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PE�GARUH ARAS ASID LEMAK SA�GAT TIDAK TEPU (HUFA) DALAM 

PEMAKA�A� KE ATAS PE�GHASILA� TELOR, PROFIL ASID LEMAK 

DALAM TISU DA� PE�GEKSPRESA� mR�A GE� DESATURASE DA� 

ELO�GASE DALAM IKA� ZEBRAFISH BETI�A (Danio rerio) 

 

ABSTRAK 

 

 

 

 Kajian ini telah dijalankan untuk meninjau kesan paras asid lemak sangat 

tidak tepu (HUFA) ke atas profil asid lemak dalam tisu dan prestasi pembiakan ikan 

zebrafish betina. Pengekspresan mRNA gen desaturase dan elongase di dalam tisu 

hati, otot dan ovari ikan zebrafish betina telah dianalisa. Tiga jenis makanan ikan 

yang mempunyai kandungan protein yang sama telah disediakan mengikut nisbah 

minyak sotong dan minyak linseed yang berbeza. Tiga makanan ikan tersebut 

mengandungi 100% minyak sotong (SO), campuran 1:1 minyak sotong dan minyak 

linseed (SLO) dan 100% minyak linseed (LO) sebagai sumber lipid. Eksperimen 

telah dijalankan selama 12 minggu dan ikan dibiakkan dua kali seminggu. Keputusan 

eksperimen menunjukkan bahawa profil asid lemak hati, otot, ovari dan telur ikan 

mencerminkan profil asid lemak makanan yang telah diberi. Secara amnya, 

peningkatan aras minyak linseed dalam makanan telah merendahkan pengendapan 

asid arakidonik (ARA, 20:4n-6), asid eikosapentanoik (EPA, 20:5n-3) dan asid 

dokosaheksanoik (DHA, 22:6n-3) dalam semua tisu yang dikaji. Bagi ikan yang telah 

diberi makanan yang mengandungi HUFA yang rendah, profil asid lemak hati 

menunjukkan aktiviti biosintesis yang meningkat dengan peningkatan dalam 

pengekspresan mRNA desaturase dan elongase hepatik. Walaubagaimanapun, 

peningkatan dalam aktiviti biosintesis HUFA tidak mampu mengimbangi paras 

ARA, EPA dan DHA yang rendah di dalam tisu hati ikan yang telah diberi makanan 

LO. Paras ARA dan EPA yang rendah juga di kesan dalam tisu otot dan ovari ikan 

yang diberi makanan LO. Tiada perbezaan yang signifikan telah dijumpai bagi 



 xiii 

kandungan ARA dan EPA dalam telur ikan di antara ketiga-tiga jenis makanan, yang 

boleh menunjukkan akumulasi selektif kedua jenis HUFA ini di dalam telur. 

Peningkatan dalam pengekspresan gen desaturase dan elongase dikesan dalam ovari 

ikan yang telah diberi makanan HUFA yang rendah. Ikan yang diberi makanan SLO 

memberi jumlah telur yang paling tinggi. Ini menunjukkan kepentingan untuk 

memberi asid lemak tidak tepu n-3 dan n-6 dengan nisbah yang seimbang kepada 

ikan betina yang aktif membiak. Sebagai kesimpulan, kajian ini menunjukkan 

bahawa prestasi pembiakkan ikan zebrafish betina mendapat manfaat daripada 

penambahan HUFA dalam makanan, walaupun mempunyai kebolehan untuk 

meningkatkan transkripsi desaturase dan elongase dalam tisu semasa diberi makanan 

dengan paras HUFA yang rendah.                             
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I�FLUE�CE OF DIETARY HUFA LEVELS O� EGG PRODUCTIO�, TISSUE 

FATTY ACID PROFILE A�D DESATURASE A�D ELO�GASE mR�As 

EXPRESSIO� I� FEMALE ZEBRAFISH (Danio rerio) 

 

 

ABSTRACT 

 

 This study was conducted to investigate the effect of varying levels of dietary highly 

unsaturated fatty acids (HUFA) on tissue fatty acid profiles and reproductive performance in 

female zebrafish. Zebrafish were utilized as they are a good vertebrate model, easy to breed 

and care for, among other advantages. In addition, liver, muscle and ovarian tissues were 

analyzed to gauge the mRNA expression of desaturase and elongase genes. Three iso-

nitrogenous experimental diets utilizing different ratios of squid oil and linseed oil were 

formulated and fed to female zebrafish. The diets contained 100% squid oil (SO), a 1:1 blend 

of squid and linseed oils (SLO) and 100% linseed oil (LO) as lipid sources. Breeding was 

carried out twice a week during the experimental feeding trial which lasted 12 weeks. 

Results revealed that fatty acid profiles of liver, muscle, ovary and egg reflected profiles of 

the corresponding dietary treatment. Basically, increasing levels of dietary linseed oil 

lowered deposition of arachidonic acid (ARA, 20:4n-6), eicosapentaenoic acid (EPA, 20:5n-

3) and docosahexaenoic acid (DHA, 22: 6n-3) in all tissues. For fish with low dietary HUFA 

intake, liver fatty acid profile implied increasing biosynthesis activities, which was supported 

by increased expression of hepatic desaturase and elongase mRNAs. However the increase in 

HUFA biosynthesis activities were unable to compensate for the inferior hepatic ARA, EPA 

and DHA levels in fish fed diet LO. Relatively lower concentrations of ARA and EPA were 

also obtained in muscle and ovary tissues of LO fed fish. Interestingly, no significant 

difference was found in ARA and EPA levels in eggs among all three dietary treatments, 

which imply selective accumulation of these HUFA in eggs. Desaturase and elongase genes 

expression showed an increasing trend in ovary during low dietary HUFA intake. Fish fed 

diet SLO had the highest egg production which indicates the need for the inclusion and a 

balanced ratio of dietary n-3 and n-6 unsaturated fatty acids in spawning females. In 
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conclusion, this study reveals that reproductive performance of female zebrafish benefits 

from the supply of dietary HUFA, despite possessing ability to increase transcription of 

desaturase and elongase in various tissues during low dietary HUFA intake.                 
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CHAPTER 1 

 

I�TRODUCTIO� 

 

 

1.1 Research background 

The importance of fatty acids in aquaculture has gained much attention over the 

years. It is widely known that highly unsaturated fatty acids (HUFA) – arachidonic acid 

(ARA, 20: 4n-6), eicosapentaenoic acid (EPA, 20: 5n-3) and docosahexaenoic acid (DHA, 

22: 6n-3) - play important roles in fish nutrition. In addition to being an energy source and 

components of cell membranes, HUFA have an influence on fish reproductive performance 

as well (Rennie et al., 2005). Studies on broodstock nutrition of many species have revealed 

evidences that broodstock dietary fatty acids will eventually affect fecundity and egg and 

larvae fatty acid profiles. HUFA also act as precursors for eicosanoids, a physiologically 

dynamic group of molecules responsible for an array of cellular activities including gene 

regulation, signaling and maintenance of membrane integrity. Prostaglandins, the 

oxygenated metabolites of ARA and EPA have been shown to play essential roles in the 

development of vertebrates (Cha et al., 2006). 

Lipids in aquafeeds come from a variety of sources. The steady increase of 

aquaculture production over the last two decades has resulted in an increased utilization of 

fish meal and fish oil: the two dominant ingredients used in the production of aquaculture 

feeds (Tacon, 1996; Furuita et al., 2007). As the saying goes, all good things must come to 

an end. The demand for fish oil is rapidly increasing along with the increase in farming 

activities, which compromises the future of aquaculture. The demand for fish oil by this 

industry will probably exceed available resources over the next decade (Mourente and Bell, 

2006). These prospects have forced the industry to search for alternative lipid sources for use 

in fish feeds, with plant-based oils being the most interesting candidates. A large number of 

plant oils including linseed, palm, sunflower, borage, olive and soybean oil have been tried 

in experimental diets as possible alternatives to fish oil (Torstensen et al., 2000; Tocher et 
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al., 2001, 2003; Rodríguez et al., 2002, Montero et al., 2005; Mourente et al., 2005). Plant 

based oils pose a problem as they have different fatty acid composition compared to fish oil. 

Plant oils are rich in C18 polyunsaturated fatty acid (PUFA) but they lack n-3 HUFA which 

are abundant in fish oil. This indicates that the ability of the fish to compensate for oil 

composition differences is a very important factor in order to adapt to fish oil replacement. 

Accordingly, several studies involving freshwater and salmonid species have shown the 

possibility of high inclusion levels of plant oil without compromising growth and general 

physiological processes of fish (Bell et al., 2002; Francis et al., 2006; Manning et al., 2006; 

Turchini et al., 2007). At present, the benefits of dietary HUFA inclusion in freshwater 

broodstock reproduction remains to be confirmed as very little is known on the regulation of 

HUFA biosynthesis in these species, especially during the reproductive phase. Therefore, it 

is important to take into consideration the essential fatty acid (EFA) requirements of 

broodstock of the cultured species. 

EFA requirements differ for marine and freshwater fish species. Although fish 

cannot synthesize C18 PUFA de novo, they can, to a certain extent, depending on species, 

convert PUFA from the diet into HUFA. Marine fish usually require EPA, DHA and ARA to 

be provided in their dietary regime. The natural diets of marine fish - crustacean and piscine 

preys - contain high levels of HUFA. These fish do not possess the ability to convert C18 

PUFA, α-linolenic acid (LNA, 18: 3n-3) and linoleic acid (LA, 18: 2n-6) to their respective 

HUFA. It is speculated that the ability to desaturate and elongate PUFA have been lost in 

marine fish due to the readily available HUFA in their diets.  

Freshwater fish on the other hand, have the ability to convert C18 PUFA into 

HUFA. They are able to convert LA into ARA and LNA into EPA and DHA (Bell et al., 

2003a). This attribute can be narrowed down to the possession of the desaturase and 

elongase genes which aid in the enzymatic HUFA synthesis pathways. The actual 

mechanisms and pathways of the regulation of teleost reproduction by dietary fatty acids 

involved are still largely unknown. There is considerable interest in seeking detailed 

understanding on the actual role of ARA, EPA and DHA in various aspects of reproduction, 
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such as oocyte maturation, ovulation, spawning, hatching success and larval quality (Sorbera 

et al., 2001; Bell and Sargent, 2003; Patiño et al., 2003). Elongase genes have been cloned 

from zebrafish, Atlantic salmon, Nile tilapia, African catfish and cod (Agaba et al., 2004; 

Hastings et al., 2004; Agaba et al., 2005). As for ∆6 and ∆5 desaturase genes, extensive 

work has been done with fish such as carp, salmon, cod, tilapia, sea bream and rainbow trout 

(Seiliez et al., 2001, 2003; Hastings et al., 2004, Zheng et al., 2004a). All of these 

desaturases are primarily a single function enzyme, being either ∆6 or ∆5 desaturase. A 

bifunctional desaturase has been cloned in the zebrafish (Hastings et al., 2001).  

Zebrafish are gaining status as a useful vertebrate model system to study various 

cellular and molecular aspects of lipid metabolism in vertebrates. In addition to its status as a 

major model organism for developmental biology research, the versatility of zebrafish has 

also been extended to the field of reproductive biology due to its prolific spawning activities 

and ease of handling follicular cells under laboratory conditions (Patiño and Sullivan, 2002; 

Ge, 2005). Apart from this, advantages of working with zebrafish are aplenty. Small and 

easy to handle, zebrafish maintenance is considerably easy. Moreover, they readily spawn 

when given the suitable environment conditions. This particular factor makes zebrafish an 

excellent model to evaluate freshwater fish reproduction.         

In this study, the effects of varying HUFA on tissue fatty acid deposition and 

reproductive performance of female zebrafish actively involved in spawning activities were 

evaluated. Dietary manipulations of fatty acid content were done with lipid sources from 

squid oil (source of HUFA) and linseed oil (source of PUFA). Furthermore, the influence of 

dietary HUFA levels on mRNA expression of desaturase and elongase in selected tissues 

were investigated to shed light on HUFA biosynthesis activities during reproduction.  
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1.2 Objectives 

The aims of this study are  

1. to evaluate effects of varying dietary HUFA levels on tissue fatty acid deposition 

and reproductive performance of actively spawning female zebrafish. 

2. to determine the effects of varying dietary HUFA levels on transcriptional activities 

of zebrafish desaturase and elongase in different tissues. 
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CHAPTER 2 

 

LITERATURE REVIEW 

 

 
2.1 Lipid 

 
 Lipids are considered important nutrients in fish diets. They provide energy for 

growth, reproduction and migration, membrane structural components, essential fatty acids, 

precursors of eicosanoids required for regulatory processes and assist in the uptake of lipid 

soluble nutrients (McKenzie, 2001). Lipids are compounds soluble in organic solvents such 

as chloroform, hydrocarbons and alcohols. Fish lipids in particular, can be divided into two 

main groups – polar lipids composed mainly of phospholipids and neutral lipids composed 

principally of triglycerides (Tocher, 2003). There are five major classes of lipids: fatty acids, 

triacylglycerols, phospholipids, sphingolipids and sterols (De Silva, 1995).   

 Fatty acids form distinct series, and a shorthand system has been devised for the 

classification of these fatty acid series. Varieties in fatty acid molecules are contributed by 

the differences in the number of carbon atoms and in the number and positioning of the 

double bonds between the carbon atoms (Jobling, 1994).  Further review of fatty acids can be 

found in Section 2.1.2. 

 Neutral lipids are formed by esterification of fatty acids with the alcohol, glycerol. 

Whilst mono- and diacylglycerols are found, triacylglycerols make up the great bulk of 

neutral lipids found in nature. Triacylglycerols consist of three fatty acid molecules esterified 

to three alcohol groups of glycerol, which can be made up of a single, two or three different 

fatty acids (Figure 2.1).  

 Phospholipids are esters of glycerol, whereby two of the alcohol groups are 

esterified with fatty acids and the third with phosphoric acid, which in turn is esterified by a 

nitrogenous base, the amino acid serine, the sugar alcohol inositol or by glycerol sulphate. 

The nature of the nitrogenous base provides the basis of the name of the specific families of 

phospholipids – phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine and 
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phosphatidylinositol (Jobling, 1994). Phosphoglycerides are the most common of the 

phospholipids (Figure 2.3).  

 Sphingolipids are a group of complex polar lipids containing the long chain amino 

alcohol sphingosine or a related base as their backbone (Figure 2.4). The other group of 

lipid, sterols, is simple lipids in the form of tetracyclic hydrocarbon compounds. They can 

exist unesterified as an essential component of cell membranes or in a neutral lipid storage 

form esterified to a fatty acid. One example of sterols in fish is cholesterols (Figure 2.5) 

(Tocher, 2003).  

  

2.1.1 Lipid metabolism 

 
Metabolism includes catabolic and anabolic reactions which occur within an 

organism that results in nutrients being utilized for energy or growth. Dietary intake of fish 

contains the major nutrients – proteins, carbohydrates and lipids. Generally, this process 

involves digestion, absorption and transport of nutrients. Feed consumed by fish are digested 

in the gut, absorbed by the gut lining and appear in the bloodstream as their component 

molecules. Proteins are digested to release their component amino acids, which are 

subsequently used to synthesize new proteins or for energy. Similarly, carbohydrates will be 

broken down to simple sugars.  

Lipid is broken down to fatty acids. Following absorption, fatty acids are then 

resynthesized into lipids which form droplets. These lipid droplets are circulated in the fish 

blood system. In order to be used, they must again be broken down to their constituent fatty 

acids. Fatty acids are then used for synthesis of membranes or further degraded for energy. 

Lipids contain more energy per unit weight than any other dietary component, and are used 

efficiently by fish as energy sources. Besides providing energy, they are source of 

hydrophobic components for the synthesis of macromolecules (Jump et al., 1999). 

The degradative pathways of amino acids, simple sugars and fatty acids will 

eventually  reach  a  common  intermediate  compound  –  acetyl  coenzyme  A (acetyl CoA).  
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Figure 2.1: Tryacylglyceride: three fatty acids esterified to L-glycerol.  
                  (Figure 2A, page 7. Tocher, 2003) 
 

 

 

 

 

 

 

Figure 2.2: Phosphatidic acid, the backbone of the phosphoglycerides. 
                  (Figure 2C, page 7. Tocher, 2003) 
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Figure 2.3:  Structures of head groups in the major phosphoglycerides where R = the 
phosphatidyl group (see Figure 2.3). PtdCho, Phosphatidylcholine; PtdEtn,  
Phosphatidylethanolamine, PtdSer, Phosphatidylserine; PtdIns, 
phosphatidylinositol.  

   (Figure 3, page 9. Tocher, 2003) 
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Figure 2.4: Sphingomyelin 
      (Figure 4A, page 10. Tocher, 2003) 
 

 

 

 

 

 

 

Figure 2.5: Cholesterol 
                  (Figure 5, page 10. Tocher, 2003) 
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Acetyl CoA enters the citric acid cycle, which in turn is linked to the process of oxidative 

phosphorylation. The result is the production of CO2, the consumption of O2 and the 

liberation of energy, which is then stored as high-energy phosphate molecules, adenosine 

triphosphate (ATP) (De Silva, 1995).  

 
2.1.2 Fatty acids 

 
 Fatty acids are carboxylic acids with long chain hydrocarbon side groups. They are 

designated on the basis of their chain lengths, degree of unsaturation (number of double 

bonds) and the position of the double bond. The nomenclature of fatty acids is as follows: 

    CX:Yn-Z 

where,  X shows the number of carbon atoms,   

Y signifies the number or double bonds in the hydrocarbon chain 

and Z denotes the carbon at which the first double bond appears, numbering from the                   

methyl end (-CH3).  

 

For example, 18:1n-7 and 18:1n-9 indicate that these fatty acids possess 18 carbon atoms and 

have one double bond (monounsaturated) at the position of carbon number 7 and 9 

respectively, calculated from the methyl end of the molecule (Christie, 1973; Tocher, 

2003). 

 

 An alternative way of naming the fatty acids: 

    CX:Y∆K  

where ∆K signifying the position of double bond from the carboxyl (-COOH) end of the 

molecule. 

Using the same example as above, 18:1n-7 and 18:1n-9 would then be written as 

18:1∆11 and 18:1∆9 (Figure 2.6B) respectively. Fatty acids without any double bonds are 

termed saturated fatty acids. For instance, they are represented as 16:0 and 18:0, which 
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denotes that these molecules have 16 and 18 carbon atoms (Figure 2.6A) (Christie, 1973; 

Tocher, 2003).  

 Polyunsaturated fatty acids (PUFA) may contain two or more double bonds. 

Consequently, the entire structure of a particular PUFA can be defined by specifying the 

position of the first double bond relative to the methyl end. Hence, in 18:3n-3 the first double 

bond is situated three carbon atoms from the methyl end of the molecule, which can also be 

written as 18:3∆9,12,15 (Figure 2.6D). Another group also known as highly unsaturated fatty 

acids (HUFA), are fatty acids with carbon chain length more or equal to 20 carbon atoms and 

containing three or more double bonds. Important HUFA in fish are 20:4n-6 (arachidonic 

acid, ARA), 20:5n-3 (eicosapentaenoic acid, EPA) and 22:6n-3 (docosahexaenoic acid, 

DHA) (Christie, 1973; Tocher, 2003).   

 
 
2.1.2.1 Unsaturated fatty acid biosynthesis pathway 

 PUFA cannot be synthesized de novo by any vertebrate species. Fish are no 

exception, as they too lack the ∆12 and ∆15 fatty acid desaturase enzymes required for the 

production of linoleic (LA, 18:2n-6) and α-linolenic (LNA, 18:3n-3) acids from oleic acid 

(18:1n-9) (Figure 2.7). However, it has been established that many vertebrates can convert 

dietary LA and LNA to long chain n-6 and n-3 highly unsaturated fatty acids (HUFA) 

respectively (Sprecher et al., 1995; Zheng et al., 2004a).  

 In marine fish, EPA and DHA are regarded as essential fatty acids (EFA) due to 

their inability to synthesize them. Marine fish have the reputation of being barely able to 

convert LNA to EPA and DHA, and LA to ARA. Conversely, freshwater fish differ from 

marine species in view of their dietary requirements; LA and LNA are regarded as their EFA 

(Bell and Sargent, 2003). The freshwater inhabitants have a capacity to desaturate and 

elongate the 18 carbon atom fatty acids into HUFA according to their needs (Seiliez et al., 

2003, Turchini et al., 2006). Providing the correct EFA requirement to fish is crucial, as this 

will affect the growth and reproductive parameters of the cultured species.  
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Figure 2.6:  Stuctures of the 18 carbon saturated and monounsaturated fatty acids, and       

representative polyunsaturated fatty acids of the n-6 and n-3 series. 
                       (Figure 1, page 4. Tocher, 2003) 
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LA and LNA can be converted to their respective HUFA in vivo by an alternating sequence 

of desaturation and elongation. The two pathways involved are depicted in Figure 2.8 

(Agaba et al., 2005). The pathways take place in the endoplasmic reticulum (Figure 2.9). 

Synthesis of ARA is achieved by ∆6 desaturation of LA to produce 18:3n-6 (γ-linolenic acid, 

GLA) which is then elongated to 20:3n-6 (dihomo-γ-linolenic acid, DGLA). This is finally 

desaturated at the ∆5 position to produce ARA. The pathway for EPA synthesis from LNA is 

essentially similar, but DHA synthesis requires two further elongation steps, a second ∆6 

desaturation and a chain shortening step. Originally the insertion of the last, ∆4 double bond 

in 22:6n-3 was assumed to occur through direct ∆4 desaturation of its immediate precursor 

22:5n-3 (Zheng et al., 2004a; Agaba et al., 2005). However, studies done on rat liver showed 

that the 22:5n-3 was further elongated to 24:5n-3 which is then converted by ∆6 desaturation 

to 24:6n-3 which goes through a chain shortening to form 22:6n-3 (Sprecher et al., 1995). 

Various species have been studied to further elucidate these pathways, among some: rainbow 

trout, Atlantic salmon, tilapia and zebrafish (Buzzi et al., 1997; Tocher et al., 1997; Tocher 

et al., 2002).  
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Figure 2.7: Pathways of biosynthesis of C20 and C22 HUFA from n-3, n-6 and n-9 C18   

precursors. ∆5, ∆6, ∆9, ∆12, Fatty acid desaturases; Elong, Fatty acid elongases; 
Short, chain shortening. ∆9 desaturase is found in all animals and plants whereas 
∆12 and ∆15 desaturases are generally only found in plants. 

                   (Figure 6, page 26. Tocher, 2003) 
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Figure 2.8: Pathways of highly unsaturated fatty acid (HUFA) biosynthesis from the C18  

polyunsaturated fatty acids (PUFA), A: 18:3n-3 and B: 18:2n-6. Solid lines    
represent steps that have been shown to occur in fish. Dotted lines represent 
steps that have not been directly demonstrated in fish. ∆6, ∆5 and ∆4, fatty acid 
desaturases; Elo, fatty acid elongases; Short, peroxisomal chain shortening.  
(Figure 1, page 343. Agaba et al., 2005) 
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Figure 2.9:  Summary of the main fatty acid desaturation reactions in animal cells. All fatty 
acid desaturation reactions in animals occur in the endoplasmic reticulum and 
are catalyzed by membrane-bound, cytochrome b5 linked desaturases that 
generally utilize coenzyme A linked substrates. ∆, Desaturase; E, Elongase.   
(Figure 3, page 76. Tocher et al., 1998) 
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2.1.2.2 Desaturase and elongase genes in HUFA biosynthesis pathway 

 Over the last few years, major advances have been made in understanding the 

regulation and activities of fatty acid desaturase and elongase genes from an array of 

different organisms. Understanding the molecular basis of HUFA biosynthesis and its 

regulation in fish may enable the manipulation and optimization of the activity of the 

pathway to allow efficient and effective usage of plant-based oils as fish oil substitutes in 

aquaculture (Pereira et al., 2003; Zheng et al., 2004a; Agaba et al., 2005).  

 Desaturase and elongase genes have been identified and cloned in a number of fish 

species. Elongase genes have been cloned from zebrafish, Atlantic salmon, Nile tilapia, 

African catfish and cod (Agaba et al., 2004; Hastings et al., 2004; Agaba et al., 2005). As for 

∆6 and ∆5 desaturase genes, extensive work has been done with fish such as carp, salmon, 

cod, tilapia, sea bream and rainbow trout (Seiliez et al., 2001, 2003; Hastings et al., 2004; 

Zheng et al, 2004a). All of these desaturases are primarily a single function enzyme. A 

bifunctional desaturase has been cloned in the zebrafish (Hastings et al., 2001).     

 The zebrafish desaturase gene is unique because it encodes an enzyme having both 

∆6 and ∆5 desaturase activities. It has been speculated that the bifunctional desaturase in 

zebrafish is a component of a prototypic vertebrate PUFA biosynthetic pathway that has 

persisted in a freshwater species. The deficit in the fatty acid desaturation pathway in marine 

fish could be attributed to their strictly piscivorous diet. As their diet is naturally rich in 

HUFA, they may have lost their ability to elongate and desaturate PUFA due to evolution 

(Hastings et al., 2001). The cloning and characterization of fatty acid desaturase from carp, 

phylogenetically closely related to zebrafish, showed interesting results as it was basically 

unifunctional. Therefore, it is unclear whether the zebrafish desaturase represents an 

ancestral progenitor or a later evolutionary adaptation. This question may remain unsolved 

unless other bifunctional desaturases are identified (Zheng et al., 2004a).      

 As the search for alternatives to fish oil in aquafeeds continues, studies done on 

desaturation and elongation of PUFA in fish fed various plant-based oils intensifies. Tissue 

fatty acids in fish fed vegetable oils are characterized by increased levels of C18 PUFA and 
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decreased levels of HUFA. Desaturase and elongase genes expression were affected by 

dietary treatments in fish. A recent study on salmon reported that expression of both ∆5 and 

∆6 desaturase genes in liver were increased in fish fed the highest inclusion of vegetable oil 

though there was no dietary effect on the hepatic expression of elongase gene (Pratoomyot et 

al., 2008).  Generally, the increase in plant-based oils in diet had increased the expression of 

these genes in fish tissues (Tocher et al., 1997; Tocher et al., 2001; Zheng et al., 2004a; Ling 

et al., 2006). The use of cell culture systems and molecular gene expression study has 

elucidated some of the important pathway and biochemical reactions in HUFA biosynthesis. 

 

2.2 Lipid and fatty acid requirements of fish 

 

2.2.1 Dietary lipid requirement of fish 

 As lipids play an important role in fish nutrition, it has been studied widely in 

various aspects. Besides being energy source to fish, lipids also provide essential fatty acids 

(Sheik-Eldin et al., 1996). Lipid requirements, more specifically EFA requirements, usually 

differ amongst fish species; even more so for fish from the marine environment and 

freshwater.  

Most marine species usually require diets which contain HUFA [20:4n-6, 20:5n-3 

and 22:6n-3] as they are unable to convert PUFA [18:3n-3 and 18:2n-6] via a series of 

desaturation and elongation (Tocher et al., 2001). In contrast, most freshwater species are 

able to perform the PUFA conversion into HUFA, hence a diet rich in HUFA may not be 

necessary. However, there have also been speculations that marine fish may require such diet 

due to their adaptations to a carnivorous lifestyle. The hypothesis being that, consumption of 

a carnivorous diet, naturally rich in HUFA, results in an evolutionary down-regulation of the 

enzymes required for PUFA to HUFA conversion (Buzzi et al., 1997; Tocher et al., 1997, 

Seiliez et al., 2003; Piedecausa et al., 2007). Supporting this view, the pike (Esox lucius), a 

carnivorous freshwater species, displayed limited ability to convert PUFA to HUFA (Buzzi 

et al., 1997).   
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In addition to being highly digestible and well metabolized by fish, lipids also 

increase diet palatability and stabilize feed pellet during manufacture, transportation and 

storage. Increasing dietary lipid may be and effective strategy to improve feed efficiency and 

reduce protein utilization as lipids is able to spare the use of protein as energy source. 

Despite protein synthesis, some amino acids will be directed into energy liberating 

pathway to provide energy for basal metabolism and this will often limit fish growth. Lipid 

and carbohydrate will usually be included in the dietary regiment of fish to replace protein as 

the alternative energy source so that most of the amino acids will be utilized for protein 

synthesis. This is referred as the protein sparing effect. Sparing the usage of protein as 

energy source also reduces ammonia and nitrogen waste production from the metabolism of 

amino acids in the aquatic environment (Shyong et al., 1998; Vergara et al., 1999; Lopez et 

al., 2006).     

Usually, in aquaculture, fish meal is the main ingredient which is utilized to provide 

the protein source. The demand for fish oil and fish meal production as aquafeed ingredients 

is rapidly increasing, causing the depletion of world fish stocks. Besides finding alternatives 

to fish oil, substitutions to fish meal as energy providing protein should be used. Lipid is an 

effective non-protein energy source as it releases more energy per unit weight (De Silva and 

Anderson, 1995). It is easily digested and metabolized compared to carbohydrates, therefore 

serves as a better source of energy for protein sparing. Adequate levels of protein and lipid in 

diets should be carefully considered as an imbalance may have adverse effects of fish 

growth, nutrient utilization lipid deposition, increased production cost and deterioration in 

water quality (Vergara et al., 1999; Tocher et al., 2004).      

 Variations in protein sparing effect of lipid exist amongst fish species. In bagrid 

catfish (Pseudobagrus fulvidraco), increment of lipid sources with the constant amount of 

protein in diets improved protein utilization and growth (Lee and Sang, 2005). Increasing 

dietary lipid levels significantly improved hepatosomatic index, viscerosomatic index, 

protein efficiency ratio and protein retention in juvenile rockfish (Sebastes schlegeli), 

indicating protein sparing effect of lipid (Lee et al., 2002). Conversely, increase in dietary 
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lipid did not induce protein sparing effect in studies conducted on white sea bream (Diplodus 

sargus), sharpsnout sea bream and dentex (Ozorio et al., 2006; Hernandez et al., 2001; 

Espinos et al., 2003). High inclusion of carbohydrate may also inhibit absorption and 

reduced protein sparing effect by lipid (Ozorio et al., 2006). Fish ingest little carbohydrate as 

part of their natural diet. Consequently they are incapable of metabolically utilizing high 

dietary levels of digestable carbohydrate. Thus lipids are the favoured form of non-protein 

metabolic energy (Huang et al., 2007). 

 

2.2.2 Dietary fatty acid requirement of fish 

Fish require HUFA for their normal growth and development including 

reproduction. As mentioned previously, freshwater fish have the ability to convert C18 

PUFA to HUFA, hence their EFA are LA and LNA. The EFA requirements of fish differ 

considerably from species to species. Inadequate provision of EFA may bring forth low 

growth rate, poor food conversion rate and affect reproductive performance of broodstock. 

They also act as precursors for a number of biologically active molecules like eicosanoids, 

pheromones, growth regulators and hormones (Pereira et al., 2003). In fish, DHA and EPA 

are the major HUFA of the cell membranes while ARA is a minor component. Fish tissues 

have higher concentrations of DHA and EPA compared to ARA and fish have 

correspondingly higher dietary requirements for n-3 HUFA. However, ARA should not be 

disregarded as they play important roles in the formation of eicosanoids (Sargent et al., 

1999).  

 In general, HUFA play a role in maintaining the structural and functional integrity of 

cell membranes. Phosphoglycerides and their fatty acid compositions have a major and very 

well-established role in maintaining the structure and function of cellular biomembranes. 

There are few data that directly demonstrate a clearly defined role for specific fatty acids in 

membrane functions in fish. However, the importance of DHA in neural tissues of all 

vertebrates, including fish, has recently been the subject of considerable. Thus, in fish, 

dietary deficiency of DHA resulted in larval herring having an impaired ability to capture 
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prey at natural light intensities (Bell et al., 1995) and impaired schooling behavior in 

yellowtail and Pacific threadfin (Polydactylus sexfilis) (Masuda et al., 1998; Ishizaki et al., 

2001). These recent studies imply a critical role for DHA in the functioning of neural tissue 

(brain and eye) in fish and also demonstrate the importance of dietary DHA in marine fish 

(Tocher, 2003). 

  Eicosanoids are oxygenated derivatives of HUFA produced from membrane 

phospholipids by the action of phospholipases, cyclooxygenases and lipoxygenases (Ganga 

et al., 2005). They are a range of highly active C20 compounds formed in small or trace 

amounts by virtually every tissue. In broad terms, eicosanoids are produced in response to 

stressful situations at a cellular and whole body level. ARA is the major precursor of 

eicosanoids in fish which are involved in a variety of physiological functions like 

cardiovascular functions, osmoregulation and functions of reproductive systems (Cejas et al., 

2004). EPA may also form eicosanoids but they are less biologically active than those 

formed from ARA. Moreover, EPA competitively inhibits the formation of eicosanoids from 

ARA (Figure 2.10). Likewise, eicosanoids by EPA also competitively interfere with the 

actions of eicosanoids formed from ARA (Sargent et al., 1999).  

The two main enzymes involved are cyclooxygenase that produces cyclic 

oxygenated derivatives or prostanoids, including prostaglandins (PG), prostacyclins (PG I) 

and thromboxanes (TX), and lipoxygenases that produce linear oxygenated derivatives, 

including hydroperoxy- and hydroxy fatty acids, leukotrienes (LT), and lipoxins (LX). 

Collectively, these fatty acid derivatives are termed eicosanoids, so named because they are 

derived primarily from the C20 PUFA DGLA, ARA and EPA. The eicosanoids are 

autocrines, that is, hormone–like compounds produced by cells to act in their immediate 

vicinity with a short half-life. Virtually every tissue produces eicosanoids, and they have a 

wide range of physiological actions, for example, in blood clotting, the immune response, the 

inflammatory response, cardiovascular tone, renal function, neural function and reproduction 

(Tocher, 2003). Influences of fatty acid in fish reproduction are further reviewed in Section 

2.4. 
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Dietary fatty acids affect the composition and deposition of fatty acids in fish tissues 

(Dosanjh et al., 1988; Torstensen et al., 2000). Fish deposit significant quantities of fatty 

acids in their muscle. Fish like herring, sardines, salmon and trout provide a source of n-3 

HUFA in human diets due to their deposition of their dietary fatty acids in muscle (Bell et 

al., 2003b). As noted above, marine animals can contain very large levels of lipid in the form 

of oil. For example, many high-latitude zooplankton can routinely contain two-thirds or 

more of their dry body weight as oil, largely wax esters. Capelin (Mallotus villosus) can 

routinely contain 20% or more of their wet body weight as oil, largely triacylglycerols. 

Therefore, it is self evident, that fish consuming such oil-rich prey, for example, capelin 

consuming zooplankton, or cod or salmon consuming capelin, are capable of efficiently 

digesting and assimilating large quantities of lipid, and often of depositing large quantities of 

oil in their body tissues. All fish oils are highly polyunsaturated, characterized by high but 

variable levels of n-3 HUFA, predominantly EPA and DHA, with ARA as the major n-6 

PUFA, and with 16:0 followed by 18:0 as the predominant saturated fatty acids, and all 

contain substantial amounts of the monoene 18:1n-9.  

In freshwater fish, the LNA and LA ratios are major determinants of the final tissue 

ratios of EPA, DHA and ARA. Imbalanced levels and ratios of dietary EFA will cause 

competitive interactions between different series of fatty acids. A competitive reaction also 

exists between LA and LNA in the conversions to their end products of HUFA. Therefore 

the provision of an optimum ratio of n-3 and n-6 PUFA for fish are important, and 

sometimes may prove to be tricky as the requirements of different species vary (Mazorra et 

al., 2003).  
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Figure 2.10:  Links between dietary PUFA, tissue HUFA and eicosanoid production. 
Arachidonic acid, 20:4n-6 and eicosapentaenoic acid, 20:5n-3, produced by 
desaturation and elongation (D/E) of dietary 18:2n-6 and 18:3n-3 or obtained 
preformed in the diet, compete for the same cyclooxygenase and lipoxygenase 
enzymes (C/L) to produce, 2-series prostanoids and 4-series leukotrienes, and 
3-series prostanoids and 5-series leukotrienes, respectively. Therefore the ratio 
of ARA:EPA determines the ratio of high activity : low activity eicosanoids. 

           (Figure 7, page 50. Tocher, 2003) 
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2.3 Utilization of lipids in aquaculture 

Fish farming has expanded and intensified rapidly, especially during the last two 

decades. In order to support the rise of this activity, particular attention has to be paid to the 

development of more suitable diets for each species (Bandarra et al., 2006). Currently the 

dependence on fish meal and fish oil as major lipid sources is heavy. This dependency has 

raised concerns on the sustainability of the aquaculture sector. There is an urgent need to 

seek alternatives for utilization of marine-based oils, which are currently facing issues such 

as diminishing supplies and escalating cost (Ganga et al., 2005; Ling et al., 2006; Turchini et 

al., 2006).  

Plant-based oils have been suggested as alternate choices to fish oil as they are easily 

obtained and cheaper. The unfeasible criterion in plant oils is low or insufficient n-3 HUFA 

(Bell et al., 2001, 2003a; Francis et al. 2006). Therefore it is crucial to possess the 

knowledge on the dietary fatty acid requirements of cultured species in order to successfully 

incorporate accurate levels of plant oils as the dietary lipid source.  

Numerous studies on various marine and freshwater fish species have been 

conducted over the years in search for the suitable replacement or partial replacement of fish 

oil. Plant oils used as partial replacements for fish oil in marine fish diets have demonstrated 

promising results with respect to gilthead sea bream (Montero et al., 2003; Izquierdo et al., 

2005), European sea bass (Izquierdo et al., 2003; Mourente et al., 2005) and turbot (Regost 

et al., 2003).     

 Accordingly, several studies involving freshwater and salmonid species have 

demonstrated the possibility of high inclusion levels of plant oil without compromising 

growth rate of fish. Feeding Atlantic salmon (Salmo salar) with fish oil alone or blends with 

fish oil and sunflower oil, or linseed oil and sunflower oil did not show differences in growth 

(Menoyo et al., 2007). Other studies utilizing soybean, linseed, rapeseed, palm and 

sunflower oils have been frequently evaluated and showed no reduction in growth or feed 

utilization, but affected tissue lipid composition, which reflected that of the dietary oils used 

(Bell et al., 2003b; Bransden et al., 2003; Francis et al., 2006; Bahurmiz and Ng, 2007) .   
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