyak dilakukan kerana 

perbezaan sifat mekanikal dan kimianya. Walau bagaimana pun, mekanisma 

sambungan keluli-seramik ini masih belum difahami sepenuhnya. Dalam kajian 

ini rod keluli berdiameter 10 mm disambungkan dengan rod alumina 

berdiameter 10 mm secara kimpalan geseran. Kepingan aluminum 

berketebalan 0.3 mm, 0.5 mm, 1.0 mm dan 1.5 mm digunakan sebagai bahan 

pengantara. Tekanan geseran dan tekanan tempaan yang digunakan ialah 20 

MPa dan 40 MPa. Laju putaran iaitu 900, 1250, 1800 dan 2500 pusingan per 

minit telah digunakan. Tempoh geseran yang digunakan ialah dari 2 hingga 20 

saat dengan selang masa selama 2 saat. Ujian lenturan empat titik digunakan 

untuk mengukur kekuatan sambungan. Untuk kesan masa geseran kepada 

kekuatan sambungan pada pelbagai laju putaran (900, 1250, 1800 dan 2500 

ppm), didapati kekuatan lenturan adalah dalam julat 50 – 190 MPa, 90 – 206 

MPa, 100 – 195 MPa dan 60 – 195 MPa. Untuk ketebalan pengantara kepada 

kekuatan sambungan, adalah didapati bahawa pengantara berketebalan 1.0 

mm menghasilkan kekuatan sambungan yang terbaik bagi semua laju putaran. 

Kekuatan lenturan didapati dalam julat 130 – 190 MPa, 150 – 195 MPa, 150 – 

180 MPa dan 150 – 195 MPa. Laju putaran yang optimum untuk menghasilkan 

kekuatan sambungan yang baik untuk semua ketebalan pengantara ialah 1250 

ppm. Kekuatan lenturan didapati masing-masing dalam julat 120 – 150 MPa, 



 xxiii

150 – 195 MPa dan 150 – 205 MPa. Analisis permukaan patah dilakukan 

selepas ujian lenturan. Ujian kekerasan mikro dan pengembangan terma juga 

dilakukan ke atas sampel sambungan. Kebanyakan patah berlaku berdekatan 

pengantara dengan sebahagian kecil alumina terlekat pada pengantara 

aluminium. Ujian mikro kekerasan dan pengembangan terma menunjukkan 

tiada perubahan yang penting berlaku. Dengan menggunakan mikroskop optik, 

ketebalan pengantara ditentukan. Masa geseran, ketebalan awal pengantara 

dan laju putaran memberikan kesan yang penting kepada ketebalan purata 

pengantara selepas sambungan. Ketebalan purata pengantara di antara 100 

hingga 200 μm menghasilkan kekuatan sambungan yang baik. Ubahbentuk 

antaramuka aluminium dapat dilihat dengan jelas dengan menggunakan mesin 

pengimbas elektron. Kekunci mekanikal dan keadaan sentuhan yang rapat di 

antara keluli-aluminium dan aluminium-alumina dapat dilihat pada pembesaran 

2000X. Kekuatan sambungan antara keluli-alumina banyak bergantung kepada 

laju putaran, masa geseran dan ketebalan pengantara aluminium. Kekuatan 

sambungan juga bergantung kepada keupayaan leburan aluminium membasahi 

permukaan alumina dan kewujudan kekunci mekanikal antara bahan 

pengantara dan keluli. 
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CHAPTER 1 
INTRODUCTION 

 
 
1.1 Metal-Ceramic Joining via Friction Welding  
 

The advancement of engineering and technology to meet future 

requirements in many diverse fields demands the development of new ceramic 

materials. No single ceramic material can meet all needs and consequently 

many different types of material require further investigation to meet that 

specific requirement. Ceramics and metals are the oldest established 

engineering materials. Ceramics have some attractive properties compared to 

metals and polymers, which make them useful for specific applications. Based 

on their physical, mechanical, thermal, electrical and chemical properties, 

ceramic materials have been utilized for many applications. 

 

Structural ceramics have some superior properties compared to metals 

but they are difficult to machine due to their brittleness. In order to avoid the 

processing limitations, some form of joining is usually employed to form the final 

component. Therefore, ceramic/metal joints become more and more important 

in modern technology because of the unique combination of properties of 

metals like ductility, high electrical and thermal conductivity and the properties 

of ceramics like high hardness, high temperature strength, low thermal 

expansion, corrosion resistance and excellent wear resistance. 

 

Friction welding is widely used for joining similar and dissimilar metals 

but for joining ceramics to metals is very challenging and requires very 

systematic experiments. Extensive efforts have been devoted to investigate the 
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appropriate processes to join dissimilar materials. There are some reports on 

the friction welding of ceramics to metals. Kanayama et al. (1985) carried out 

the experiments on the joining of two cylindrical bars and also tubes of 95 % 

alumina to each other using friction welding. Among the most extensive study 

was carried out by Essa and Bahrani (1991) which come out with the friction 

welding of aluminum alloy and alumina. 

 

Ikeuchi et al. (1992) tried an attempt on the friction welding of ceramics to 

metals with the aid of intermediate layer of active metals. The ceramics and 

metals employed were a pressureless-sintered silicon carbide and a 

commercially pure nickel. Tsuchiya et al. (1994) studied the mechanical 

properties and the optimum fabricating condition of the alumina dispersed 

copper alloys to stainless steel joint which fabricated through friction welding. 

Furthermore, the influence of various parameters on the strength of friction 

welded ceramics-metals joint was examined by the finite element method (FEM) 

in combination with Weibull statistics [Weiss and Sassani, 1998]. 

 

Lin et al. (1999) investigated that the effect of joint design and volume 

fraction on friction welding properties of A360Al/SiC composites. The results 

show the design with lead angle-plane surface was achieved better joint 

strength compared to the design with plane-plane surface contact. Meanwhile, 

Ellis et al. (1994) indicated that the joint strength of 2648Al/14 % SiC particulate 

composites is about 380 N/mm2 with friction welding. 
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Since there are only very limited information has been reported on the 

application of the intermediate layer to friction welding, therefore Nishimoto et 

al. (2000) investigated the friction welding of silicon carbide to oxygen-free 

copper with an intermediate layer of reactive metals. They found that when a 

thin foil of reactive metals i.e. Al, Ti, Zr, or Nb, respectively, was applied as the 

intermediate layer, the bond strength of SiC to Cu was improved considerably. 

In contrast, when an intermediate layer of non reactive metals such as Fe, Ni, or 

Ag, respectively, was applied, the SiC specimen separated from the Cu 

specimen immediately after the bonding operation without the application of 

external load. 

 

1.2 Problem Statement 

Joining dissimilar materials has been long investigated through the 

combination of glass/metal, glass-ceramic/metal or ceramic/metal. Most of the 

time, joining different materials is not an easy task due to the different classes 

of atoms, ions or molecules in materials. When joining this dissimilar materials, 

it is implies in property mismatches and structure discontinuities, which must be 

accounted for and minimized it. 

 

Nowadays, there are several joining techniques of ceramics and metals 

have been developed. The most widely used method for joining ceramics to 

metals are brazing and diffusion bonding [Essa and Bahrani, 1991; Weiss and 

Sassani, 1998, and Mei and Xiao, 1999]. Brazing the oxide ceramics depends 

on the wetting and reactions with solid ceramic surfaces by liquid filler metal to 

produce bonds. A major problem of brazing an oxide ceramic with metal is the 
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resistance to wetting caused by the oxides on the surface of the ceramic 

[Chakravarty and Gupta, 2003].  

 

Conventional joining methods either brazing or typically diffusion bonding 

require joining temperatures that exceed the ultimate use temperature of the 

joining assembly. If the intended use temperatures are high, the required joining 

temperatures are thus even higher. At these elevated joining temperatures, 

many metals will react with ceramics to form reaction layers that are often brittle 

[Locatelli et al., 1997]. It has been pointed out in several papers that in ceramics 

to metals joining by brazing and diffusion bonding, an excessive thickness of 

the reaction layer has a detrimental effect on the joint strength [Nishimoto et al., 

2000]. 

 

Since brazing and diffusion bonding processes facilitate with heating 

cycle, therefore when longer heating cycle (> 30 min) are encounter, relatively 

brittle joints may be formed [Roulin et al. 1999]. Shen et al. (2004) indicated that 

the oxide film can newly form during heating periods. A slight increase in the 

contact angle is generally observed during the subsequent heating or dwelling 

period. Indeed, the increase in contact angle would produce less wetting on the 

ceramic surfaces and finally produced the lower joint strength. 

 

Active metal brazing requires a stringent firing atmosphere, either high 

vacuum or reducing gas conditions to prevent the active species. This 

represents a high capital expense and higher operating cost. In addition, recent 

studies on the oxidation behavior of active metal brazes have shown that they 
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are unreliable at temperature beyond 500 ºC, at which point they eventually 

oxidized completely, conferring little or no strength to the joint [Jin et al., 2004;  

Kim and Yoo, 1997]. 

 

In order to overcome those problems mentioned above, friction welding 

can be regarded as the ultimate technique for producing high integrity joints. It 

could be an interesting and cost effective alternative, provided that the strength 

of friction welded joints reaches or exceeds the strength of those joints 

produced by other techniques [Weiss and Sassani, 1998]. 

 

Deformation of the specimen is largely restricted to the volume of 

material adjacent to the original interface by an adiabatic shear process 

[Spindler, 1994]. Friction welding is used because of energy is produced in the 

specimen after opposite friction, resulting in less input energy, the heat affected 

zone (HAZ) is more narrow and hard, brittle intermetallic compounds are not 

easily produced, thus increasing the welding strength [Lin et al., 1999]. Friction 

welding has been proven practical to eliminate the formation of the intermetallic 

phases and to form a sound weld [Sundaresan and Murti, 1993; Fukumoto et 

al., 1997; Fukumoto et al., 1998]. 

 

Some of the advantages of friction welding are high in material saving, low 

production time and being possible of welding of different metals or alloys 

[Sahin and Akata, 2003]. Since friction welding can be achieved at high 

production rates, therefore it is economical in operation [Yilbas, 1995]. 

Protective atmosphere is unnecessary. 
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Common to all Al alloys is that an Al2O3 layer on the Al weld component 

initially acts as a barrier to producing a bond. However, this layer is broken by 

the strong deformation occurring as a result of high rotational speeds and 

pressures, allowing for an oxide-free surface of the aluminum component to be 

welded [Yilmaz, 2003]. 

 

Fukumoto et al. (1997) indicated that materials such as aluminum or 

stainless steel have stable oxide films or contamination on the faying surfaces. 

The diffusion bonded in the solid condition should be held at a high temperature 

for a long time under uniaxial pressure to eliminate the stable oxide films. As a 

result, brittle intermetallic compounds are also formed and grow at the interface 

during the process. Meanwhile, friction welding is basically a solid state bonding 

process where the oxide films are eliminated within a few seconds owing to the 

rubbing together of the materials creating fresh contact surfaces. 

 

Friction welding could avoid the formation of a liquid phase during the 

welding process and therefore can be carried out in air.  The surfaces are joined 

in a plastic condition at hot forming temperatures. The typical defects caused by 

melting and solidification such as pores, pinholes, shrinkage cracks, 

segregation, grain coarsening and cast structure are therefore avoided and the 

risk of gas pickup is low due to the short welding cycle [Daymond and Bonner, 

2003]. 
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Therefore, in this study, the joining of metal to ceramic is between mild 

steel and alumina. The mild steel and alumina rod are selected for this study 

because of the cost of mild steel is cheaper compared to stainless steel, 

copper, titanium rods etc. Meanwhile, the alumina rod is prepared through slip 

casting is due to the price of commercial alumina rods are too expensive. The 

other reason for these selective materials is to produce base data system of the 

metal-ceramic joining through friction welding technique since there is still not 

be produce by other researchers. 

 

1.3 Objectives of the Research 

Since friction welding widely used to join metal-metal in a wide range of 

applications, therefore the introducing of friction welding of mild steel-alumina 

give an alternative method of mild steel-alumina joining. There are not many 

researchers work in this field; therefore this study will focus on the performance 

of the mild steel-alumina joint including the strength of the joint, factors that 

determine to the successful joint etc. The objectives of this research are: 

 

(i) To study the optimum parameters i.e. friction times, interlayer thickness, 

rotational speeds at the constant friction and forging pressures to produce the 

maximum joint strength. 

 

(ii) To study the effect of different specimen diameters to the strength of the 

mild steel-alumina friction welded. 
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(iii) To study the correlation between microstructural and interlayer thickness 

with the strength of the mild steel-alumina joint. 

 

1.4 Research Approach 

This research was divided into two stages; firstly, the sample preparation 

and secondly is the joining process. In the first stage, the ceramics rods were 

prepared through slip casting and the mild steel rods were machined into 

required diameters. Figure 1.1 shows the flowchart of the whole process in this 

research. 

Stage I     Mild Steel         Alumina 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 1.1: Flowchart of research stage I, raw materials preparation. 
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Figure 1.2: Flowchart of research stage II, friction welding process. 
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CHAPTER 2 
LITERATURE REVIEW 

 
 
2.1 Introduction 
 

Ceramic materials have many applications in engineering technology. 

History of ceramics art was begun in the Neoithic age about 5000 years BC in 

Asia Minor, about 4000 years BC in Egypt and about 3000 years BC in Europe. 

The improvement of technologies in the development of ceramics industry has 

upgraded the ceramic products into commercial sector. The distinguishes 

applications between traditional ceramics such as tableware, pottery, sanitary 

ware, tiles or bricks and advanced ceramics where depending on the properties 

for the specific application such as high strength at high temperatures, wear 

resistance, corrosion resistance etc. Indeed the advanced ceramic had offered 

excellent physical and mechanical properties for structural applications.  

 

The major drawback of ceramics is the brittleness, i.e. failure without 

preceding plastic deformation. Another disadvantage is the large scatter in 

strength, which is caused by the brittleness and the scatter in the defect size. 

Both properties have to be considered in the design of ceramic components. In 

comparison with metals which are well known design criteria with wide range 

applications in industry. Therefore, further specific aspects have to be taken into 

account when selecting ceramic materials for a specific application and 

designing ceramic components. 

 

In many technological branches, the demands to the materials used are 

ever rising. Therefore, one single material type is often not enough to meet 
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these requirements and, therefore, combinations of materials with different 

properties are required [Kohnle et al., 2002]. One interesting combination 

consists of metal and ceramic in order to combine ductility, high electrical and 

thermal conductivity with high strength and chemical inertness. This joining of 

materials is an important process commercially and technologically [Lee et al., 

2001]. However, significant differences in chemical and physical properties 

between them make it extremely difficult to find an effective joining process that 

maintains the strength and resilience of the joint [Kim et al., 2003]. To overcome 

these difficulties, there are several joining techniques that have been developed 

to join ceramics for structural applications. Finally, having different materials at 

different regions of the same component is desirable for several applications. 

Joining to form these components is often the only way for fabrication. 

Metal/ceramic joints are used for example in automotive industry, cutting tools, 

turbine blades or dental implants. 

 

2.2 Metal-Ceramic Joining 

Metal-ceramic joining has been the subject of much development 

research over the years. In principle many techniques could be used to join 

metals to ceramics, ranging from welding to mechanical attachment. New 

joining methods and newer approaches to conventional methods have been 

developed over the years aiming at improved reliability. The availability of 

reliable metal-ceramic joining processes and its effect on the expansion of the 

structural ceramics market to large scale use in a quite establish concept 

[Paulasto and Kivilahti, 1998; Peteves et al., 1998]. Broadening the use of 

joining technology to new devices as well as improving joining to specific 
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applications has always been the major goal [Chuang et al., 1990; Rijnders and 

Peteves, 1999]. 

 

Engineering ceramics have been known over the past decades for 

having superior properties in comparison with metals namely, refractoriness, 

high wear resistance, lower density, low electrical and thermal conductivities, 

superior resistance to corrosion, high elastic modulus, and low coefficient of 

thermal expansion. Ceramics are ionically or covalently bonded inorganic and 

nonmetallic compounds of carbon, oxygen, nitrogen, boron and silicon. 

Because of the ionic and covalent bonding, they have relatively excellent 

properties as mentioned earlier [Mangonon, 1998]. Ceramic technologies have 

been widely used for aircraft and aerospace applications, wear-resistant parts, 

bioceramics, cutting tools, advanced optics, superconductivity, nuclear reactor, 

etc [Rosso, 2006]. The superior materials, however do suffer from drawbacks 

such as poor toughness and high expense, which are at present limiting their 

industrial applications. Meanwhile, metals in general are strong, ductile, and are 

good thermal and electrical conductivity, but they are typically not well suited for 

high temperatures, are prone to corrosion and chemical attack, and shrink or 

expand significantly with temperature changes. Therefore, metals and ceramics 

each have their advantages and disadvantages.  

 

In most engineering fields, the application of ceramics is often restricted 

by the availability of an adequate joining technique. Most of the time, joining 

different materials is not an easy task. Atoms, ions or molecules in materials of 

different classes (ceramic, metal or polymer) are joined together in different 
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ways and therefore characterized by particular combinations of physical-

chemical and mechanical properties [Nascimento et al., 2003]. The vast majority 

of joining processes involves heating of the couple. Upon cooling of the joint, 

mismatches in elastic modulus and thermal expansion coefficient often result in 

the development of residual stresses and retarded the mechanical strength of 

the joint. The key to a successful joint with dissimilar materials is the design of 

buffer interfaces capable of accommodating materials dissimilarities originated 

from different chemical bonds and properties [Paiva and Barbosa, 2000; 

Suganuma, 1993]. 

 

The joining of metal to metal has been established for a long time using 

various techniques, such as welding and brazing. Recently, new methods of 

ceramic–metal joining are being studied because of the increasing use of 

ceramics. There are several joining techniques of ceramics and metals such as 

mechanical joining, adhesive joining, friction welding, high energy beam 

welding, microwave joining, ultrasonic welding, explosive welding, reaction 

joining, combustion reaction joining, field assisted bonding, brazing, diffusion 

bonding, transient liquid phase bonding (TLPB), partial transient liquid phase 

bonding (PTLPB), etc [Zhang et al., 2006]. 

 

Many methods have been developed for ceramics to metals joints as 

mentioned above and each of these is useful for certain applications. As a 

correspondence, the application environments of materials or instruments 

become much more complex and critical. Many materials have to be applied in 

high temperatures, high pressures, high speeds or high erosive situations. So 
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the demand for improving the joining performances becomes more and more 

urgent since the quality of joining has a crucial influence on the application of 

materials or instruments in safety in the above situations [Jigang et al., 2006]. 

Reliable joining technologies are essential for full exploitation of the properties 

of the ceramics and for the success of the overall structure [Park et al., 2002]. 

 

2.2.1 Mechanical Fastening 

Mechanical joining methods are often based on localized, point-

attachment process, in which the join is provided by a nail, a rivet, a screw, a 

clamp, a bolt or fastener. All such joints depend on residual tensile stress in the 

attachment to hold the components in compression. Many mechanical joints are 

design for ease of assembly and disassembly such as bolts joints. Typical 

mechanical strength of the joints varies from 10 to 50 MPa [Nascimento et al., 

2003]. 

 

Mechanical joining and adhesives with organics and cements have been 

widely used because of their ease and inexpensiveness. Mechanical joining has 

a variety of processes. For example, bolting and clamping are the simplest 

methods. The shrunk-in inserts was applied for the part of production of the 

turbocharger-rotor. The rocker arm chip made of silicon nitride was inserted in 

an aluminum die-cast arm. Thus mechanical joints can have heat resistance up 

to about 773 K. For the adoption of these methods, it is important to note that 

the mechanical joining sometimes accompanies a severe stress concentration 

and that ceramics is weak especially for tensile stress. Although the 

conventional adhesives can produce low strength below 20MPa generally, the 
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organic adhesive which has adhesive tensile strength of' about 80 MPa became 

commercially available recently.  

 

However, mechanical joint is not a generally attractive process for joining 

structural ceramics because of the frequent necessity for introducing intrusive 

stress-raising features such as threads or bolt holes, and the low strengths and 

lack of hermeticity of the joints [Nicholas, 1990]. 

 

Characteristic features of mechanical fastening include [Giles and Davis, 2004]: 

 

• A heating cycle is generally not applied to the components being joined. 

• This method usually requires special mechanical preparation, such as 

drilling hole, machining screw threads or chamfering abutting surfaces. 

• The choice of suitable joint configurations is highly dependent on service 

conditions. 

• The reliance on local stressing to effect joining requires thickening or 

some other means of reinforcement of the components in the joint region. 

This place is a severe restriction on the joint geometries that may be 

used and imposes a weight penalty on the assembly. 

 

2.2.2 Brazing 

Brazing is a joining process that has proven to be one of the most 

versatile methods to join different kinds of metals or ceramics materials 

together. It is used in a variety of industries as diverse as aerospace and 

automotive. The successful performance of such systems depends on the 
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quality and reliability of the ceramic-to-metal joints [ElSawy and Fahmy, 1998]. 

Brazing is define as a process intended to permanently join two or more metals 

or materials together to form a single assembly by heating them in the presence 

of a filler metal that begins to melt above 450 ºC. The liquid filler metal is then 

drawn into the gap between the closely fitted faying surfaces of the joint by 

capillary action. The base or parent materials (ceramics or metals) are not 

melted. Dissimilar metals that cannot be joined by a traditional welding process, 

because of their metallurgical incompatibilities or complex geometry, can be 

brazed successfully.  

 

Two basic mechanisms are involved in bond formation, by wetting the 

surfaces with the braze alloy, and consequent interface reaction with the two 

surface layers of some micrometer thickness. If these layers increase in 

thickness the bond strength of the joints may be degraded, promoting failure by 

interfacial stresses due to thermal expansion mismatch. Brazing is well known 

in metallic bonding but is also one of the most promising methods of ceramic-

metal joining because of its relatively non-stringent joint tolerance requirements 

and because ductile brazes are able to accommodate the thermal expansion 

mismatch occurring in a dissimilar joining system. The poor wettability of 

ceramic may be improved by the use of alloys containing an element capable of 

modifying the chemistry of the ceramic surface (active braze). Generally, Ag-Cu 

eutectic alloys containing small percentages of active metal (Ti, V, Nb, Ta), are 

used as braze materials [Lee et al., 1995]. 

 



 17

The foremost challenge of making metal-to-ceramic joints rests with 

accommodating the thermal expansion mismatch between metal substrate 

materials and the engineered ceramics, and minimizing the resulting residual 

stresses [Vianco et al., 2002]. For joining ceramics to metals by brazing, the 

wettability and reactions of filler to ceramics is a key factor. In order to improve 

the wettability, the used of mixed active elements into filler which are Ni, Al, Ti, 

Hf, Th, V, Nb, Ta, Cr etc. These active elements can react with ceramics to form 

a reaction layer and then achieve strong chemical bonding between ceramics 

and metals [Loehman and Tomsia, 1988]. In stead of using active elements, the 

content of them must be reasonable, unless the increased of brittleness of the 

joint occurred.  For example, the content of titanium in Ag-Cu-Ti filler is in the 

range of 1.5 % - 5.0 % [Zhang et al., 2006]. Since the filler Ag-Cu-Ti is used to 

join ceramics and metals successfully, the joint has less defects and higher 

joining strength at low temperature, where a maximum service temperature of 

only 400 – 500 ºC. 

 

Brazing with filler metals is an attractive process for joining structural 

ceramics for many applications.  Most ceramics have problem in wetting 

conventional brazing filler metals.  The other technique to solve problem was 

either by coating [Włosiñski et al., 2000] the ceramic surface with a suitable 

metal layer prior to brazing (indirect brazing) or through the use of specially 

formulated filler metals that wet and adhere directly to an untreated ceramic 

surface (direct brazing).  For indirect brazing, the ceramic is first coated in the 

joint area with a material that can be wetted by filler metal that does not wet the 

untreated surface.  Coating techniques include sputtering, vapor plating, and 
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thermal decomposition of a metal-containing compound such as TiH4 [Weiss 

and Adams, 1967; Ramsey and Lewis, 1985].  Alumina ceramics can be joined 

with this technique with molybdenum-manganese (Mo-Mn) coating [Moorhead 

and Kim, 1991].   

 

Direct brazing requires the enhancement of both wetting and adherence 

of active metals to ceramics without the need for coating the ceramic surface.  

Whether the ceramic is an oxide, carbide or nitride, the active metal reacts with 

the ceramic surface, forming an interfacial layer that can be wetted by the bulk 

of the filler metal.  Titanium is the widely used active element addition to filler 

metals formulated to braze directly high melting oxide ceramics [Nicholas, 1986; 

Lee and Yu, 1995; Brochu et al., 2004].  The critical interfacial reaction product 

in the case of oxide ceramics brazed with Ti-containing filler metals is either TiO 

or Ti2O3 with appreciably higher adhesion in systems that result in the formation 

of TiO [Nicholas, 1986].  Moreover, mullite and ZrO2-toughened mullite (ZTM) 

were joined with Ag-Cu eutectic braze alloys that contain Ti or Zr as active 

elements with the resulting four-point bend strength of 108 MPa [Loehman, 

1994].  

 

Not only has active metal been used as the filler materials for brazing, 

but brazing with nonmetallic glasses as filler materials has been studied with 

structural ceramics, such as alumina, Partially Stabilized Zirconia (PSZ), Si3N4, 

and sialon [Zdaniewski, 1987; Milberg, 1987; Baik and Raj, 1987].  The 

rationale for this approach is that many ceramics have amorphous phases 

remaining at the grain boundaries after the sintering process, so they would be 
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expected to be wet by, and compatible with, similar glassy materials, introduced 

at the joint.  However, this joining technique has a problem where some of the 

glasses, even those formulated to match the grain-boundary composition of a 

specific ceramic, have coefficients of thermal expansion significantly different 

from those of the ceramics, which can cause high residual stresses and 

cracking in the joint.  The most extensive studies on brazing with glasses have 

been those on Si3N4.  The glasses include those similar to that found at the 

grain boundaries of a hot pressed Si3N4 [Johnson and Rowcliffe, 1985].   

 

In brazing technique, there are a few factors that must take into 

consideration in choosing the fabrication conditions to be employed to braze a 

ceramic component. There are three the most important criterions: surface 

preparation, environment and thermal cycle [Nicholas, 1990]. 

 

2.2.2.1 Surface Preparation 

Surface preparation methods for metal components prior to their brazing 

to ceramics are well established. There is clear evidence that surface 

roughness affects wetting and flow behavior during brazing. The roughness of 

metal surface can be varied by machining or abrasive operation such as milling, 

grinding and polishing. Chemical treatments are used to ensure that metal 

surfaces are not coated by thick oxide films. Meanwhile, the thin films will reform 

virtually instantaneously. The surfaces are then treated with degreasing agents 

to remove organic contaminants that could degrade to form carbonaceous layer 

during brazing. 
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The roughness of the ceramic surfaces can also affect wetting and flow 

behavior. Normally the rougher surfaces will degrade wettability. Ceramic 

component surfaces generally have to be ground to produce a surface 

roughness but sometimes can also nucleate cracks which degrade mechanical 

properties [Kay, 2003].  

 

2.2.2.2 Environment 

The environment in which active metal brazing is conducted is of 

considerable important. In most operations a vacuum is employed to achieve 

low oxygen and nitrogen activities, with furnace pressures of less than 10-3 

mbar being recommended and vacuum of 10-4 – 10-5 mbar being employed 

when possible [Jadoon et al., 2004]. Therefore, in determining the conditions to 

be used and then controlling them, it is useful to monitor not only the vacuum 

level but also the partial pressures of the residual gasses. 

 

2.2.2.3 Thermal Cycle 

The thermal cycle can be closely controlled and hence its selection is 

particularly important. The specific heating rates employed will depend upon the 

capabilities of the equipment and the size and geometry of the specimen. In 

practice, the using of resistance furnace which heating and cooling rates may 

be restricted by the need to avoid thermal shock to large components [Nicholas, 

1990]. 

 

A common and often successful heating process is moderately slowly 

with 10 – 20 Kmin-1, to a temperature just below the braze solidus and to hold 
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for at least 15 minutes to ensure uniformity of temperature within the specimen 

[Wan Jaafar et al., 2002]. This subsolidus hold is then followed by even slower 

heating to the brazing temperature, which is often 323º K or more above the 

liquidus, and the hold for about 30 minutes. The slow heating rates which about 

1 – 5 Kmin-1 helps to maintain temperature uniformity throughout the component 

and to avoid premature flow of the more readily melted [Jadoon et al., 2004]. 

The long dwell time at the brazing temperatures relates to the usually poor 

liquidity of brazes or the need for them to react with the specimen. 

 

2.2.3 Diffusion Bonding 

Diffusion bonding of metal has a long history. It was one of the first 

joining technologies developed by man and examples of artifacts fabricated in 

this manner have been discovered in very early sites of metal working [Derby, 

1990]. Diffusion bonding is a joining process in which two nominally flat 

surfaces are held together at an elevated temperature (typically above 60% of 

the melting point of the least refractory materials) for a period of time until a 

bond is formed. It is a solid-state joining process that capable of joining a wide 

range of metal and ceramic combinations to produce both small and large 

components. This joining technique needs generally the use of a metallic 

interlayer, which can interact with the ceramic part during the bonding process 

[Raevska, 1998]. The properties of the joint at high temperature depend on 

many factors, such as the thermal expansion mismatch between ceramic and 

interlayer material, or the reactivity of both materials at high temperature 

[Beaume et al., 2003]. 
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In its simplest form, diffusion bonding involves holding pre-machined 

components under load at an elevated temperature usually in a protective 

atmosphere or vacuum. The loads used are usually below those which would 

cause macrodeformation of the parent materials and temperatures of 0.5 - 0.8 

Tm (where Tm = melting point in Kelvin) are employed. Times at temperature can 

range from 1 to 60 minutes, but this depends upon the materials being bonded, 

the joint properties required and the remaining bonding parameters. Although 

the majority of bonding operations are performed in vacuum or an inert gas 

atmosphere, certain bonds can be produced in air. The bonding temperature 

influences yield strength and atomic diffusion of the alloys; therefore, it 

influenced the homogeneity of the composition and microstructure of the joint 

[He et al., 2002].  

 

Bonding in the solid phase is mainly carried out in vacuum or a protective 

atmosphere, with heat being applied by radiant, induction, direct or indirect 

resistance heating. Pressure can be applied uniaxially or isostatically. In the 

former case, a low pressure (3 – 10 MPa) is used to prevent macrodeformation 

of the parts (i.e. no more than a few percent). This form of the process therefore 

requires a good surface finish on the mating surfaces as the contribution to 

bonding provided by plastic yielding is restricted. Typically surface finishes of 

better than 0.4 µm are recommended and in addition the surfaces should be as 

clean as practical to minimize surface contamination.  

 

In hot isostatic pressing, much higher pressures are possible (100 – 200 

MPa) and therefore surface finishes are not so critical, finishes of 0.8 µm and 
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greater can be used. A further advantage of this process is that the use of 

uniform gas pressurization allows complex geometries to be bonded, as against 

the generally simple butt or lap joints possible with uniaxial pressurization. 

 

Since the diffusion bonding conducted at high temperatures and under 

high pressures [Peteves, 1996], the components fabricated are typically limited 

to simple shapes. Reaction bonding, also a high temperature joining process, 

often yields joints that contain residual porosity, unconverted reactants and 

undesired secondary product phases, any of which can reduce joint strength by 

acting as sites for crack initiation [Lewinsohn et al., 2000; Maeda et al., 2003]. 

Joints formed by converting a polymeric precursor to the final ceramic bonding 

phase often experience cracking during processing because of the large 

volumetric shrinkage that accompanies pyrolysis [Jin et al., 2004]. 

 

Diffusion bonding is an important fabrication technique for making 

components in electronic, nuclear and aerospace industries. This technique 

provides novel joining operation for similar and dissimilar materials without 

gross microscopic distortion and with close dimensional tolerance [He and Liu, 

2006]. The knowledge of diffusion behavior is of interest for production of these 

materials and for their practical use [Nakajima et al., 1996]. This method has 

already proved considerable potential for joining of Ti and Al base alloys [Salehi 

et al., 1992; Wang et al., 1996; Huang et al., 1998]. Joining of varieties of 

dissimilar and similar materials has already been carried out by diffusion 

bonding, though many of the parameters of the thermomechanical processing 
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are yet to be established on commercial scale [Tortorici and Dayananda, 1998; 

Calvo et al., 1988; Nakao et al., 1991; Eckman et al., 1992].  

 

Diffusion bonding is considered as an advantageous technique for 

producing that type of joint since high-temperature mechanical resistance and 

defect-free interfaces can be achieved. The main drawback of this technique is 

the high magnitude of thermal stresses across the interface, typical of this kind 

of joints, resulting from the high temperatures used to produce the joint and the 

difference in thermal expansion coefficients of the components [Breme et al., 

1998; Abed et al., 2001; Park et al., 2002]. However, when compared to other 

joint technologies, as active metal brazing, diffusion bonding does not involve 

the introduction of foreign chemical elements in the interface, which is built by 

the reaction/diffusion/dissolution of the elements constituting the components to 

be joined. This can be advantageous from the point of view of corrosion 

resistance of the joint because no unfamiliar chemical elements are brought to 

the system. It should be stressed that when bearing in mind biomedical 

applications, practical applications of such metal/ceramic interfaces may be 

found in a wide variety of devices ranging from external or implantable sensors 

to dental implants. For these applications, corrosion resistance becomes a 

particularly important characteristic to be considered [Rocha et al., 2003]. 

 

In general, metal/ceramic interfaces presents different layers, which have 

very small dimensions and complex variations in chemical compositions 

between them. As a consequence, the electrochemical characterization of the 

whole interface becomes very difficult, as well as the understanding of the 
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