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Abstrak

Malaysia mempunyai banyak simpanan gas asli, di mana metana sebagai komponen utama boleh

dipergunakan dan ditukar kepada produk yang lebih bernilai seperti metanol, formaldehid, syngas,

bahan api bercecair dan etilena. Penggandingan metana beroksida (OCM) merupakan salah satu

cara yang baik untuk penghasilan etilena dari metana. Sistem pemangkin berkomponen-3 telah

digunakan untuk kajian tindak balas kimia OCM dalam reaktor bermangkin lapisan terpadat.

Jangkaan keadaan optimum pada suhu 850°C, halaju gas ruang berjam pada 23,947sm3/g.jam,

tempoh prarawatan mangkin selama 2 jam, nisbah CH4 ke O2 sebanyak 7 dan nisbah pencairan

0.2 memberikan keputusan eksperimen dengan 43.05% penukaran metana, 70.62% C2+ peratusan

pemilihan dan 30.40% C2+ peratusan penghasilan. Dalam kajian ini, satu reaktor membran

bermangkin telah dibangunkan bagi aplikasi dalam tindak balas kimia penggandingan metana

beroksida (OCM). Fluks kemeresapan oksigen sebanyak 0.56 sm3/min.sm2 dengan ketulenan

27.96% diperolehi pada suhu 850°C. Pen.ambahan metana ke bahagian tiub reaktor membran

bermangkin meningkatkan nilai fluks o~gen ke 1.3973 sm3/min.sm2 pada 850°C semasa kajian

tindak balas OCM. Peratusan pemilihan 'c2+ 67.5%, penukaran metana 51.55% dan peratusan

penghasilan C2+ 34.73% telah diperolehi pada suhu 850°C, nisbah CH4 kepada O2 dengan nilai 3

dan kadar aliran gas sapu 100sm3/min dalam reaktor membran bermangkin. Prestasi reaktor

bermangkin lapisan terpadat (PBCR), reaktor membran bermangkin (CMR) dan reaktor membran

bermangkin lapisan terpadat (PBCMR) telah dibandingkan.

Abstract

Malaysia has abundant reserv:s of natural gas, in which methane as the main constituent could be

utilized and converted into more valuable products such as methanol, formaldehyde, syngas, liquid

fuel and ethylene. Oxidative coupling of methane (OCM) is one of the promising routes for the

production of ethylene from methane. A 3-components catalyst system (Na-W-Mn/Si02) was used

to study the OCM reaction in a packed bed catalytic reactor. The predicted optimum condition of

temperature 850°C, gas hourly space velocity at 23,947-cm3/g.hr, catalyst pretreatment period of 2
•,

hrs, CH4 to O2 ratio 7 and dilution ratio 0.2 gave 43.05% methane conversion, 70.62% C2+

selectivity and 30.40% C2+ yield. In present study, a catalytic membrane reactor was developed for

the application in oxidative coupling of methane reaction. The oxygen permeation flux of

0.56cm3/min.cm2 with purity of 27.96% was obtained at 850°C. The introduction of methane to the

tUbe side of the catalytic membrane reactor increased the oxygen flux value to 1.3973cm3/min.cm2

at 850°C during the study of OCM reaction. C2+ selectivity of 67.5%, methane conversion of 51.55%

and C2+ yield of 34.73% were obtained at 850°C, CH4 to O2 ratio of 3 and sweep gas flow rate at

100cm3/min in a catalytic membrane reactor. The performances of packed bed catalytic reactor

(PBCR), catalytic membrane reactor (CMR) and packed bed catalytic membrane reactor (PBCMR)

were compared.
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The development of catalytic membrane reactor for the production of ethylene

using natural gas based on oxidative coUpling of methane (OCM) has marched to a

great advance. The 3-components catalyst system was studied using Design of

Experiments (DoE). An oxygen permeable membrane with mixed ionic-electronic

conductivity was synthesized to separate oxygen from air, which is cheaper as the

reactant in OCM. The catalyst and the membrane were combined to be a catalytic

membrane reactor system. The progress of the research was presented and discussed

in the sequence as followed:



1) Design and fabrication of catalytic membrane reactor

A catalytic membrane reactor resembles shell and tube heat exchanger was

designed for the study in oxidative coupling of methane. Inert materials such as

ceramic and quartz were chosen as the reactor casing and tube side of the reactor,

respectively, with stainless steel double -flange head as shown in Figure 1 and Figure

2. The membrane tube was sealed to the quartz tubes at both ends with alumina

sealant, Ceramabond 569. The development of the catalytic membrane reactor

considered the three major prerequisites: 1) A gas-tight reactor system so that the

results of analysis would not be affected; 2) Resistant to high temperature without any

corrosion of the reactor materials and reaction with the gases; 3) The membrane tube

within the reactor could be taken out easily without breaking the membrane tube.

Figure 1 Catalytic membrane reactor and furnace
\,

Leak test was performed prior to the admission of reactant gases into the

reactor system. There was proven to have no leaking from the reactant system.

However, leaking from the tube side to the shell side of the reactor was difficult to be

detected and thus, the relationship of the fluxes of leaked N2 and 02 through the pores

and cracks of the sealant was defined using the Knudsen diffusion mechanism.
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Figure 2 Schematic drawing of catalytic membrane reactor



2) Results and Discussion

2.1) Oxygen permeation test

In order to ensure that the oxygen permeability of the membrane is agreeable,

which will facilitate the oxygen distribution and enhance the performance of OCM

reaction, oxygen permeation test using the catalytic membrane reactor incorporated

with oxygen permeable membrane (Bao.sCeo.4Gdo.lCoo.sFeo.203-o) was studied prior to

the OCM reaction study.

The permeation studies were performed at varying temperature (600-900oC)

and sweep gas flow rate (30 and 100 cm3/min). The mixture of O2+ N2 resembles the

air composition (21 % 02 and 79% N2) was used as the feed gas to the shell side of the

reactor at the flow rate of 150 cm3/min. The permeation test was based on

concentration gradient, and thus, Helium as the sweep gas was fed from the tube side

to control the oxygen concentration gradient by "sweeping off' the permeate to the

downstream. The permeated oxygen from the total amount of oxygen from the shell

side is presented in Figure 3. The perCentage of oxygen permeated through the.
membrane with permeated surface are~.32.987 cm2 was found to increase from 40 to

60% of the total oxygen fed as a function of temperature when helium flow rate was

100cm3/min. In temperature range of 600 to 900°C, the oxygen permeation flux

increased for a factor of 1.3 at helium flow rate 100 cm3/min. Lu and co-workers

(2000) reported a factor of 5 of the oxygen flux increment over a temperature range of

300°C. However, the repprted oxygen flux through the BaCeo.sGdo.203 (BCG) dense

membrane tube was lower compared to the present study with only oxygen flux 0.10
"iC

cm3/min.cm2 at temperature 900°C, helium flow rate 108 cm3/min and air flow rate

78.3 cm3/min.

Higher helium flow rate provides higher oxygen permeation flux. This is due

to an increase of the sweep gas flow rate in the tube side reduces the oxygen partial
I

pressure in the tube side, eventually resulting a greater oxygen partial pressure

gradient across the membrane. At temperature 900°C and helium flow rate 30

cm3/min, the oxygen permeation flux was about 0.215 cm3/min.cm2, which is

comparable to the reported oxygen flux 0.21 cm3/min.cm2 using tubular

Lao.6Sro.4Coo.2Feo.s03_o membrane by Li and co-workers (2000), but almost 4 times

higher than the result reported by Lu and co-workers (2000) for the BCG membrane

tube (ID 4.6 mm x OD 6 mm x length 11 cm).
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2.2) Performance study of catalytic membrane reactor

The performance of catalytic meJ!lbrane reactor in OCM reaction was studied

with varying temperature, methane tcrQxygen ratio and sweep gas flow rate.

2.2.1) Effect of temperature

Figure 4 shows the results of methane conversion, C2+ selectivity, C2+ yield

and oxygen permeation flux at varying temperature. The air flow rate was maintained

at 150 cm3/min and CH4/02 ratio at 3. The methane conversion was found to increase

with respect of temperafure (700-900oC) as well as the C2+ selectivity and yield.

However, the C2+ selectivity decreased in lower temperature region, indicates that

lower temperature is less conducive to the C2+ formation due to the low catalytic

activity. In contrast, the oxygen permeation flux obtained was 2.08cm3/min.cm2,

which was remarkably higher at low temperature (700°C), although the C2+ formation

was less impressive. It was observed $at the oxygen permeation flux dropped

intensely at temperature 750°C but started to ascend moderately with the increment of

temperature. The rise of oxygen permeation flux after 750°C was mainly influenced

by the active OCM reaction as the methane conversion and C2+ selectivity increased

with respect to temperature. The highest C2+ selectivity of 67.5% was obtained at

around 800-8250C and started to decline after 900°C.
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Figure 4 Temperature profile of OCM performance in catalytic membrane reactor
with CH4/02 ratio = 3, air flow rate =150 cm3/min and mixture of 48.6% CH4 and
51.4% He = 194.5 cm3/min.

2.2.2) Effect of methane to oxygen ratio

The effect of CHJ02 ratio between the ranges of 0.5-3 to the performance of

OCM reactions was presented in Figure 5. Methane conversion, C2+ selectivity and

C2+ yield unanimously increased with the increment of CH4/02 ratio. The oxygen

permeation flux was observed reduced with the increment of methane concentration

in the tube side. The highest oxygen permeation flux was at 2.6cm3/min.cm2when the

CH4/02 ratio was 0.5, bpt the OCM activity was the lowest at this point. This

circumstance was mainly assigned to the recombination of lattice oxygen to gaseous.,.
oxygen has predominantly occurred on the membrane surface exposed to OCM

reaction. However, one could observe that the high oxygen flux reduced in a sliding

pattern at the smaller CH4/02ratio but almost maintained at l.5cm3/min.cm2 when the

C~/02 ratio was within the range 2-3.
;,
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2.3) Comparison of catalytic membrane reactor and packed bed catalytic

membrane reactor in OeM

The perfonnances of catalytic membrane reactor (CMR) and packed bed

catalytic membrane reactor (PBCMR) it). OCM optimum conditions were studied and

compared. The packed bed .catalytic membrane reactor has the similar reactor

assembly as catalytic membrane reactor, but distinguished with the existence of a

catalyst bed weighed O.4g and packed in the center of the membrane tube as shown in

Figure 6.

oxygen

catalyst
bed

MIEC
-J--H---t--- membrane

C2 hydrocarbons,
COX, H20, H2

Reactor
casing

_00'-~ It----Thermocouple

oxygen

i,

C2 hydrocarbons,
COx, H20, H2

methane --~ll ~:-"iI-Thermocouple

[;-j I!I I f-'

oxygen -r1ti~II ~f =::
i I H - . MIEC

Reactor :' f: 1 -t-- membrane

casing i; m' tj I
I I ~) ! g J
bJ I ,I i~l~' oxygen
I ! I ILJ 1

\II

~--_. __._---_._.__ . _.

Figure 6 Schematic diagram of (a) Catalytic Membrane Reactor (CMR); (b) Packed
Bed Catalytic Membrane Reactor (PBCMR)



Performances of CMR and PBCMR were compared at temperature 850°C,

sweep gas flow rate 100cm3/min, air flow rate 150cm3/min and CH4/02 ratio of 3

(Table I). CMR showed its superiority over PBCMR with higher degree of methane

conversion and C2+ selectivity. The C2+ yield obtained from CMR was almost 2.5

times greater with 34.73%. The oxygen permeation fluxes of both reactor types did

not differ much.

Table 1 Comparison of CMR and PBCMR performances at T=850oC, CH4/02 = 3, air

flow rate = 150cm3/min and He flow rate = 1OOcm3/min.

Reactor type Methane C2+ Selectivity C2+ Jo
Conversion (%) Yield 2

(%) (%) (cm3/min.cm2
)

Catalytic membrane 51.55 67.37 34.73 1.3973
reactor (CMR)
Packed bed catalytic 36.35 39.59 14.39 1.2203
membrane reactor
(PBCMR)

3) Conclusions and Suggestions

In present study, catalytic membrane reactor (CMR) performed better than

packed bed catalytic reactor (PBCR) and packed bed catalytic membrane reactor

(PBCMR) in OCM reaction. However, improvements are needed in the future study

especially in tackling the sealant problem of the quartz tube and membrane tube.

Leaking of the reactants from the shell side to the tube side of the reactor has

influenced the results duhng OCM reaction. A perfect sealant without defect with

highly adhesive was not repdhed yet in literature and it is still in search. Besides, the

membrane should be dense sufficiently to prevent the diffusion of gases from the tube

side to the shell side of the reactor. It is suggested that the porous support should be

coated with a layer of mesoporous material before the dip-coating of the mixed ionic-

electronic conducting membrane. \

Apparently, reactor configurations affected the OCM results and it was

showed that catalytic membrane reactor has a great prospect in providing a promising

C2+yield in OCM reaction. The commercialization of OCM process will be realized in

a very short future.
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ABSTRACT

The rising price of crude oil recently has spurred the researchers in searching for better
alternatives intensively for the benefits of global economics. Natural gas in abundant
deposits however is potentially to be converted to more valuable fuels and chemicals that
may help in mitigating the triggered bearish sentiment in the crude market and as a
demulcent for the oil tightness. Oxidative coupling of methane (OCM) is one of the
promising routes in utilizing the low cost natural gas to the production of ethylene, which
may provide a cost-effective way to convert natural gas to olefins compared to the
convectional thermal cracking of ethane. The limitation of the low yield of ethylene
product « 30%) by using OCM has diminished the industrial interest. It is undoubtedly
that the future and ongoing developments in ethylene technology will take their
momentum from both market forct:s and t;chnological advances. This overview is
attempted to discuss some of the d;;velopments and outstanding oppOlitmities in the
emerging area of cataiytic membnwe reacto;' aDd thf: development of catalyst in order to
overcome this prohlem. Recent developments of GeM will be presented, converging to
the special emphasis in catalytic membrane reactor, which shows its good prospects to be
implemented and commercialized industrially. The utilization of natural gas by using
OCM is a promising route since the preferred route to ethylene will be the one based on
the cheapest raw material, minimum energy consumption and low investment.

Keywords: OCM, Catalytic membrane reactor, Ethylene, Oxygen Permeable Membrane.

1 INTRODUCTION

The oil crisis since 1970s has spurred and provoked the scientists and researchers to other
alternatives in reducing the oil dependence globally. At this critical stage, the closest path
to overcome the demand of oil is by using the abundant hydrocarbon resource, i.e. natural
gas, which is mainly used as clean··burning fuels and production of chemicals. The
estimated world natural gas reserves is 1.735 x 10 14 m3

, which is almost 6 times greater
than the crude oil reserves over the world and it is widespread over the world (Energy
Information Administration, 2002). The abundc\nce of natural gas reserves is not the only
reason that shifts the attentions of researchers, but also the special characteristics of
natural gas as the cleanest, safest, and most useful of all energy sources. Comparatively,
the low cost natural gas is more beneficial as cheaper raw material that may reduce the
cost of production, thus will diminish the inflation and meet the demand of global market.
Methane, as the main constituent of natural gas, can be converted into more valuable
chemicals such as methanol, formaldehyde, syngas and ethylene. Ethylene as the vital
chemica! building block in producing products such as polyethylene, ethylene oxide,
ethanol, and styrene, has a major portion in the global market. Most of the ethylene is
made by the thermal cracking of any naphthenic or paraffinic hydrocarbon heavier than
methane; the amount of ethylene and by-products formed will depend upon molecular
weight of feed. Today, ethane from natural gas is another alternative that promises a
cheaper feedstock in the production of ethylene. Since the percentage of ethane in natural
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. gas is .small as com?ared to methane, thus 0.xi~t~vecoupli~~''Qrmeth81le;/eVicesa more
attractive and endunng path on the edge of 011 cnSlS. ,i';:;'\;";:;~'F;,' . ."~J.;; S,/,~~; ,

Oxidative cou?ling of met~ane (abbreviated as OCM)is~neof;thefihighiy,viable'"
means o~ process m the productiOn of ethyle~e from methane. The promising result of this
process IS first reported by Keller and Bhasm at 1982, and thence a myriad of research
works have been studied extensively varied from type of catalysts, reactor configurations
and operating processes. However, the limitation of the low yield of ethylene product «
30%) by using OCM has diminished the industrial interest and many research works are
hitherto been developed and improved to meet the interest threshold. T1l.is-ove~iewisth.e

introduction of the oxidative coupling of methane in general basis, further emphasizing to
the development of catalyst and the prospects of catalytic membrane reactor in OeM for
the purpose of industrial commercialization.

2 OXIDATIVE COUPLING OF METHANE

The production of ethylene from the utilization of natural gas is a promising route as
compared to the conventional ethane thermal cracking and naphtha steam cracking
processes. Oxidative coupling of methane is an exothermic process involves the catalytic
conversion of methane in presence of oxygen to ethane, which is further converted in situ
into ethylene, and other sequential reactions produce small amounts of higher
hydrocarbons (often reported as C2+ products).

2.1 CATALYSTS IN OCM

The study of catalyst performance, its active sites, cataiytic activity/selectivity, stability,
reproducibility, preparation mEthod and properties in OCM have been extensively
reported. Several catalysts were elaboraterl and found to be effective in this complex
heterogeneous-homogeneous process and ;ome recent sturlies are presented in Table I.
Parameters of metal oxides, such as bflsicity, band gap, and electrical conductivity are
some impOliant parame[ers in affecting' the catalyst performance. Tht: more effective
catalysts are divided into five groups: a) highly basic pnre oxides, of which the early
members of the lanthanide oxide series (excluding Ce02) are the best; b) Group IA or IIA
ions supported on basic oxides (for example, Li/MgO, Ba/MgO and Sr/La203);
c) monophasic oxides; d) a few transition metal oxides that contain Group IA ions; and
e) any of these materials that are promoted with chloride ions (Lunsford, 1995a). Catalyst
Li/MgO has been widely studied (Lunsford et aI., 1995a) due to its appreciable catalytic
activity in OCM. Improvement in the methane conversion, C2+ products yield and
selectivity can be achieved by doping other components such as Ce, La, Sn, Ti and B
(Nagaoka et al., 1999), .which are believed, to improve the catalyst activity and stability.

TABLE 1 Methane Conv....sion Yield and Selectivity of C2 Product for Several Catalysts,
Reaction Results (%)

References Temperature Catalyst C2 C2 CH4
(K) yield selectivity conversion

Lunsford et al. 1123 - MnfNa2W04/Si02 10.7 79.4 13.5
(1998) - MnlNa2W04/MgO 8.8 86.4 10.2
Hong et al. 1023 - CaC12-promoted 22 59 39
(2001) Ca2P04Cl
Lee et al. 923 - Oz-pretreat~d Ni3(SbTe3)2 11 79 25
(2002)

,

Ji et al. 1073 - Na2W04-Mn/Si02 19.6 66.4 29.5
(2003)
Chou et al. 1053 - Sn02 modified 5% 24.1 73.1 33
(2003) Na2W04-2% Mn20) ISi02

Dedov et al. 1123 - La-Ce/MgO 16.1 72.4 22.3
(2003)

Several papers were addressed to the rare earth oxides supported on basic materials or
promoted with alkaline oxides as catalysts for the OCM (Dedov et aI., 2000; Yu et aI.,
1998). The productivity of these systems may be attributed either to the catalyst basicity or
availability of the activity sites as oxygen vacancies and/or other defects important for
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oxygen activation. A considerable research work has been conducted by Dedov and co- .
workers, 2003 on various components, such as Ce02, Tb40 7, La203, Y203, Tm203, Sm20 3,
Yb203' EU203, La-Nd, La-Pr-Nd, La-Ce, La-Ce/MgO and the mixture of components. The
best result is shown by using Ceria-Ianthana supported on MgO, in which the addition of
Ce to La furnishes detectable enhancement of the catalyst efficiency in C2+ production.
The chloride-containing oxides constituted effective catalysts for OCM that enhance both
the conversion and selectivity. CaCh-promoted calcium chlorophosphate is one of the
chloride-containing catalysts that exhibited good catalytic performance, where the
presence ofCaCh yielded high ethylene selectivity (Hong et aI., 2001).

Other efforts have been emphasized on the Na-W-Mn/Si02catalyst system, which had
been one of the most effective catalysts reported (Palermo et aI., 1998; Lunsford et al,
1998a; Ji et aI, 2003; Chou et al., 2003). PalernlO and co-workers reported that the full
trimetallic formulation MnlNa2WOJSi02 calcined at 750°C can generate an excellent
catalyst in terms of high C2 selectivity (80%) at high conversion (33%) at reaction
temperature 1123K andtotaLflow -rate-I8 ml/min. The structural, catalytic, and
spectroscopic results indicated that Na plays a dual role both as a structural and chemical
promoter, the phase transition from the amorphous silica to a-cristobalite is a critically
important requirement for the production of effective catalyst (Palermo et aI., 1998). The
characterization of this catalyst has led to the conclusion that tetrahedral W04 surface
species with one W=O and three W-O-Si surface bonds as the OCM active site, with
manganese oxide enhancing the exchange between gaseous and lattice oxygen (Wu et aI.,
1995). Many studies have been done on this catalyst by Lunsford and co-workers and they
compared the catalytic behaviors of NaW04-Mn/Si02, Na2W04-Mn/MgO and
Na2WO~/MgO, which are suggested that Na-O-Mn species an: the most probable active
sites (Lunsford, 1995b & 1998b).

2.2 DEVELOPMENT OF CATALYTIC MEMBRANE REACTOR IN OCM

An appropriate system of catalysts may enhance OCM performance as mentioned in
previous section. These results are quite interesting, but stili fall short of the commercial
viability threshold, typically producing yields lower than 30%. It is reported that
dissociation of oxygen is a necessary requirement for the generation of methyl radicals
and the subsequent coupling of methyl radicals to ethane and ethylene. Membrane is
suggested as the best alternative in this role of reactant distribution. Thus, researchers have
prompted in developing membrane reactor in improving the production of ethylene in
OCM.

Various types of membrane reactor have been proposed such as inert membrane,
catalytic membrane, composite membrane, porous membrane and dense membrane, which
are classified according to t~eir characteristics in selectivities and permeability. BotD of
these characteristics are determined by the interaction between the membrane and the
permeating molecules which gives rise to the different transport mechanisms. Inert
membrane reactor is differentiated from catalytic membrane reactor, the fonner has
catalyst packed in the inner tube of membrane, or apart from the membrane structure;
whereas the latter has catalyst doped or coated on the surface wall of the membrane,
which behave as both the reactant distributor and reaction site. When the separation and
reacticn processes are combined into a single unit, the membrane, besides providing the
separation function, also often results in enhanced selectivity and/or yield.

2.2.1 Development of Oxygen Permeable Membrane,

The traditional meaning of the term membrane is associated to the concept of a permeable
or semi-permeable phase, often in the fonn of thin film, made from a variety of materials
such as inorganic solids and polymers, which is capable of imposing certain restrictions on
the permeation flux of some substances. Thus, in selective permeation membranes only
certain molecules meet the permeation requirements, and the membrane acts as a barrier to
block the other substances (Coronas & Santamaria, 1999). A solid-state electrochemical
reactor using stabilized zirconias (principally YSZ) has been applied in OCM studies
(Lapena-Rey and Middleton, 2003). The limited electronic conductivity ofYSZ needs the
usage of external voltage (typically between 0.1 and 1 volt), which imposes an electrical
current through the membrane. A considerable C2+ selectivity of 86% but low C2+ yield
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4% was obtained. The application of electrochemical reactor in OCM is an interesting
discovery but it is not applicable in industry due to the need of external voltage over the
membrane. In recent years, some research efforts have been directed toward searching for
ionic conducting membrane, which will enhance the oxygen permeation flux in membrane
reactor as given in Table 2.
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bTpTABLE2 0 xygen ermea 1 lty of Different Membrane from Llterature

Kererences Reactor Membrane
O2permeation

flux

Xu, N. et a1. Quartz tube ZrOrdoped SrCoo.4Feo.603_o 1.3 ml/min cm2at
(1999) membrane disk 1223K
Wang et a1. Quartz tube Bao.sSro.sCoo.sFeo.203.0 tubular 1.12 ml/cm" min at
(2002) membrane 1143K
Yang, N. et al. Quartz tube La2Nio.sFeo.204+o membrane disk > 1 ml/min cm- at
(2003) 750K
Tan et al. Quartz tube Ag doped SrCoo.SFeO.203.0 (SCF) 3 ml/min cmz at
(2004) membrane disk 1250K
Deng et a1. Alumina tube SrGeo.tCoo.SFeO.103.o 1.24 mllmin cmz

(2004) membrane disk at 1173K
Li eta1. Alumina tube I Zr02 and iso-molar excess BaO 1.69 ml/cm2 min at
(2004) doped BaO.5SrO.sCoo.sFeo.203-o 1250K

membrane disk
Akin & Lin - quartz shell Fluorite-structured 0.041-0.92 ml/min
(2004) - mullite support Bi 1.5YO.3SmC.203-J (BYS) -mixed cm2 at 1203K

tube I conducting tubular membrane
I

Ionic conducting dense membranes are lIsed for molecular scale separations involving
gaseous mixture, su;::h as oxygeil separ.atioi1. These membranes .made of ceramic and
consist of solid oxides (ZrO", Y203, Biz0 3) as well as of solutions of mixed oxides
(verovskites, browmnil!erites, etc.), \vhich ast as solid electrolytes ai!ov,;ing the transport
of oxygen (Marcano and Tsotsis, 2002). Cera:nic membranes have the advantages of
being chemically inert ad stable at high temperatures, conditions under which polymer
membranes fail. Separation through dense ceramic membrane is governed by a solution­
diffusion mechanism (Baker, 2004), which the driving force is oxygen partial pressure
gradient across the membrane.

A noteworthy application of oxygen permeable membrane is using air as the reactant
to separate oxygen that may penneate through the membrane and further catalyzed to react
with methane (Dixon et aI., 2000). Wang and co-workers, 2002 have successfully
separated oxygen at penneation flux 1.12ml/min.cm2 from air at flow rate 150ml/min and
temperature 875°C by using Bao.5Sro.sCoo.sFeo.203.o membrane. The oxidative reaction by
using air as an economical oxygen source is highly potential in demonstrating a cost

-~reduction process (Xu &itThomson, 1997; Zeng & Lin, 2000). Due to the mixed electron
and oxygen ion conducting properties, these membranes are permeable to oxygen at
elevated temperature without the need of outside electrical circuitry for electron
transportation, which is necessary in traditional oxygen pumps (Shao et aI., 2000).
Perovskite-type (AB03) ceramic membrane is one of the highly ionic and electronic
conductivity membranes that exhibit the highest oxygen permeability.

Two of most widely studied membranes, SrCoo.SFeO.203.o and Lao.6SroACoo.sFeo.203 are
addressed individually by exchanging of the mixture composition (Xu & Thomson, 1997;
Diethelm and Van herle, 2004), or bY. doping/addition of metal ions to improve the
structure stability and oxygen permeability (Xu, N. et aI., 1999; Wang et aI., 2002; Yang,
L. et al., 2003; Yang, N. et aI., 2003; Tan et al., 2004; Deng et aI., 2004; Li et al., 2004).
Akin and Lin have proposed the fluorite-structured Bil.5YO.3SmO.203-o (BYS) membrane by
considering the effect of reaction side condition in OCM, where the oxygen permeation
depends strongly on the oxidation reaction rate and reactant flow (Akin & Lin, 2004).
However, oxygen permeation flux reported for most of these membranes are still lower
than the industrially targeted values, which are 5-10 ml/min cm2 at temperature range 973­
1223K (Lin, 2001). Other considerations of membrane synthesis have to be taken into
account for the application in OCM, especially in preventing the permeation of methane
through the membrane to the air feed side. This is an arduous task due to the. slight
difference of kinetic diameter between methane (3.8A) and oxygen (3.46A).
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FIGURE 1. (a) Oxygen separations and chemica! reaction on membrane surface and
(b) schematic diagram of catalytic mcmbrq,ne reactor for the production of ethylene.

Catalytic membrane reaete, shov.'s a !i:rther 'intriguing appiica~ion: the reaction site is
extended along the membrane inner wall, thus reaction is faster with higher selectivity and
yield, at the same time reducing the hot spot as exist in catalyst packed-bed. Catalytic
membrane reactor has the potential to advance the process industry by enhancing
selectivity and yield, reducing energy consumption, improving operation safety, and
miniaturizing the reactor system. The prospects of catalytic membrane reactor with mixed
ionic/electronic conducting membrane for oxidative coupling of methane seem good as to
render the technology economically competitive. However, performance has to be
improved relative to present day state-of-art.

t
2.2.3 Recent Problems and Ch~llenges of Oxidative Coupling of Methane

'iC

Rece~tly, there is a great incentive in developing packed bed membrane reactor (PBMR)
and dtalytic membrane reactor (CMR) for oxidative coupling methane and numbers of
research papers have been published as presented (Nozaki et aI, 1992; Santamaria et aI.,
1994; Coronas et aI., 1997; Lu et aI., 2000; Xu & Thomson, 1997; Dixon et aI, 2000; Zeng
& Lin, 2000). However, their implementation in industry is still lack of interest due to the
low production; for these are just preliminary discovery and further improvement are
needed. Some rese[l[chers have proposed studies on the modified porous ceralnic
membrane by coating catalyst on a porous alumilta tube (Nozaki et ai, 1992); or packed
catalyst inside the membrane tube (Coronas et aI., 1997); or treating the membrane tube
with La(N03)3 aqueous solution for thermal stabilization with packed of catalyst within
the membrane tube. also called as packed bed membrane reactor (Lu et aI., 2000). These
works were found to be ineffective in terms of ethylene yield and selectivity because
porous membrane is poor in controlling oxygen permselectivity, and the permeability of
methane to the air side might occur. In addition, the reactant stream in a packed-bed
catalytic membrane reactor bypassing the catalyst packed in the reaction side may occur if
there is insufficient pressure drop across the membrane. This discovery has encouraged
other researchers in searching for better membrane reactor design, such as the replacement
of porous membrane tube by ionic-conducting perovskite-type oxide membrane (Xu &
Thomson, 1997; Dixon et ai, 2000) and dense fluorite-structured membrane (Zeng & Lin,
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2.2.2 New Emerging Application ofCatalytic Membrane Reactor in OCM

An innovation in recent years has been to develop processes with reduced overall
environmental impact and towards greater economic. The development of catalytic
membrane reactor has sparked the revolution of technology, which create a synergistic
combination involving chemical reaction sequence with a membrane-based chemical
separation. In OCM, catalytic membrane reactor is functioned as the combined unit for
methane coupling reaction and oxygen separation synergy on either side of the membrant:._
wall as schematically illustrated in Figure I (a) and 1 (b). Figure l(b) shows the catalytic
membrane reactor, which resembles the shell and tube configuration by using ionic
conducting membrane tube Air is fed at the shell side and oxygen is separated by
permeating through the membrane into the tube side; at the same time methane at the tube
side is activated by the oxygen active species, 0 2

- and may couple to form C2+ products.
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2000; Akin & Lin, 2004), where the membranes have both oxygen permeable membrane
and catalytic behavior for methyl couple reaction as presented in Table 3.

Table 3 Reported results ofCMR performance in OCM

TypeofCMR Temp. of Oxygen CH4 C2+ C2+

Reaction Permeation conversion selectivity yield References

(K) Flux (%) (%) (%)

(mllcm2min)

Lao.6SrO.4Coo.2Feo.803-~ 1098 0.35 4.1 26.46 1.08 Xu

disk membrane &Thomson
(199~)

BaCeo.8Gdo.203 1053 0.04 26 62 16 Dixon et al.,

Tubular membrane (2000)

Bi1.5YO.3SmO.203-~ 1203 0.1 15 69 10.4 Akin & Lin

tubUlar membrane (2004)
_. -

These have a remarkable potential though the technological gap is still exist in
achieving the industrial practice. The main challenge is the fabrication of ionic conducting
membrane, where solid state reaction/isostatic pressing method (easier method) was
mostly used by researchers, which is not applicable in industry. Suggestions that the
membrane used should be easily provided in market, which has a uniform distribution of
pore size and the modification can be done by coating the desired ionic conducting
material and catalyst on the membrane. Sol gel method is one of the methods for dip
coating the ionic conducting material and catalyst on the membrane (Yang, N. et aI, 2003;
Shaula et al., 2003). The membrane reactor ~tudies reported fUlther enlightened possible
application opportunities but also strengthened the consciousness that the problems
relating to limited thermodynamic stabiiity and poor dimensional stability of membrane,
and to accomplish the requirements for industrial commercialization.

3 CONCLUSION

The rising price of crude oil up to US$ 48 per barrel has indirectly soars the ethylene
prices especially from those naphtha-based ethylene producers. Oxidative coupling of
methane by using catalytic membrane reactor is one of the promising routes. The most
favorable catalysts are Li/MgO and Mn-Na2W04/Si02, which presented the highest C2+

product selectivity and yields. By integrating the high permselective, thermally stability
mixed ionic/electronic conducting membrane and coated with catalyst, it is anticipated
that OCM will be successfully to be industrial commercialized and bring more benefits to

the global market.
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Abstract: The statistical design ofexperiments (DoE) was used in the process study ofoxidative coupling ofmethane
(OCM) over Na-W-Mn/SiOz catalyst. A set offactors with a certain range was screened using factorial design with
respect to three responses: methane conversion~C2:rproducts selectivity a.nd ethylene/ethane ratio. The variances
were analyzed and the interaction effects of the process parameters were evaluated. With the understanding of
the process, the optimization of the process was further studied using response surface methodology coupled with
central composite design (CCD). The optimum conditions were obtained as reaction temperature = 850°C, gas
hourly space velocity =23947 cm3 g-l h-1 , catalyst pretreatment period =2 h, dilution ratio =0.2 and CH4/OZ ratio
= 7. 40.55% of methane conversion and 79.51% of C z+ product selectivity were obtained under these optimum
conditions. Experimental runs under optimum conditions were repeated and compared with the simulated values
obtained from the model. There was good agreement between the experimental and simulated values.
© 2007 Society of Chemical Industry

Keywords: oxidative coupling of methane (OCM); design of experiment (DoE); interaction effects; optimization;
Na-\X7-Mn/SiOz catalyst; ethylene

INl"F:ODUCTION
The oxidative coupling of methane (OCM) has been
widely studied since the 1980s and it was hith­
erto believed that this process had the potential and
capability of overcoming the hurdle of economic con­
straints oflow yield of ethylene «30%), which greatly
reduced industrial interest. Thus, a great deal of
effort has been devoted to improving ethylene pro­
d~ction in OCM by developing hi~ly active and
selective catalysts and modifying the' reactor config­
uration (packed bed reactor, fluidized ~ed reactor,
membrane reactor, microwave and RF (radio fre­
quency) plasma reactor, etc.). This single-step direct
conversion of methane to ethylene has proved effec­
tive over a wide range of metal oxide catalysts. The
ethylene yield, however, was restricted by the het­
erogeneous and homogeneous reaction of complete
oxidation to carbon oxide in both the catalyst sur­
face and the gas phase. Most of the reported studies '"
on OCM focused on the investigation of the intrinsic
reaction between reactant and catalyst surface over a
myriad of metal loadings. I - 5 There are several vari­
ables involved in the OCM process. Our previous
work has simulated the plug flow reactor perfor­
mance in OCM using LaZ03/CaO catalyst. 6 A list
of parameters were studied based on the 'one-factor

at a time' approach but the results implied that there
is a need to search for optimum process conditions for
the production of ethylene. Furthermore, the effect
of interaction between factors was neglected during
the modeling, leading to the possible misinterpre­
tation of factors operating in the process study of
OCM, In continuation of the previous work of elu­
cidating the influence of each factor under plug flow
reactor conditions, design of experiments (DoE) was
employed in the current study using a trimetallic cat­
alyst system, Na-W-Mn/SiOz, one of the most stud­
ied three-component catalysts.7 - 1Z Na-W-Mn/SiOz
demonstrated a promising result with 20% of methane
conversion and 80% CZ+ selectivity at a ratio of 7.4
and is stable for up to 97 h of reaction time.7 This cata­
lyst was studied over a range of parameters: operating
temperature 775-850°C, gas hourly space velocity
(GHSV) 18500-165000cm3 g- 1 h- 1 and CH4 /O Z

ratio 3-7.5 under different conditions.8 - 1Z So far,
there is no reported work on the optimization study
in OCM using this three-component catalyst but the
catalyst morphology, basicity and electrical properties
presented in the literature provide a better insight into
the catalyst development.

The understanding ofreaction mechanisms involved
and the effects of factors in the OCM process are
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definitely important to the further development of this
technology, and thus the present study is focused on
the process of OCM by determining the optimum
process parameters in maximizing Cz+ yield using
DoE coupled with response surface methodology
(RSM). DoE provides a better understanding of the
relationship of the factors and responses that govern
the performance of the three-component catalyst in
the OCM process. Consideration of the interaction
effect ofprocess parameters may merit a more accurate
prediction in optimization studies.

I

I.

Methane conversion: XCH4 (%)

moles of CH4 converted
= x 100 (1)

moles of CH4 in feed

Selectivity of C Z+ product: Sc2+ (%)

L(n x moles of C,I

in products) x 100 (2)
moles of CH4 converted to

all products

Yield of CZ+ product: Yc 2J%)

= methane conversion x Cz+ selectivity (3)

where n is 2.

and the temperature along the catalyst bed inside
the reactor was measured by another thermocouple
and monitored using the temperature controller, so
that the exothermicity of the reaction could be
detected easily by observing the temperature difference
between the furnace and the catalyst bed. Reactant
gases CH4 (99.92%), oxygen (99.8%) and nitrogen
(99.999%) were co-fed into the reactor without further
purification. Methane flow rate was regulated by an
MKS (Wilmington, MA, USA) lliass flow controller
(Model 246c), whereas mass flow controllers (Brooks
5890; Emerson Process Management, Hatfield, PA,
USA) were used to regulate nitrogen and oxygen gas
flow rates. A cold trap was placed at the outlet of
the reactor to separate any condensed water vapor
from the reaction product. Figure 1 shows a schematic
diagram ofthe experimental set-up used in the present
study. The volume shrinkage of the outlet flow caused
by condensation of water vapor was considered in
the calculation. The reaction products were analyzed
using an online gas chromatograph HP 6890 (Hewlett­
Packard, Waldbronn, Germany) equipped with a
flame ionization detector, using a Poropak Q column
(Hewlett-Packard) for the separation of CH4, C ZH 4 ,

C ZH 6 and C3H a, and a thermal conductivity dete<:;tor,
using a 0.5 nm molecular sieve column for the
sep8.ration of Hz, O2, COz, Nz and CO. Blank runs
in the quartz tube vvith the quartz wool showed
negligible conversion under the reac:tion conditions.
The methane conversion and C Z+ products (ethylene
+ ethane) selectivity are defined as follows:

.,

Characterization
X-ray diffraction patterns of the fresh and used
catalysts were conducted on a Philips (Almelo,
The Netherlands) PW 1820 system with Cu Ka
monochromatic radiation at 28 values of 10-90° with
a step of 0.10°/5 s at room temperature.

EXPERIMENTAL
Catalyst preparation
5 wt% NaZW04-2 wt% MnlSiOz catalysts were
prepared using two different methods: incipient wet­
ness impregnation11 and mixture slurry,13 respec­
tively. Synthesis of catalyst using the incipient wetness
impregnation method was carried out by impregnat­
ing the silica gel support (Davisil, 636, 35-60 ME;
Sigma-Aldrich, St Louis, MO, USA) with aqueous
solutions in appropriate concentrations of Mn(N03)z
(AR, Merck, Rahway, NJ, USA), evaporated to dry­
ness and dried in air at 130°C. The material was
cooled to 25 DC, followed by ir.tl'oductiofi of aque- ~

aus solution with the appropriate conce!ltration.,Df
NazW04. (AR, Merck). The resulted mixture was wefl
mixed and evaporated to dryr.ess. The catalyst was
dried in air at 130°C for 8 h, followed by calcination
at 850 °C for 8 h. It was then pelletized, crushed and
sieved to 40/60 mesh. In the mixture slurry method,
silica sol (30-50 wt%, Sigma-Aldrich) was used as the
silica precursor, which was added with an appropriate
amount of Mn(N03)z and NazW04 . After stirring
the mixture at 80°C for 5 h until homogeneous, the
mixture was dried overnight at 100°C and calcined
at 850°C for 8 h as with the previJus method and
the resulting powder was crushed and sieved to 40/60
mesh. -F

Catalytic activity test
The catalytic activity test was conducted in a single­
pass plug flow reactor consisting of a stainless steel
casing with and without a quartz tube liner (Ld.
10 mm). 0.4 g of catalyst was packed and retained in
the quartz tube liner by quartz wool above and below
the catalyst bed. The remaining space of the reactor
below the catalyst bed was filled with quartz wool
to reduce the free volume and to minimize further
reaction of the desired product in the post-catalytic
volume. 11 A K-type thermocouple was attached to the
outside wall of the reactor to monitor the furnace,

RESULTS AND DiSCUSSION
Characterization
The crystalline phases of fresh and used catalyst
are shown as X-ray diffraction (XRD) patterns in
Fig. 2. After calcination at 850°C, the silica support
was transformed from an amorphous phase to a­
cristobalite phase.8 It was reflected significantly with
the existence of crystalline phases of NazW207,

Naz\V04 , Mnz03 and a-cristobalite on the fresh
catalyst (Fig. 2a). Both the crystalline phases of
NaZW Z0 7 and NaZW04 inferred that Na has a higher
affinity to combine with W04 than Mn.9 The used
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catalyst, which was tested in OCM reaction for 5 h,
did not show any substantial differences in the XRD
patterns compared to the fresh catalyst (Fig. 2b). The
crystalline phase of quartz, however, was exhibited in
the used catalyst, which is due to the exothermicity
of the high-temperature reaction (an increment of
>30°C from the operating temperature) resulting in
the quartz phase appearing in the used catalyst. 13

Therefore, it could be concluded that there was a
strong interaction between sodium (Na), tungsten
(W) and manganese (Mn) with the silica support,
in which the phase transition of amorphous silica to
a-cristobalite is crucial to the high performance of
catalyst in the OCM reaction, and which will occur
only after the catalyst is doped with Na, Wand-Mn.

Catalyst activity
In the preliminary study of the OeM process two
types of reactor were used and the performance of
the Na-W-MniSiOz catalyst in terms of catalytic
activity was determined. The plug flow reactor without
quartz liner gave low selectivity and therefore lower
yield of CZ+ product as compared to the reactor with
quartz liner. The best performance in the stainless
steel reactor was 24.2% of methane conversion, ,.
37.4% selectivity of C2+ product and 9.05% of C2-+
yield at 780°C, 9000 cm3 g-l h- l of GHSV without
dilution and a CH4/02 ratio of 4. A large amount
of co!<e [ormation was observed due to the reaction
of the stainless steel and the reactant gases at high
temperature. It is important that an inert material of
construction be used for the reactor in the OCM
process. In the present study, a quartz liner was
used in the stainless steel casing in order to avoid
contact of reactant gases with the stainless steel.
It was observed that there was no Icoke formation
during reaction in the quartz reactor. Mass balance
for the carbon atom based on the conwosition and
flow rate of inlet and outlet gases was better than 5%.
A series of experimental runs was conducted over the
Na-W-Mn/SiOz catalyst.

Process stUdies
Several relevant factors were screened and analyzed
using factorial design and ANOVA, respectively, prior \
to optimization of the process. The range of param­
eters involved was decided based on the reported
studies in the literature.x

l-l In order to collect as

Table 1. Independent variable range at low and high level

Low High
Factor level le\lel

Factors Unit code (-1) (+1)

Temperature °C A 750 850
GHSV cm3 g- 1 h- 1 B 18000 35000
Pretreatr;:ent time h C 0 2
Dilution ratio D 0.2 0.5
CH4/02 ratio E 3 7

84

much pertinent information on the process as possi­
ble, five independent variables were selected for study
with the three responses: (a) methane conversion,
(b) selectivity of CZ+ product and (c) ethylene/ethane
ratio, as presented in Table 1. The relationships
between the variables and responses were obtained
using regression analysis of Design Expert (Stat-Ease,
Minneapolis, MN, USA) 6.0.6 software. Interactions
between the process factors and the effect of each
factor on the responses were also Cjvaluated.

A full factorial design required a total run of 32
experiments. Since some of the combinations of effect
terms were aliased, a single-replicate two-level half­
fraction factorial design with 16 runs of experiment

... was condlicted in a random manner. The design
matrix and response data obtained are presented in
Table 2. The yield of C Z+ was not included as the
response in this factorial design, as it could be obtained
from the multiplication of methane conversion and
C2+ selectivity. A reproducibility test was performed at
a selected condition as shown in Table 2, runs 16-18.
Three of the responses are acceptably reproducible
but the data for C Z+ selectivity deviate most, with a
standard deviation of 1.3343.

Conversion vi methane
The ANOVA for methane conversion was obtained
and the two-level factorial model in ter!l1S of coded
factors is represented as follows:

CH4 conversion (%) = 35.24 + 1.24A - 3.44B

+ 2.69C - 3.42D + 2.30E + 5.16AB

- 0.96AC + 1.69AD + 0.23AE - 4.23BC

+ 2.53BE - 2.89ABE + 7.06ACD (4)

The ANOVA of this model (Eqn (4)) with a 'Prob
>F' value of 0.1748 (greater than 0.05) implied that
the model was not significant relative to the pure
error. The value of 'Prob >F' of all the selected terms
in Eqn (4) was found to be insignificant to methane
conversion, though the model terms AB, BC and ACD
have greater effects over the model, with contributions
of 18.05'%,17.37% and 24.17%, respectively. Thus,
it could be concluded that the process parameters
(operating temperature, GHSV, catalyst pretreatment
period, dilution ratio and CH4 /OZ ratio) did not have
much effect on the methane conversion over the range
of the present experimental study.

A simulated model should be in agreement with
the experimental result and this was normally derived
with a high value of RZ• The methane conversion
predicted from the model (Eqn (4)) was in agreement
with the experimental values, with an RZ value of
0.9709. As mentioned previously, the effects of each
process parameter on the methane conversion were
insignificant but, interestingly, it was found that
there were interaction effects between the process
parameters, which masked the effects of the main
factors on the methane conversion. The interaction is
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Table 2. Experiment matrix of 2(5-1) fractional-factorial design

Factors Responses

Run A- B C 0 E CH4 Conversion (%) Cz+ Selectivity (%) CZH4/ CZH6 ratio

1 850 35000 2 0.5 7 40.43 62.09 1.64
2 850 35000 0 0.2 7 54.45 52.72 2.07

3 750 35000 2 0.5 7 19.96 34.38 0.44
4 750 18000 0 0.2 3 35.96 13.90 1.28

5 850 18000 0 0.2 3 31.93 8.31 1.20

6 750 35000 2 0.2 3 30.98 57.18 1.09
7 750 18000 0 0.5 7 34.77 55.11 0.86
8 850 18000 2 0.5 3 45.94 30.76 3.25

9 850 18000 0 0.5 7 24.34 47.68 1.76
10 750 35000 0 0.2 3 15.08 25.05 1.47
11 750 18000 2 0.5 3 41.83 2.79 1.76
12 850 35000 2 0.2 3 29.66 45.48 2.37
13 850 18000 2 0.5 7 47.46 29.70 2.12
14 750 18000 2 0.5 7 33.48 37.55 0.71
15 850 35000 0 0.2 3 45.86 13.87 1.20

Repeated runs for reproducibility test

16 750 35000 0 0.2 7 31.68 63.75 0.79
17 750 35000 0 0.2 7 32.61 65.75 0.79
18 750 35000 0 0.2 7 31.63 66.28 0.80

Meana 31.9733 65.26 0.7933
soa 0.5519 1.3343 0.0058

a Calcuiat'3d stati::>tic fur reproducibility checking of repeated axperimE:nt!; (run 25 to run 30j.
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commonly defined when the difference in response
between the levels of one factor is not the same
at all levels of the other factors. 19 The interaction
effects of the process parameters on the performance
of CH4 conversion were evaluated from the model
and are shown in Fig. 3. The low level of each factor
was indicated by a '-' sign whereas the high level
was indicated by '+'. Methane conversion increased
at lower operating temperature and lower GHSV
but decreased at higher temperatures (Fig. 3a). It
is advisable to operate at a higher GHSV if the
operating temperature is higher. The lower GHSV

provided higher methane conversion if the catalyst

was pretreated for 2 h, but conversion dropped at the
higher value if there was a greater value of GHSV

(Fig. 3e). There was no significant difference in the
methane conversion if the catalyst was' not pretreated

in spite of the temperature change. Figure 3(f) shows

the possibility of interaction between factors GHSV
and CH4 /OZ ratio if a wider range of GHSV is used.
It was suggested that the methane conversion might
be increased if more methane were introduced into

the reaction zone accompanied by high GHSV. There
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Table 3. ANOVA table of C2+ selectivity

Sum of Mean
Source squares d.f. square F-value Prob >Fa

Model 5805.62 12 483.80 418.79 0.0002
A 0.051 1 0.051 0.044 0.8476
B 263.70 1 263.70 228.26 0.0006
C 99.40 1 99.40 86.05 0.0027
D 84.92 1 84.92 73.50 0.0033
E 1547.07 1 1547.07 1339.16 <0.0001
AB 145.04 1 145.04 125.55 0.0015
AD 653.41 1 653.41 565.60 0.0002
AE 206.51 1 206.51 178.75 0.0009
BC 1232.06 1 1232.06 1066.49 <0.0001
BD 1066.35 1 1066.35 923.05 <0.0001
BE 240.35 1 240.35 208.05 0.0007
ABE 372.68 1 372.68 322.60 0.0004
Residual 3.47 3 1.16
Carr. total 5809.08 15

aValues of Prob F < 0.05 are significant under 95% le';el of confidence.

was no interaction between factors AC, AD and AE
as displayed in Fig. 3(b), (c) and (d), respectively.

Selectivity of C2+ product
A better understanding of the factors' effect on the
OeM process cuuld be acquired by evaluating the "
ANOVA of the C z+ product's selectivity (Tahle"3:),
which is represented by the following equation with
coded factors:

CZ+ selectivity (%) = 28.11 + 0.056A+ 5.74B

+ 3.52C - 4.61D + 13.91E + 3.69AB

+ 9.04AD - 4.40AE + 12.41BC - 16.33BD

+ 5.48BE + 4.83ABE (5)

The model of C 2+ seiectiv~ty wa! significant with
a model F-value of 418.79 and temperature was the
only factor that was insignificant. In th~ case, model

terms B, D, E and BD contributed 17.83%, 11.91%,
26.63% and 16.20%, respectively, and emerged as
the major effects on C 2+ selectivity. However, the
interaction term of the factors were all significant to
the model and thus the main factors' effects were less
meaningful.

The predicted and experimental C2+ selectivity from
Eqn (5) was compared with the RZ value of 0.9994. '
Cz+ selectivity increased at a higher dilution ratio
with the increment of operating tt;mperature and this
can be well comprehended by refeuing to Fig. 4.
At a lower dilution ratio, a better selectivity will be
obtained at lower temperatures (Fig. 4b). At higher
temperatures methane conversion increased but C 2+
selectivity decreased, which may be attributed to the
thermal cracking of methane, ethane and ethylene
or further conversion. of methyl and ethyl radicals
to COx product. Therefore, more diluent should be
introduced into the reaction zone to 'sweep off' the
intermediate product (ethylene and ethane) and, at
the same time, avoiding contact of gaseous oxygen
with the C2+ product. In order to maximize C 2+
selectivity, it was important to examine the role
of diluent to the GHSV of the process. During
cunsideration of the relationship between diluent and
sp~.ce velocity, which were indicated by t.~e dilution
ratio and GHSV, respectively, it was observed thaT C z+
selectivity increased dramatically as GHSV doubled at
lower dilution ratio (Fig. 4e). At higher GHSV, the
Cz+ selectivity reduced if more diluent was fed into
the reaction zone, which diluted the reactant and
shortened the contact time, in consequence alleviating
the coupling of methyl radicals to ethane and ethylene
products. Thus, a higher dilution ratio should be
accompanied by a lower GHSV to provide better
Cz+ selectivity. When the GHSV was at a low level,
C z+ selectivity was better for the catalyst without
pretreatment, and vice versa (Fig. 4d). Consequently,
it could be concluded that the C z+ selectivity increased
with the increment of GHSV at a lower diluti'on
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ratio by using the pretreated catalyst. Under such
circumstances, the effect of temperature over this
particular range was insignificant and therefore could
be neglected. An interaction between factors A and
B might be obser,red if a wider nlllge of paramet~rs
were selected. It can be concluded that interactions
between factors AB, AE and BE were not significant
in this study (Fig. 4a, c and t).

diluent and this may dilute the mixture of gases in
enhancing the conversion of ethane to ethylene, while
carrying the desired product away from the reaction
zone and shortening the comact time of ethylene
and oxygen. However, it ,-,,-,as also favorable to the
CZH 4 /CzH 6 ratio if higher GHSV accompanied by
less diluent was introduced into the reaction system.

CZH4 /CzH 6 ratio
The effect of the parameters on the CZH 4 /CzH 6

ratio was scrutinized to find the conditions that
favored the formation of ethylene. There was a notable
increment of the CZH 4 /CzH 6 ratio fis the operating
temperature increased (Fig. 5), and· this was in line
with the observation reported by Rane et al. ls They
proposed that the conversion of ethan~ to ethylene
is due to the decomposition of more ethyl radicals
and/or thermal cracking of \ethane molecules at a
higher temperature. The CZH 4 /CzH 6 ratio increased
dramatically with the increment of temperature almost
four times regardless ofthe effect of CH4/OZ ratio. In
other words, the interaction between temperature and
CH4 /OZ ratio to CZH 4 /CzH 6 ratio was negligible. The "
CZH 4 /CzH 6 ratio slightly decreased as the CH4 /OZ

ratio increased from 3 to 7. This discrepancy could
be explained by postulating that the existence of
oxygen in a greater amount was initially encouraging
the redox mechanism on the catalyst surface, and
was eventually followed in the gas phase reaction of
hydrogen abstraction from methane, ethane, methyl
and ethyl radicals to ethylene.

There was an interaction effect between the dilution
ratio and GHSV to the C ZH 4 /CzH 6 ratio, as depicted
in Fig. 6. C ZH 4 /CzH 6 ratio increased with the
increment of dilution ratio at lower GHSV, which
demonstrated that a dilution ratio of 0.5 has more

Optimization of OCM process
Subsequently, the model was analyzed and refined to
discard factors having an insignificant effect in the
overall process. Since the ANOVA of methane con­
version exhibited an insignificant model, the factor
screening process was dominated by the ANOVA of
Cz+ selectivity in deciding the factors to be eliminated.
Therefore, the process variable of temperature varia­
tion at 750-850 °C was removed from the model due
to the insignificant effect on both methane conver­
sion and Cz+ selectivity model. Further experiments
were conducted at a fixed operating temperature of
850°C because the CZH 4 /CzH 6 ratio was greater at
higher temperature. The process study was then taken
further, to the optimization study, using response sur­
face methodology16-19 coupled with central composite
design. There were 30 runs in total and the upper and
lower levels of the factors were identical to those in
Table 2, except for the temperature factor, and the
responses are presented in Table 4. Design Expert
6.0.6 software was used to simulate and predict the
optimum conditions based on the experimental data
in Table 4. Six runs were repeated at operating tem­
perature 850°C, GHSV 26500 cm3 g-I h- I, catalyst
pretreated for 1h, dilution ratio of 0.35 and CH4/OZ

ratio of 5. The standard deviations of CH4 conver­
sion, Cz+ selectivity, C ZH 4 /CzH 6 ratio and Cz+ yield
were 3.2033, 5.16046, 1.58 and 0.1951, respectively.
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Figure 6. Effect of GHSV and dilution ratio on C2H4/C2H6 ratio.

Table 4. Experiment matrix of 24 full facturial with central composite design

Factors ResponsGs

GHSV Pretreat Diiution CH4/02 .cH4 Conversion C2+ C2+ C2H4/C2H6
Run (cm3 g-i h-i) time (il) ratio ratio • (9'0) selectivity (%) yield (%) ratio

1 35000 0 0.2 7 54.45 52.72 28.71 2.07
2 35000 2 0.5 7 38.54 59.29 22.85 1.64
3 35000 2 0.2 3 43.99 47.09 20.71 2.37
4 18000 2 0.2 7 42.01 77.12 32.40 1.53
5 18~0 2 0.5 7 48.'11 31.61 15.21 2.12
6 18 0 0 0.2 3 32.78 9.02 2.96 1.20
7. 18000 0 0.5 3 43.62 25.85 11.28 2.76
8 18000 0 0.2 7 25.61 57.13 14.63 1.15
9 18000 0 0.5 7 42.49 62.15 26.41 1.76

10 18000 2 0.2 3 44.63 51.44 22.96 2.72
11 35000 0 0.2~ 3 46.54 14.97 6.97 1.25
12 18000 2 0.5 3 36.12 32.72 11.82 3.25
13 35000 0 0.5 "" 7 35.40 70.73 25.04 1.15
14 35000 2 0.5 3 49.37 30.80 15.21 2.13
15 35000 2 0.2 7 43.18 73.75 31.85 1.32
16 35000 0 0.5 3 46.78 65.71 30.74 2.07
17 26500 1 0.5 5 30.66 61.72 18.92 1.39
18 18000 1 0.35 5 37.42 65.42 24.48 1.93
19 26500 2 0.35 5 41.83 65.50 27.40 1.30
20 35000 1 0.35 5 37.96 58.66 22.27 1.48
21 26500 0 0.35 5 i 20.74 60.58 12.56 1.20,
22 26500 1 0.35 7 36.66 73.56 26.97 1.20
23 26500 1 0.35 3 46.84 51.10 23.94 1.63
24 26500 1 0.2 5 41.78 61.76 25.80 1.49
25 26500 1 0.35 5 25.60 67.98 17.40 1.99
26 26500 1 0.35 5 27.94 71.82 20.07 1.68

r l27 26500 1 0.35 5 33.10 56.92 18.84 1.85
28 26500 1 0.35 5 27.01 69.27 18.71 1.42
29 26500 1 0.35 5 25.61 67.42 17.27 1.75
30 26500 1 0.35 5 23.91 64.94 15.53 1.63
Meana 27.195 66.3917 17.97 1.72
Standard deviationa 3.2033 5.16046 1.58 0.1951

a Calculated statistic for the reproducibility checking of the repeated experiments (run 25 to run 30).
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Process optimization of oxidative coupling of methane

Cz+ yield (%) = 20.63 + 2.34A + 2.28B - 0.53C

+ 4.30D - 1.75AB + 0.87AC - 0.30AD

was concentrated in maximizing the C Z+ yield. The
model of CZ+ yield was represented by a two-level
factorial equation as follows:

where A is the GHSV, B is tht! time of catalyst
pretreatment, C is the dilution ratio and D is the
CH4 /OZ ratio.

Figure 7 shows the effect of GHSV and catalyst
pretreatment period on Cz+ selectivity. It was
found that the pretreated catalyst was beneficial
in giving higher selectivity over a GHSV range of
20000-26500 cm3 g-I h-I. The optimum value of
the Cz+ yield under the optimum conditions is shown

Selectivity is less reproducible compared to the other
responses.

All the factors included within the specified range
and with the aim of maximizing methane conversion
and Cz+ selectivity were the main concern in
determining the optimum conditions. Several sets
of combination were predicted as the optimum
conditions and listed according to their order of
desirability. Optimum conditions with higher C z+
selectivity and a reasonable desirability were eventually
chosen. The predicted optimum conditions with
desirability 0.864 was GHSV of 23947 cm3 g-I h- I,
catalyst pretreatment period of 2 h, dilution ratio 0.2,

_CH4/OZ_ratio 7, giving 40.55% methane conversion
and 79.51% Cz+ selectivity, which corresponded
to 32.24% of C z+ yield and a C ZH 4 /CzH 6 ratio
of 1.45. Since the CZ+ yield was affected by the
methane conversion and C Z+ selectivity, optimization
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Figure 7. Effect of GHSV and catalyst pretreatment period on C2+ selectivity.

"'"

32.5416

.......

p~,-
~ /~~>35000.00

6.00 ....... ~-- .,..,..--
........ ~...- 30750.00

5.00'-- ~_~~
CH4/02 ratio ...........,.... ....._~_/-.--' 26500.00

4.00.< ..------.- 22250.00 GHSV
.........-...

3.00 18000.00

29.8269

27.1123

24.3976

21.6829

Figure 8. Effect of GHSV and CH4/02 ratio on C2+ yield.
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Table 5. RBproducibility test under optimum Gondition over Na-W-Mn/Si02 catalyst prepared by different methods

CH4 conversion (%) C2+ sel8ct1vity (%l C2+ yieid(%)

Run XCH4 (exp) XCH4 (DoE) 6crror (%) SC2~ (exp). SC2~ (DoE) ""Err,:;: (%) YC2_ (exp) YC2+ (DoE) .6.Error (%)

1a 43.50 40.55 6.78 65.99 79.51 20.49 28.71 32.24 12.30
2a 43.05 40.55 5.81 70.62 79.5, 12.59 30.40 32.24 6.05
3a 42.29 40.55 4.11 70.80 79.51 12.30 29.94 32.24 7.68
4b 42.14 40.55 3.77 77.45 79.51 2.66 32.64 32.24 1.23
5b 44.88 40.55 9.65 69.68 79.51 14.11 31.27 32.24 3.10
Mean error 6.02 12.43 6.07
Standard deviation (0") 2.37 6.39 4.29

a Catalyst prepared by incipient wetness impregnation method.
b Catalyst prepared by'mixture slurry method. ~ I

in Figs 8 and 9, respectively, displaying t4e interaction
effect of GHSV, dilution ratio and CH4/02 ratio to
C2+ yield.

Experiments were carried out under the simulated
optimum conditions to obtain methane conversion
and C 2+ selectivity. Table 5 presents the experimental
results under the optimum conditions with the
calculated error expressed as a percentage. Methane \,
conversion was in agreement with the simulated
and experimental values, with a mean error of
6.02%. C 2+ selectivity, however, deviated from the
simulated value with a mean error of 12.43%.
The experimental Cn selectivity had a lower value
compared to the simulated value of 79.51 %. This
could be due to the uncontrollable situation inside
the packed bed catalyst during the reaction. The
fast reaction of methane and intermediate products
(ethane and ethylene) with oxygen to make carbon
oxide may reduce the C 2+ selectivity. Thus the
direct contact of methane and oxygen should be
inhibited during the OCM reaction. Another catalyst

90

sample prepared using the mixture slurry method
was also tested by conducting experiments under
the optimum conditions. The experimental values are
compared with the simulated values obtained from
the proposed model in Table 5. The performance
of catalyst prepared by the impregnation method or
mixture slurry method was almost identical in regard
to methane conversion, but catalyst prepared by the
mixture slurry method gave a higher C 2+ selectivity
and C 2 H 4 /C2 H 6 ratio.

CONCLUSION
The study of interaction effects of parameters on
methane conversion, C 2+ selectivity and C 2 H 4/C2 H 6

ratio is important in understanding the OCM process.
The five process variables were screened using a half­
fractional factorial design and four influential factors
were identified at the particular range. The OCM
process was optimized using a central composite
design in order to obtain maximum C 2+ yield

J Chem Technol Biotechnol 82:81-91 (2007)
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undf't .the optimum conditions by considering the
effects of interaction between process variables on
methane conversion and C2+ selectivity. The predicted
optimum conditions with desirability 0.864 were
GHSV of 23947 cm3 g-l h- 1, catalyst pretreatment
period of 2h; dilution ratio 0.2 and CH4/02 ratio 7,
resulting in 40.55% methane conversion and 79.51 %
C2+ selectivity, with 32.24% of C2+ yield arid a
C2H 4/C2H 6 ratio of 1.45. A catalyst prepared by
the mixture slurry method was found to provide
higher C 2+ selectivity compared to that prepared
by the impregnation method. The Na-W-Mn/Si02
catalyst prepared by the mixture slurry method
gave 42.14% methane conversion, 77.45% C2+
selectivity and 32.64% C2+ yield under optimum
conditions. In conclusion, the predicted value under
optimum conditions was similar to the experimental
result before applying DoE, indicating that other
approaches in reactor configuration such as catalytic
membrane reactor should be considered, which has
the superiority ofproviding higher C2+ selectivity than
the conventional packed bed reactor.
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