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QB   Reboiler heat load(kW) 

QC   Heat removed in condenser (kW) 

qi   Relative molecular surface area 

R   Positive-definite weighing matrix 

r   Regressor mean vector in sigmoidnet function 

   Regressor means in wavenet function 
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ri   Relative molecular volume 

S   Positive-definite weighing matrix 

T   Temperature (K) 

t   time (min) 

Tc   Critical temperature (K) 

tf   Final time (min) 

Tr   Reduced temperature 

u   Manipulated input 

u(k)   Scalar input (manipulated variable) 

U(k)   Vector of manipulated input variables 

u1   First manipulated input (Reflux flow rate) 

u1(k)   Input to the first nonlinear static block of the Hammerstein  

   model 

u1(k-1), u2(k-1) Past input regressors  

u1max    Maximum value of the reflux flow rate 

u1min   Minimum value of the reflux flow rate 

u2   Second manipulated input (Reboiler heat load) 

u2(k)   Input to the second nonlinear static block of the Hammerstein 

   model 

u2max   Maximum value of the reboiler heat load 

u2min   Minimum value of the reboiler heat load 

us    Steady-state input  

∆u1max   Maximum value of rate of change of reflux flow rate 

∆u1min    Minimum value of rate of change of reflux flow rate 

∆u2max   Maximum value of rate of change of reboiler heat load 

∆u2min    Minimum value of rate of change of reboiler heat load 

Vc   Critical molar volume (cm3/mol) 

VN   Nth tray vapor flow rate (l/min) 

VNF   Feed tray vapor flow rate (l/min) 

x(k)    Output of the nonlinear static block 

X(k)   Vector of state variables 

x1(k)   Output of the first nonlinear static block of the Hammerstein 

   model 
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x2(k)   Output of the second nonlinear static block of the   

   Hammerstein model 

xB    Bottom product composition 

XBj   Liquid mole fraction of jth component in bottom product 

xD    Top product composition 

xDj   Liquid mole fraction of jth component in distillate 

xij   Liquid mole fraction of jth component in ith stage 

Xm   Mole fraction of group m in the mixture 

ŷ   Predicted output 

y(k)    Output of the linear dynamic block 

y(k)   Scalar output (response variable) 

Y(k)   Vector of controlled output variables 

y1(k-1), y2(k-1)  Past output regressors 

y1max    Maximum value of the top product composition 

y1min    Minimum value of the top product composition 

y2min    Minimum value of the bottom product composition 

y2max     Maximum value of the bottom product composition  

yij   Vapor mole fraction of jth component in ith stage 

ys    Steady-state response 

Zc   Critical compressibility factor 

ZF   Feed composition 

zF,j   Mole fraction of jth component in feed 

 

Greek letters 

 

θm   Area fraction of group m 

Ψmn   Group interaction parameter 

φ   Fugacity coefficient 

γ   Activity coefficient 

ω   Acentric factor 

ΩT   Ellipsoidal or polytopic set 

ωgc    Gain crossover frequency 

ωpc    Phase crossover frequency  
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KAWALAN RAMALAN MODEL TAK LELURUS BAGI TURUS 

PENYULINGAN MENGGUNAKAN MODEL HAMMERSTEIN DAN 

MODEL AUTO MUNDUR TAK LELURUS DENGAN MASUKAN LUAR 

KAWALAN 

 

ABSTRAK 

 

Turus penyulingan adalah unit proses penting dalam industri penapisan 

petroleum dan kimia. Ia perlu dikawal hampir dengan keadaan-keadaan pengendalian 

yang optima demi insentif-insentif ekonomi. Kebanyakan turus penyulingan industri 

pada masa kini dikawal oleh pengawal berbilang gelung yang berasaskan model-

model lelurus yang mengakibatkan beberapa kekurangan. Skim kawalan berasaskan 

model tak lelurus merupakan salah satu pilihan terbaik untuk diselidiki bagi 

mencapai pengawalan turus penyulingan yang baik. Dalam kerja ini, dua skim model 

ramalan kawalan tak lelurus (NMPC) yang menggunakan model Hammerstein dan 

model NARX telah dibina untuk mengawal turus penyulingan. Turus penyulingan 

perduaan untuk pemisahan metanol-air telah digunakan untuk mengesahkan prestasi 

skim-skim kawalan yang dibangunkan. 

 

Turus penyulingan loji pandu yang bergaris pusat 10.2cm dan 15 dulang-

dulang ayak telah direkabentuk, difabrikasi dan digunakan dalam kajian ini. Model 

matematik berasaskan jumlah imbangan jisim, imbangan komponen dan imbangan 

entalpi telah dibangunkan berasaskan prinsip-prinsip pertama. Pengiraan kegiatan 

dan fugasiti telah dimasukkan dalam model tersebut untuk mengambil kira 

ketakunggulan sistem tersebut. Satu algoritma yang sesuai telah dibina untuk 

menyelesaikan persamaan-persamaan model dalam persekitaran MATLAB. 

Eksperimen-eksperimen telah dijalankan dengan menggunakan turus penyulingan 
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loji pandu pada keadaan-keadaan mantap dan dinamik untuk mengesahkan model 

prinsip pertama yang dibina. Nilai-nilai kecekapan dulang telah ditala dengan 

menggunakan hasil-hasil eksperimen pada keadaan mantap. Hasil-hasil model 

menunjukkan tahap konsistensi yang tinggi dengan hasil-hasil eksperimen. Model 

prinsip pertama yang telah disahkan digunakan sebagai proses model dalam 

pengenalpastian sistem tak lelurus dan kajian-kajian kawalan. 

 

Pengenalpastian tak lelurus bagi turus penyulingan telah dibuat dengan 

menggunakan dua model tak lelurus iaitu model Hammerstein berasaskan wavenet 

dan model auto mundur tak lelurus dengan model input-input luar kawalan (NARX) 

berasaskan sigmoidnet. Parameter untuk kedua-dua model tersebut dianggarkan 

dengan menggunakan kaedah peminimuman ramalan-ralat berlelar. Penganggaran 

parameter, pengesahan model dan analisis model telah dijalankan dengan 

menggunakan kotak perkakas bagi sistem pengenalpastian dalam MATLAB dan 

keupayaan model-model untuk mewakili dinamik model tak lelurus untuk turus 

penyulingan telah disahkan. 

 

Dua jenis teknik NMPC iaitu NMPC model Hammerstein dan NMPC model 

NARX telah dibangunkan. Masalah NMPC telah dirumuskan dengan menimbangkan 

fungsi objektif, kekangan dikenakan oleh model tak lelurus dan juga pembolehubah-

pembolehubah masukan dan keluaran. Turas Unscented Kalman (UKF) telah 

digunakan untuk menganggar pembolehubah keadaan dan permasalahan NLP telah 

diselesaikan dengan menggunakan kaedah program kuadratik berjujukan (SQP) 

dalam kedua-dua teknik NMPC. Kajian-kajian kawalan gelung tertutup telah 

dikendalikan dalam persekitaran MATLAB untuk mengesahkan prestasi teknik-

 xxv



teknik NMPC dalam penolakan gangguan-gangguan dan penjejakan titik set. Kajian-

kajian kawalan gelung tertutup ini menunjukkan bahawa prestasi Hammerstein 

NMPC adalah lebih baik daripada NARX NMPC dalam pengawalan turus 

penyulingan. 
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NONLINEAR MODEL PREDICTIVE CONTROL OF A DISTILLATION 
COLUMN USING HAMMERSTEIN MODEL AND NONLINEAR 

AUTOREGRESSIVE MODEL WITH EXOGENOUS INPUT  
 

ABSTRACT 

 

 Distillation column is an important processing unit in petroleum refining and 

chemical industries, and needs to be controlled close to the optimum operating 

conditions because of economic incentives. Most of the industrial distillation 

columns are currently controlled by multiloop controllers based on linear models 

which are penalized by several shortcomings. Nonlinear model based control scheme 

is one of the best options to be explored for proper control of distillation columns. In 

the present work, two nonlinear model predictive control (NMPC) schemes using 

Hammerstein model and nonlinear autoregressive model with exogenous input 

(NARX) were developed to control distillation column. The binary distillation 

column separating methanol-water was used to verify the developed control schemes 

performance.  

 

 The pilot plant distillation column of 10.2 cm diameter with 15 sieve trays 

was designed, fabricated and used in this work. A mathematical model based on total 

mass balance, component balance and enthalpy balance was developed based on first 

principles. The activity and fugacity calculations were included in the model in order 

to account for the non-ideality of the system. A suitable algorithm was developed to 

solve the model equations in MATLAB environment. The experiments were carried 

out in pilot plant distillation column under steady-state and dynamic conditions to 

validate the first principle model. The tray efficiency values used in the first principle 

model were tuned using the steady state experimental results. The model results 

 xxvii



showed a high level of consistency with the experimental results. The validated first 

principle model was used as a process model in nonlinear system identification and 

control studies. 

 

 The nonlinear identification of distillation column was done using two 

nonlinear models namely wavenet based Hammerstein model and sigmoidnet based 

NARX model. The parameters of both the models were estimated using an iterative 

prediction-error minimization method. The parameters estimation, model validation 

and model analysis were carried out using system identification toolbox in MATLAB 

and the capability of the models to capture the nonlinear dynamics of the distillation 

column was verified.  

 

 Two types of NMPC techniques namely Hammerstein model NMPC and 

NARX model NMPC were developed. The NMPC problem was formulated by 

considering the objective function, constraints imposed by nonlinear model as well 

as input and output variables. The Unscented Kalman Filter (UKF) was used to 

estimate the state variables and the nonlinear programming problem was solved 

using sequential quadratic programming (SQP) method in both the NMPC 

techniques. The closed loop control studies were conducted in MATLAB 

environment to verify the performance of the NMPC techniques in disturbances 

rejection and set-point tracking. The closed loop control studies indicated that the 

performance of Hammerstein NMPC was superior than NARX NMPC in controlling 

the distillation column.  
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1 CHAPTER 1

INTRODUCTION

1.1 Distillation

Distillation is one of the most important unit operations in chemical

engineering. The aim of a distillation column is to separate a mixture of components

into two or more products of different compositions. The physical principle of

separation in distillation is the difference in the volatility of the components. The

separation takes place in a vertical column where heat is added to a reboiler at the

bottom and removed from condenser at the top. A stream of vapor produced in the

reboiler rises through the column and is forced into contact with a liquid stream from

the condenser flowing downwards in the column. The volatile (light) components

are enriched in the vapor phase and the less volatile (heavy) components are enriched

in the liquid phase. A product stream taken from the top of the column therefore

mainly contains light components, while a stream taken from the bottom contains

heavy components.

1.2 Distillation equipment

A simple continuous binary tray distillation column for separating a feed

stream into two fractions, an overhead distillate product and a bottoms product is

shown in Figure 1.1. The column is normally provided inside with horizontal plates

or trays.The liquid mixture to be separated is introduced more or less centrally into a

vertical cascade of trays. A reboiler is provided at the bottom of the column to supply
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Figure 1.1: Schematic of continuous binary tray distillation column

the heat required for the vaporization involved in distillation and also to compensate

for heat loss. A water-cooled or air-cooled condenser is provided at the top of the

column to condense and cool the overhead stream. The purity of the top product can

be improved by recycling some of the externally condensed top product liquid as

reflux from the upper part of the column. The more reflux that is provided, the better

is the column separation of the lower boiling from the higher boiling components of

the feed. The feed tray divides column into two parts namely rectifying section and

stripping section. In rectifying section, the vapor rising is rectified with liquid

flowing down from top to remove less volatile component and in stripping section

the liquid is stripped of volatile components by vapor produced at bottom by partial
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vaporization of bottom liquid in reboiler. The condensed liquid that is removed from

reflux drum is known as distillate or top product and the liquid removed from

reboiler is known as bottom product.

1.3 Need for distillation control

Distillation is used in many chemical processes for separating feed streams

and for purification of final and intermediate product streams. There are many

reasons for the interest in distillation control. From an academic point of view

distillation control is an interesting multivariable problem, and from an industrial

point of view improved distillation control has a potential to substantially increase

the profit. Distillation accounts for approximately 95% of the separation systems

used for refining and chemical industries (Humphrey et al., 1991). It has a major

impact upon the product quality, energy usage, and plant throughput of these

industries. It consumes enormous amounts of energy, both in terms of cooling and

heating requirements. It can contribute to more than 50% of plant operating costs.

The energy requirement may be reduced significantly through improved operations.

This is achieved not only through optimal column design, but requires, in addition, a

control system which is able to maintain the optimal conditions.

Distillation control is a challenging endeavor due to (1) the inherent

nonlinearity of distillation, (2) multivariable interaction, (3) the non-stationary

behavior and, (4) the severity of disturbances (Shinskey, 1984). Tighter control of

distillation columns is consequently important for energy savings, and will also yield

increased profit through improved product recovery. The major benefits of improved
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distillation control are reduced energy consumption, increased yield and higher

throughput.

1.4 Distillation control techniques

Distillation columns provide a very challenging example within the field of

process dynamics and process control. Traditionally PID controllers were used in the

process industries for control of the distillation column. The main drawback of the

conventional feedback PID control is that corrective action for disturbances does not

begin until the controlled variable deviates from the set point (Skogestad, 1997b). In

industry, most of the columns are operated by single-input single-output (SISO)

controllers and usually only one composition is automatically controlled (one point

control). This leads to waste of valuable products and excessive energy. However,

automatic control of both compositions may be very difficult to obtain due to strong

interaction between top and bottom product compositions (Shinskey, 1984).

Skogestad et al.(1988) have reported that high purity columns, i.e. columns where

both top and bottom compositions are very pure; suffer from strong interaction which

makes the system very sensitive to small changes in the manipulated variables (input

uncertainty). Without a rigorous method for dealing with uncertainty it may be

practically impossible to tune a two point controller for a system with strong

interaction. This may in fact be one of the reasons to why one point control is so

commonly used. Another disadvantage with such a decentralized (multiloop) control

is that the control performance may seriously deteriorate if the system hit some

constraints. For example, if a stabilizing loop saturates, the system goes unstable. To

avoid this, the plant has to be operated sufficiently far away from the constraints, or
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facilities for reconfiguration have to be installed ‘on-top’ of the SISO controllers

(Lundstrom and Skogestad, 1995).

Configuration selection is an important aspect in the case of multiloop

controller design. Control configuration for a distillation column can be selected

from the knowledge of the thermodynamic parameters, reflux ratio, vapor boil-up

rate and distillate to bottoms ratio for binary and multicomponent distillation

(Stilchmar, 1995). Improper choice of manipulated/controlled variable pairings can

result in poor control performance. Decouplers are introduced into the multiloop

configuration to compensate for the process interactions and reduce the control loop

interactions. Hurowitz et al.(2003) have used decouplers to control the top product

composition using reflux flow rate, and bottom product composition using vapor

boil-up rate for the xylene/toluene column and the depropanizer. In both cases, the

decouplers resulted in improved control performance compared to the feedback

controllers without a decoupler.

The insufficient performance of SISO controllers leads to the development of

specialized single loop control strategies such as feedforward control (Broll et al.,

1995), inferential control (Zhang and Agustriyanto, 2001), cascade control (Kano et

al., 2000), adaptive control (Natarajan et al., 2006) etc. The abilities of the

specialized single-loop control strategies and multiloop controllers were not

satisfactory for increasingly stringent performance requirements of the chemical

processes which led to the development of multivariable control techniques.
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1.4.1 Multivariable controllers

Processes which are multivariable in nature, i.e. processes where the variables

to control and the variables available to manipulate cannot be separated into

independent loops where one input only would affect one output, constitute a major

source of difficulty in process control. These processes show a certain degree of

interaction, i.e. one control loop affects other loops in some way. The complexity of

the control problem raises as this interaction increases (Luyben, 1992).

Multivariable processes in industrial and other applications are often of higher order,

where there are many, possibly tens or hundreds, of control loops interacting

(Skogestad and Postlethwaite, 1996).

The term multivariable control refers to the class of control strategies in

which each manipulated variable is adjusted on the basis of errors in all of the

controlled variables, rather than the error in the single controlled variable, as in the

case of multiloop control. Multivariable control is particularly well-suited for

controlling processes with several interacting controls which need to be

simultaneously decoupled (Liptak, 2007).

An adequate model is generally considered as a prerequisite for multivariable

controller design. The model is used to predict the behavior of the controlled

variables with respect to changes in the input variables (Sagfors and Waller, 1998).

Established multivariable control techniques rely on the availability of the linear

system models. This is to ensure that the resulting control scheme is closely matched

to the dynamics of the process. The multivariable system must therefore first be
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modeled either analytically using set of differential equations to describe the system

behavior or empirically by fitting experimental obtained data to an assumed structure

of the process i.e. black-box modeling. Obviously, how well the resulting control

strategy performs depends on the accuracy of the model. In applications where the

physical and/or chemical characteristics of the system are well known, usually the

former approach is adopted. In the process industries, where the higher degree of

uncertainty about the process behavior emprical modeling approach is often

employed. However for control system design purposes, the input-output (transfer

function) model obtained using later approach is generally adequate (Boling et al.,

2004). Multivariable controls strategies can also be developed that include integral,

derivative and feedforward control action. Among the multivariable controllers,

Model Predictive Control (MPC) is an important advanced control technique which

can be used for difficult multivariable control problems (Goodwin et al., 2001).

1.4.2 Model Predictive Control

The term MPC describes a class of computer control algorithms that control

the future behavior of the plant through the use of an explicit process model. At each

control interval the MPC algorithm computes an open-loop sequence of manipulated

variable adjustments in order to optimize future plant behavior. The first input in the

optimal sequence is injected into the plant, and the entire optimization is repeated at

subsequent control intervals (Henson, 1998). MPC technology was originally

developed for power plants and petroleum refinery applications. However, at present

MPC is used in wide variety of manufacturing environments including chemicals,
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food processing, automotive, aerospace, metallurgy, and pulp and paper (Qin and

Badgewell, 1998).

The success of MPC technology as a process control paradigm can be

attributed to three important factors. First and foremost is the incorporation of an

explicit process model into the control calculation. This allows the controller, in

principle, to deal directly with all significant features of the process dynamics.

Secondly the MPC algorithm considers plant behavior over a future horizon in time.

This means that the effects of feedforward and feedback disturbances can be

anticipated and removed, allowing the controller to drive the plant more closely

along a desired future trajectory. Finally the MPC controller considers process input,

state and output constraints directly in the control calculation. This means that

constraint violations are far less likely, resulting in tighter control at the optimal

constrained steady-state for the process. It is the inclusion of constraints that most

clearly distinguishes MPC from other process control techniques (Qin and Badgwell,

2003).

It is interesting to note that in the early usage of MPC technology, the

nonlinear process behavior was addressed using a linear dynamic model in the

control algorithm. Richalet et al. (1978) have described how nonlinear behavior due

to load changes in a steam power plant application was handled by executing their

Identification and Command (IDCOM) algorithm at a variable frequency. Prett and

Gillette (1980) have applied a Dynamic Matrix Control (DMC) algorithm to control

a fluid catalytic cracking unit and model gains were obtained at each control iteration

by perturbing a detailed nonlinear steady-state model.
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The original IDCOM and DMC algorithms provided excellent control of

unconstrained multivariable processes. However, constrained handling was not

planned in those two algorithms. Engineers at Shell Oil addressed this weakness by

posing the DMC algorithm as Quadratic Program (QP) in which the input and output

constraints appear explicitly and is known as Quadratic Dynamic Matrix control

(QDMC). Its key features include linear step response model for the plant, quadratic

performance over a finite prediction horizon and future plant output behavior

specified by trying to follow the set point as closely as possible subject to a move

suppression term (Cutler et al., 1983). Even though MPC is having many advantages,

many processes are sufficiently nonlinear to preclude the successful application of

MPC technology. This has led to the development of nonlinear model based

controllers such as nonlinear model predictive control (NMPC) in which more

accurate nonlinear model is used for process prediction and optimization.

1.4.3 Nonlinear Model Predictive Control

NMPC can be applicable to the areas where process nonlinearities are strong

and market demands require frequent changes in operating conditions. There are

cases where nonlinear effects are significant enough to justify the use of NMPC

technology. These include regulator control problems where the process is highly

nonlinear and subject to large frequent disturbances (example: pH control); and servo

control problems where the operating points change frequently (example: Polymer

manufacturing and distillation column) and span a sufficiently wide range of

nonlinear process dynamics (Qin and Badgewell, 1998). The overall basic structure
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of NMPC control loop is depicted in Fig. 1. The NMPC algorithm (Findeisen et al.,

2000) can be summarized as follows.

The nonlinear dynamic model of the process is used to predict the future

values of the output from the current measurements. Then the appropriate changes in

the input values can be calculated based on both predictions and current

measurements. Based on the predicted values and constraints the optimal control

problem is solved online in the dynamic optimizer. Set of control moves will be

calculated and the first part of the optimal input signal will be implemented until new

measurements or estimates of the state are available. The above procedure will be

repeated for next time instant.

Figure 1.2: Basic NMPC control loop
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The key characteristics of NMPC are as follows.

i. It allows the use of nonlinear model for prediction

ii. It allows an explicit consideration of state and input constraints

iii. A specified performance criteria is minimized online

iv. In general, the predicted behavior is different from the closed loop

behavior

v. The online solution of an open-loop optimal control problem is necessary

vi. The system states must be measured or estimated to perform the

prediction

The major steps in implementation of NMPC includes development of a

suitable nonlinear process model to be used with NMPC, formulating NMPC

problems with inherently better computational characteristics and finding out an

efficient and reliable solution methods for the nonlinear programming problem with

better computational efficiency.

In their survey of industrial applications of NMPC, Qin and Badgwell (1998)

listed nonlinear model development as one of the three most significant obstacles to

NMPC application, by noting that there is no systematic approach for building

nonlinear dynamic models for NMPC. Lee (1998) drawn the same conclusion by

arguing that the inability to construct, a nonlinear model on a reliable and consistent

basis is the most important reason that nonlinear MPC has less influence on

industrial control practice than linear MPC. He also has a view that nonlinear

dynamics are significant in industrial manufacturing processes.
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The nonlinearity of the process should be measured in order to select suitable

nonlinear model structure for the process to be used with NMPC. The information

about the nonlinearity of the process will be helpful to make a decision as to whether

it would be worthwhile attempting to identify a nonlinear model of the process and

also to select the model structure. In this context, Pearson (1995) classified processes

using a degree of nonlinearity, i.e. mild, intermediate, or strongly nonlinear based on

the qualitative nature of process nonlinear behavior such as asymmetric response to

symmetric changes in input, input multiplicities i.e., the same output could be

generated by different input magnitudes, output multiplicative behavior, chaotic

dynamics etc. There are three types of nonlinear models available namely

fundamental models, empirical models and hybrid models.

Fundamental model are derived by applying transient mass, energy and

momentum balances to the process. In the absence of spatial variations, the resulting

models have the general form

),( uxfx  (1.1)

),( uxg0 (1.2)

),( uxhy  (1.3)

where x is a n-dimensional vector of state variables, u is a m-dimensional vector of

manipulated input variables and y is a p-dimensional vector of controlled output

variables. The ordinary differential equations (1.1) and algebraic equations (1.2) are

derived from conservation laws and various constitutive relations, while the output

equations (1.3) are chosen by the control system designer (Pearson, 2003). Since

NMPC is most naturally formulated in discrete time, it is necessary to discretize the
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continuous time differential equations. This is usually achieved by orthogonal

collocation or finite elements.

Fundamental models for processes of realistic complexity tend to involve on

the order of 102 - 103 nonlinear differential equations and a comparable number of

algebraic relations (Michelsen and Foss, 1996). Further, in many cases it is not

realistic to simplify these models by excluding subtle details. Gross et al.(1998)

made this point strongly, by noting that even construction details of particular

equipment sometimes can have a profound influence on process dynamics. Another

drawback of fundamental model is that the lack of process knowledge often leads to

disappointing results, since it is hard to capture all relevant phenomena in the model.

In many cases, the fundamental models are too complex to be used for

control purposes. Empirical models, also called black-box models are useful in this

scenario (Sjoberg et al., 1995). In empirical modeling, a model structure is first

selected and the model identification problem involves determining the model

parameters that best fit the input-output data. The development of empirical

nonlinear models from plant data is known as nonlinear system identification. In

contrast to linear models, the identification problem is considerably more complex

for nonlinear systems. To begin with, nonlinear models exhibit a diverse range of

nonlinear behavior, and unlike linear models, nonlinear model structures are

generally not equivalent. Because of this diversity, selection of an appropriate model

structure becomes critical. Also, selection of an appropriate input is also considerably

more challenging for nonlinear models than their linear counterparts. As an example,

the PRBS sequence that is widely used for linear model identification is inadequate
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for identification of a broad class of the block-oriented models (Doyle III et al.,

2002). The input should also possess enough energy to exercise the full range of

process nonlinear behavior, and this persistence of excitation condition, well

established for linear systems, and does not have a well-defined nonlinear equivalent.

The types of discrete time nonlinear models utilized for NMPC in the recent

literature includes Hammerstein models (Jurado, 2006; Harnischmacher and

Marquardt, 2007; Huo et al., 2008), wiener models (Lazar et al., 2007; Shafiee et al.,

2008), NARX model (Lee and Lee, 2005), Nonlinear auto-regressive moving

average model with exogenous inputs (NARMAX) (Zeybek et al., 2006), Volterra

models (Wang and Zhu, 2008), neural network models (Nagy, 2007; Al Seyab and

Cao, 2008a; Al Seyab and Cao, 2008b) and fuzzy models (Cetinkaya et al., 2006;

Prakash and Senthil, 2008).

Hybrid models are developed by combining the fundamental and empirical

modeling approaches. This is the case when some physical insight is available, but

several parameters remain to be determined from observed data. It is useful to

consider two sub cases in this hybrid models namely physical modeling and semi-

physical modeling. In physical modeling, a model structure can be built on physical

grounds, which has a certain number of parameters to be estimated from data. In

semi-physical modeling, physical insight is used to suggest certain nonlinear

combinations of measured data signal. These new signals are then subjected to model

structures of emprical character (Sjoberg et al., 1995).
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After suitable nonlinear model is developed for the process, the NMPC

problem is formulated by considering the constraints on input and output variables,

as well as constraints imposed by the nonlinear model equations. One of the key

obstacles for a successful application of NMPC in practice is that most existing

NMPC schemes require the explicit state information for the prediction. Since in

practice not all states are available by measurements, a suitable observer for the

estimation of the system states must be used (Findeisen et al., 2003).

NMPC requires the repeated on-line solution of a nonlinear optimal control

problem. In the case of linear MPC the solution of the optimal control problem can

be cast as the solution of a (convex) quadratic program and can be solved efficiently

even on-line. This can be seen as one of the reasons why linear MPC is widely used

in industry. For the NMPC problem the solution involves the solution of a nonlinear

program. In general the solution of a nonlinear (non-convex) optimization problem

can be computational expensive. One could address the solution of nonlinear

programming problem for the purpose of model predictive through successive

linearization of model equations, sequential model solution and simultaneous model

solution.

1.5 Problem statement

NMPC has been around for many years and has been scientifically discussed

extensively, but several issues that affect the industrial practice of NMPC are yet to

be resolved. The NMPC approach assumes availability a suitable nonlinear dynamic

model of the controlled process. In most application studies of NMPC, the nonlinear
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model is readily obtained due to the simplicity of the process considered. The

nonlinear modeling problem is significantly more challenging for large scale

complex processes. Consequently, the development of nonlinear model is of highest

importance to the continued advancement of NMPC. Foss et al. (1998), in their case

study on process modeling in Germany and Norway concluded that despite the

commercially available modeling tools, the effort spent for all kinds of modeling

activities is the most time consuming step in an industrial project where model based

process engineering techniques are applied.

Many researchers (Eskiant et al., 1991; Sriniwas et al., 1995; Fruzzetti et al.,

1997) already proved that the performance of linear models is insufficient in

capturing the dynamics of the distillation column due to its nonlinear nature. Henson

(1998) also has drawn the same conclusion by arguing that many nonlinear processes

including distillation column are sufficiently nonlinear to preclude the successful

application of linear models. Hence the development of nonlinear process models is

tremendously essential due to the unavoidable nonlinearity of the process and

complexity of nonlinear system.

The practical difficulty of nonlinear dynamic model development arises from

several sources, of which the following two are fundamental. First is the fact that

model utility can be measured in several, generally conflicting ways. Second, the

class of nonlinear models does not exhibit the unity that the class of linear models

does. The four extremely important measures of model utility are approximation

accuracy, physical interpretation, suitability for control and ease of development.
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Fundamental model is generally far superior to empirical moel and hybrid

model with respect to the first two of these criteria, but they also suffer badly with

respect to the last two. On the other hand, the empirical model does not require the

detailed process understanding for model development and also, complexity of the

model can be avoided. The main drawback of empirical model is that the nonlinear

model identification problem is very tedious. In the case of hybrid models, it is very

difficult to distinguish the particular part of the process to be modeled using

fundamental model or empirical model.

The NMPC problem formulation involves online computation of a sequence

of manipulated inputs which optimize an objective function and satisfy process

constraints. The development of NMPC techniques for large scale systems may

require problem formulations which exploit the specific structure of the nonlinear

model. Finally, NMPC requires online solution of a nonlinear program (NLP) at each

iteration. The solution of such NLP problems can be very time consuming, especially

for large scale systems. An additional complication is that the optimization problem

generally is nonconvex because the nonlinear model equations are posed as

constraints (Cannon, 2004). Consequently, NLP solvers designed for convex

problems may converge to local minima or even diverge. So it is necessary to find

out an improved solution algorithm for nonconvex NLP problems. The vital parts of

the present research are to develop suitable nonlinear models for distillation column,

formulate NMPC problem and to identify an efficient optimization algorithm to be

used with NMPC.
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1.6 Research objectives

The objectives of this study are

1. To design a pilot plant distillation column, condenser and reboiler, and

to fabricate the experimental set up based on design specifications.

2. To identify a suitable first principle model to be used as process model

in nonlinear model identification and in NMPC, and to develop an

algorithm to solve the model equations in MATLAB environment.

3. To validate a first principle model through experimentation using pilot

plant distillation column, and to conduct open loop simulation studies

under steady- and unsteady-state conditions.

4. To develop suitable nonlinear emprical models and to identify an

efficient optimization algorithm to be used with NMPC.

5. To design and to evaluate the performance of NMPC for different

changes in disturbances and set-points using closed loop simulation

studies.

1.7 Scope of work

The main focus of the present work is to develop suitable nonlinear models

and to identify an efficient optimization algorithm to be used with NMPC to control

a distillation column.
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The detailed design of binary sieve tray distillation column is carried out

based on the VLE data of methanol-water system. Based on the tray spacing and the

plate hydraulics, the design details of the tray such as tray thickness, weir length,

weir height, hole size, hole pitch, number of holes etc. are calculated. A reboiler and

a total condenser are designed based on the condenser duty and heat duty for the

system. A detailed process design and mechanical design of plates are also carried

out. Stainless steel is the material of construction for the column, condenser, reboiler

and column internals, and rock wool with aluminum foil is used as insulation

material. Provisions are provided to take the sample and to measure the temperature

in each tray. Horizontal in-shell TEMA E-type condenser with vertical baffle cuts is

used and water is used as a cooling medium in the condenser. A kettle type reboiler

with resistance type electrical heaters is used. The column is commissioned and the

required instruments like flow meters, temperature measuring devices, pressure

measuring device, level measuring devices, and transmitters are installed. A few test

runs are made to calibrate the instruments and also to check the proper functioning of

the various signal processing units.

A mathematical model based on total mass balance, component balance and

enthalpy balance is developed based on first principles. The activity and fugacity

calculations are included in the model in order to account for the non-ideality of the

system. A suitable algorithm is developed to solve the model equations using

MATLAB. Simulation studies are carried out in the MATLAB environment for

steady-state and unsteady-state conditions.
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The experiments are carried out to study the steady-state and dynamic

characteristics of the column. The steady-state experimental data is used to fix

optimum operating conditions. Then dynamic studies involving changes in feed flow

rate, feed composition and reflux flow rate are carried out and from those results the

dynamic behavior of the system is obtained. The result of simulation studies are

compared with experimental data. The tray efficiencies used in the simulation studies

are calibrated to match the first principle model results with experimental results and

the developed first principle model is validated.

Suitable nonlinear empirical models are developed and used with NMPC. The

main factor considered for nonlinear model development is that the model developed

for binary distillation column should have the flexibility to extend to the

multicomponent distillation column. Two nonlinear models namely wavenet based

Hammerstein model and sigmoidnet based NARX mode are found to be good in

capturing the nonlinear dynamics of the distillation column and also they can be

easily modified for multicomponent distillation column. The data required for

nonlinear model parameter estimation and validation are generated from

experimentally validated first principle model. Two types of NMPC techniques

namely Hammerstein model NMPC and NARX model NMPC are developed. The

NMPC problem is formulated by considering the constraints imposed by nonlinear

model, input and output variables. The sequential quadratic programming (SQP)

method is used in both the NMPC techniques to solve the NMPC problem.

The control problem is solved in MATLAB environment. The top and bottom

product compositions are the controlled variables in distillation column. The reflux
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flow rate and reboiler vapor boil up rate are used as manipulated variables, whereas

feed flow rate and feed composition are considered as disturbances. The closed loop

simulation studies are carried out in MATLAB environment to verify the

performance of both NMPC techniques for different disturbances, changes in set

points and simultaneous changes in disturbances and set points.

1.8 Organization of thesis

This thesis consists of five chapters. Chapter 1 provides a brief description of

distillation process, distillation equipment, need for distillation control, and

distillation control techniques including the advanced control strategies like MPC

and NMPC. This chapter also includes the problem statement that provides

foundation to identify research directions and objectives. The objectives and scope of

study are then elucidated followed by the organization of the thesis.

Chapter 2 summarizes the past research works in the field of nonlinear

modeling of distillation column including nonlinear characteristics, fundamental

models, empirical models and hybrid models. The NMPC problem formulation and

various optimization algorithms used with NMPC were discussed. Finally, current

applications of NMPC technology were discussed along with the advantages and

drawbacks. This chapter serves as the background information about the specific

problems that have to be addressed in this research work.

Chapter 3 presents the details of the materials, chemicals and research

methodology used in the present study. The design specifications of pilot plant
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distillation column are explained and the experimental set up is elaborated along with

the specifications of other instruments. The development of first principle model for

distillation which is used as a platform in this research work is described along with

solution algorithm. Finally, the methodology for the development of NMPC and

closed loop control studies are presented.

Chapter 4 is the main part of the thesis in which all important findings and

results of this research work are discussed. This chapter includes experimental

validation of fist principle model, steady-state and unsteady-state simulation results

using first principle model, nonlinear identification of Hammerstein model and

NARX model, NMPC control problem formulation, sequential quadratic

programming (SQP) optimization algorithm as well as results of closed loop

simulation studies to validate NMPC controller performance.

Chapter 5 summarizes the results reported in the previous chapters and also

some concluding remarks are made based on those results. The conclusions are

obtained from each individual study carried out in the present research work. This

chapter also suggests the ways to improve the present work and recommend the

possible future studies in this field. These recommendations and suggestions are

given after taking into consideration of significant findings, limitations, the

conclusions obtained as well as difficulties encountered in this study.
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2 CHAPTER 2

LITERATURE REVIEW

2.1 Importance of distillation control

Malaysia is a significant Southeast Asian producer of oil and natural gas.

According to Oil & Gas Journal (OGJ), Malaysia held proven oil reserves of 3.0

billion barrels and 75 trillion cubic feet (Tcf) of proven natural gas as of January

2007 (Country analysis brief: Malaysia, 2007). Most of the separation processes

employed in petroleum refineries and other chemical processing industries (CPI) are

distillation columns for separating feed streams, and for purification of final and

intermediate product streams. The separation needs relatively large amount of energy.

Close control of distillation column improves the product quality, minimizes energy

usage and maximizes the plant throughput and its economy (Hurowitz et al., 2003).

Also producing products with low variability is many times crucial for the success of

CPI (Downs and Doss, 1991). For most high-value added products, low variability is

a primary customer concern and can determine the market demand of a product. The

reduction in the variation in the products can also be used to increase production

rates or decrease utility usage (Riggs, 2001). Clearly, reduced variability is

economically important to the CPI and can be achieved by proper control of unit

operation in the plant, especially the distillation column. Hence, the development of

nonlinear model based control system for distillation column would be beneficial for

CPI.
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2.2 Major disturbance in distillation control

The type and magnitude of disturbances affecting a distillation column have

a direct effect on the resulting product variability. An analysis of the major types of

disturbances encountered in distillation column are mentioned in the following

sections.

2.2.1 Feed composition upsets

Changes in the feed composition represent the most significant upsets with

which a distillation control system must deal on a continuous basis. Most industrial

columns do not have a feed composition analyzer; therefore, feed composition upsets

usually appear as unmeasured disturbances. When a feed composition analyzer is

available, a feed forward controller can be applied using the on-line measurements of

the feed composition (Stichlmair, 1995). Feed composition changes represent a

major disturbance for distillation control, thus the sensitivity of potential control

configurations to feed composition upsets is a major issue for configuration selection.

Luyben (2005) has studied the effect of feed composition on the selection of control

structures for high purity binary distillation column using methanol-water system. He

concluded that feed composition changes largely affect the product purities compare

to other disturbances. Zhang et al. (2006) noted that a feed composition change shifts

the composition profile through the column resulting in a large upset in the product

compositions.
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