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KONFIGURASI EKAKUTUB KLASIK

UNTUK TEORI MEDAN SU(2)

YANG-MILLS-HIGGS

ABSTRAK

Teori medan SU(2) Yang-Mills-Higgs telah ditunjukkan bahawa ia mem-

punyai penyelesaian topologi penting yang mewakili ekakutub magnet dan mul-

tiekakutub. Walau bagaimanapun, penyelesaian tepat adalah terhad disebabkan

penyelesaian ekakutub dan multiekakutub hanya boleh didapati di bawah limit

potensi Higgs yang bernilai sifar. Ia juga telah ditunjukkan bahawa terdapat

penyelesaian bukan-Bogomol’nyi yang tidak memenuhi persamaan Bogomol’nyi

peringkat pertama tetapi hanya memenuhi persamaan medan peringkat kedua.

Penyelesaian numerik ini boleh didapati di bawah limit potensi Higgs yang berni-

lai sifar dan juga potensi Higgs yang bernilai terhingga, dan mereka mewakili

sistem rangkaian ekakutub-antiekakutub dan gelang vorteks.

Dalam tesis ini kami menyelidik teori medan SU(2) Yang-Mills-Higgs un-

tuk memperolehi lebih banyak penyelesaian ekakutub klasik dan berharap penge-

tahuan dan pengalaman yang diperolehi di peringkat klasik akan membolehkan

kita memahami dengan lebih mendalam seluruh struktur teori medan ‘gauge’ dan

sifat-sifat ekakutub magnet. Dengan menggunakan ansatz yang spesifik dan di

bawah limit potensi Higgs yang bernilai sifar, kami memperolehi penyelesaian

tepat dan juga mengkaji penyelesaian numerik. Penyelesaian kami boleh diba-

hagikan kepada penyelesaian dengan simetri paksi dan simetri cermin sepanjang

paksi z. Kesemua penyelesaian tepat adalah memenuhi persamaan Bogomol’nyi

xiii



peringkat pertama tetapi mempunyai tenaga tak-terhingga. Oleh itu mereka

merupakan penyelesaian Bogomol’nyi-Prasad-Sommerfield (BPS) yang berlainan.

Penyelesaian dengan simetri paksi adalah terdiri daripada (i) Ekakutub-

antiekakutub dan gelang vorteks, (ii) setengah ekakutub, (iii) Ekakutub penuh

dan setengah ekakutub, (iv) Dion bercas setengah ekakutub, (v) Pasangan ekakutub-

antiekakutub (MAP) dan (vi) Ekakutub BPS tepat. Sebaliknya, penyelesaian

dengan simetri cermin adalah merangkumi (vii) Penyelesaian multiekakutub siri

C, (viii) Siri multiekakutub 2s, (ix) Penyelesaian skrin 1s. Di sini juga wujud

anti-konfigurasi untuk semua penyelesaian tepat di mana arah medan magnet

Abelian dan tanda cas kutub telah diterbalikkan.
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CLASSICAL MONOPOLES

CONFIGURATION OF THE SU(2)

YANG-MILLS-HIGGS FIELD THEORY

ABSTRACT

The SU(2) Yang-Mills-Higgs field theory has been shown to possess im-

portant topological solutions which represents magnetic monopoles and multi-

monopole. However, exact solutions are limited as the monopole and multi-

monopole solutions are only exactly solvable under the limit of vanishing Higgs

potential. It has also been proved the existence of non-Bogomol’nyi solutions that

do not satisfy the first order Bogomol’nyi equations but only the second order

field equations. These numerical solutions exist both in the limit of vanishing

Higgs potential as well as in the presence of a finite Higgs potential, and they

represents systems of monopole-antimonopole chains and vortex rings.

In this thesis we study the SU(2) Yang-Mills-Higgs field theory for more

classical monopoles solutions, with the hope that insights and experiences gained

at the classical level will illuminate our understanding of the whole structure of

the gauge field theories, as well as the properties of magnetic monopoles. By

using a modified ansatz and within the limit of vanishing Higgs potential, we

obtained exact solutions and also studied numerical solutions. Our solutions can

be divided into solutions with axial symmetries and mirror symmetries along the

z-axis. All the exact solutions satisfy the first order Bogomol’nyi equations but

possess infinite energies. Hence they are a different kind of Bogomol’nyi-Prasad-

xv



Sommerfield (BPS) solutions.

The axially symmetric solutions consists of (i) antimonopole-monopole-

antimonopole (A-M-A) and vortex rings, (ii) one-half monopole, (iii) a full and

one-half monopole, (iv) dyons of one-half monopole charge, (v) the numeri-

cal monopole-antimonopole pair (MAP) solutions and (vi) the exact BPS one

monopoles. On the other hand, the solutions with mirror symmetries includes

(vii) C series multimonopole solutions, (viii) 2s multimonopole series and (ix) 1s

screening solutions. There also exist an anticonfiguration to all the exact solu-

tions where the directions of its Abelian magnetic field and hence its topological

magnetic charge sign are reversed.
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Chapter 1

Introduction

1.1 Particle Physics and Gauge Theory

Particle physics is a branch of physics that studies elementary constituents of mat-

ter and the interactions between them. These include atomic constituents such

as electrons, protons, neutrons, quarks (constituent of protons and neutrons),

particles produced by scattering and radiative processes (photons, neutrinos and

muons), as well as some exotic particles. The fundamental interactions between

all the above particles are well-known to us: the electromagnetic, weak, strong

and gravitational interactions. Particle physics is sometimes called ‘high energy

physics’, because some of the elementary particles do not occur under normal

circumstances in nature, and can only be experimentally created and detected

during high energy collisions in particle accelerators. Nowadays theoretical stud-

ies of high energy physics are carried out with non-Abelian gauge theories. Hence

we will start with discussing what is gauge theories all about and exploring its

brief historical development. Before we move on, we would like to emphasize that

readers are assumed to have a basic understanding in particle physics.

Gauge theories are a class of physical theories based on the idea that

symmetry transformations can be performed locally as well as globally, with the

main object of study is the gauge field (for a detail primer on gauge theory,
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readers are referred to Moriyasu (1983)). The earliest idea of gauge theory was

found in Maxwell’s electrodynamics. Hermann Weyl (1919) attempted to describe

the electromagnetic interaction by using the analogy of connection in general

relativity. He conjectured that invariance under the change of scale (‘gauge’)

might also be a local symmetry of the theory of general relativity. Unfortunately,

this conjecture was later pointed out that it would lead to conflict with known

physical facts.

However, development of the quantum mechanics revived Weyl’s gauge

theory of electromagnetism. With some modifications by replacing the scale fac-

tor with a complex quantity, and turning the scale transformation into a change

of phase (a U(1) gauge symmetry), it was realized by Weyl (1929), Fock (1927)

and London (1927) that this could provide a neat explanation for the effect of an

electromagnetic field on the wave function of a charged quantum mechanical par-

ticle. It was then clear that electromagnetic interaction of charged particle could

be intepreted as a local gauge theory within the framework of quantum mechanics,

in the language of quantum electrodynamics (QED). The gauge transformation

is actually the transformation of the phase of the wavefunction, which depends

on the space-time location. The gauge group is the group of all possible gauge

transformation and the gauge group associated with electromagnetism is the U(1)

group.

The study of gauge theory on Abelian electrodynamics is considered the

old period of gauge theory. The new period of gauge theory begins in 1954 with

the pioneering effort of Yang and Mills (1954) to extend the gauge symmetry

beyond the narrow limits of electromagnetism. Yang and Mills (1954) intro-

duced non-Abelian gauge theories as models to understand the strong interaction

holding together nucleons in atomic nuclei. Generalizing the gauge invariance of

electromagnetism, they attempted to construct a theory based on the action of

the non-Abelian SU(2) symmetry group on the isospin doublet of protons and

2



neutrons, similar to the action of the U(1) group on the spinor fields of quantum

electrodynamics. Although the original purpose of Yang and Mills was not ful-

filled, Yang and Mills’ effort established the foundation for modern gauge theory

and stimulated world wide research effort on gauge theories since then.

The idea of non-Abelian gauge symmetry later found application in the

quantum field theory of the weak force, and its unification with electromagnetism

in the electroweak theory. Glashow (1961) constructed an SU(2) × U(1) model

along these lines which had many attractive features, but is without the vital

symmetry breaking Higgs fields. Weinberg (1967) and Salam (1968) then intro-

duced the Higgs field into the SU(2) × U(1) model and the resulting field theory

has turned out to be extraordinarily successful. This successful theory is known

as Weinberg-Salam model and has convinced most physicist that non-Abelian

gauge theories of the weak and electromagnetic interactions are good physical

theories. One of the most important predictions of the electroweak force, namely

the existence of three heavy gauge bosons Z0, W+ and W− with energies of the

order 100 GeV, was confirmed by their discovery in accelerator experiments at

CERN in 1983.

After the success of the Weinberg-Salam model to desribe two fundamental

intereactions (weak and eletromagnetic) in one language, the next is the strong

interaction, a fundamental force describing the interactions of the quarks and

gluons found in hadrons (such as the proton, neutron or pion). The relevant the-

ory for strong interactions emerged is now known as Quantum Chromodynamics

(QCD). It is a gauge theory with the action of the SU(3) group on the color

triplet of quarks. Hence it is also sometimes called ‘color gauge theory’. The

gauge symmetry are unbroken, so there are no Higgs field present. A huge body

of experimental evidence for QCD has been gathered over the years and proves

the consistency of QCD as the language for strong interaction. QCD enjoys two

peculiar properties: a) asymptotic freedom, and b) confinement.
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Asymptotic freedom means that in reactions at very high energy scale,

quarks and gluons interact very weakly. This behavior was first discovered in

the early 1970s by Gross and Wilczek (1973) and also by Politzer (1973). For

this work they were awarded the 2004 Nobel Prize in Physics. Confinement, on

the other hand, means that the force between quarks does not diminish as they

are separated. In fact, they get even stronger. Because of this, it would take an

infinite amount of energy to separate two quarks. There are assumptions that

it is the color charge of quarks that is being confined. Following this behavior,

the quarks are forever bound into hadrons and cannot exist outside a hadron as

free particles. Although analytically unproven, confinement is widely believed to

be true because it explains the consistent failure of free quark searches, and it is

easy to demonstrate in lattice QCD.

The combination of Weinberg-Salam model and QCD is generally known

as the Standard Model. It describes three of the four fundamental forces in our

universe, the strong, weak, and electromagnetic fundamental forces, by using

mediating gauge bosons. The species of gauge bosons are the gluons, W- and

W+ and Z bosons, and the photons, respectively. The Standard Model then

has 40 species of elementary particles (24 fermions, 12 vector bosons, and 4

scalar bosons), which can combine to form composite particles, accounting for

the hundreds of other species of particles discovered since the 1960s. Finally, the

existence of the gauge boson known as the Higgs boson, is yet to be conclusively

confirmed, but will be probed in experiments at a higher energy scale.

Hence, it is obvious that the power of gauge theory stems from the extraor-

dinary success of the mathematical formalism in providing a unified framework

to describe the quantum field theories of electromagnetism, the weak force and

the strong force, and possibly include gravity to describe all the fundamental in-

teractions in one language. Although a quantum theory for gravity has yet to be

successfully set up but there are strong believes that it will emerge in the future.
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Even some formulations of general relativity are a form of gauge theories, in one

way or another. The Standard Model has also been found to agree with almost all

the experimental tests conducted to date. However, most particle physicists be-

lieve that it is an incomplete description of Nature, and that a more fundamental

theory awaits discovery. This will be addressed in the next section.

1.2 Beyond the Standard Model

As stated in the previous section, although the Standard Model are extremely

successful by providing a very good description of phenomena observed by exper-

iments, it is an incomplete theory. The reason is that there are phenomena that

are not accurately described by this theory. For example, even though physicists

knew the masses of all the quarks except for top quark for many years, they were

simply unable to accurately predict the top quark’s mass without experimental

evidence because the Standard Model lacks an explanation for a possible pattern

for particle masses. The Standard Model is also as yet unable to explain gravity

in terms of particles. Furthermore, a series of open questions demand for a more

complete theory. Are quarks and leptons actually fundamental, or made up of

even more fundamental particles? Why are there exactly three generations of

quarks and leptons? Why do we observe matter and almost no antimatter if we

believe there is a symmetry between the two in the universe? Why can’t the

Standard Model predict a particle’s mass?

However, this does not mean that Standard Model is wrong, but one needs

to go beyond the Standard Model in the same way that Einstein’s Theory of

Relativity extended Newton’s laws of mechanics. One needs to extend beyond

the Standard Model with something totally new in order to thoroughly explain

mass, gravity and other phenomena. This area of research is often described
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by the term ‘Beyond the Standard Model’ and it studies possible extensions to

the Standard Model that will be probed in up-coming experiments. There are

many problems where beyond the Standard Model tries to tackle, such as the

hierarchy problem, dark matter, the cosmological constant problem, the strong

charge parity (CP) problem. It is not possible to give a complete description

on these issues here, but we will briefly discuss two of the most actively studied

areas, which are supersymmetry and string theory (this phrase is often used as

shorthand for superstring theory, as well as related theories such as M-theory).

Supersymmetry (often abbreviated SUSY) was originally proposed by Wess

and Zumino (1973). It is a symmetry that relates elementary particles of one spin

to another particle that differs by half a unit of spin and these related particles

are known as superpartners. In other words, every fundamental fermion has a

superpartner which is a boson and vice versa. For example, for every type of

quark there may be a type of particle called a ‘squark’. Since the particles of

the Standard Model do not have this property, supersymmetry must be a bro-

ken symmetry allowing the ‘sparticles’ to be heavy. Readers are referred to the

textbook by Ferrara (1987) for a complete account on supersymmetry.

The first realistic supersymmetric version of the Standard Model was pro-

posed by Dimopoulos and Georgi (1981) and is called the minimal supersym-

metric Standard Model (MSSM). It was introduced in order to solve the Hierar-

chy Problem, that is, to explain why particles not protected by any symmetry

(like the Higgs boson) do not receive radiative corrections to its mass driving it

to the larger scales (GUT, Planck...). No supersymmetric particle has yet been

found, but supersymmetry is expected to be observed by experiments at the Large

Hadron Collider. Supersymmetry also seems to have other interesting properties:

its gauged version is an extension of general relativity (supergravity), and it is

a key ingredient for the consistency of most versions of string theory. Another

advantage of supersymmetry is that supersymmetric quantum field theory can
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sometimes be solved.

It is said earlier that in the daunting task to unify all the known forces

in universe, it is still an opened question on how to implement gravity in the

scheme of quantum field theory. Similar to the other interactions, gravitational

interaction should be mediated by a spin-2 gauge boson, more oftenly called

graviton. A lot of experimental detection has been put up to probe the gravitons

but there are no conclusive results yet. Even the quantum field theory of gravity

runs into trouble. Investigation of the gravitational interaction at short distances

revealed that the mathematical description gives unavoidable divergencies. The

solutions to this serious problem seems to be the popular string theory.

String theory is a fundamental physics model with argument based on

the fact that particles are no longer zero-dimensional object but rather one-

dimensional extended strings with the length of the order of the Planck length

10−33 cm. There, the particles are identified with the vibrational modes of these

strings. By replacing the point-like particles with strings, an apparently con-

sistent quantum theory of gravity emerges. Moreover, it might be possible to

‘unify’ all the known fundamental forces by describing them with the same set of

equations. This shows that the superstring theory is (at the moment) the most

promising candidate for a Theory of Everything (TOE). However, superstring

needs to be verified experimentally to be scientifically valid. Not many experi-

mental evidence has been obtained. Nevertheless, with the construction of the

Large Hadron Collider in CERN, scientists remains upbeat with the hope to pro-

duce relevant data to support superstring theory, though it is believed that any

theory of quantum gravity would require much higher energies to probe directly.

There are originally five different consistent superstring theories. In the

early 1990s, it was shown that the various superstring theories were related by

dualities. This allows one to relate the description of an object in one super-
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string theory to the description of a different object in another superstring the-

ory. Inspired by these relationships, during a conference at University of Southern

California in 1995, Witten proposed that each of the super string theories is a

different aspect of a single underlying theory, the so-called ‘M-theory’. Studies

of string theory have revealed that it predicts higher-dimensional objects called

branes and also suggests the existence of ten or eleven (in M-theory) spacetime

dimensions, as opposed to the usual four (three spatial and one temporal) used in

relativity theory. However, the theory can describe universes with four effective

(observable) spacetime dimensions by a variety of methods. An important branch

of the field deals with a conjectured duality between string theory as a theory of

gravity and gauge theory. It is hoped that research in this direction will lead to

new insights on quantum chromodynamics.

1.3 Classical Gauge Theory

Study of gauge field theories can actually be divided into classical and quan-

tum parts. Phenomenological models of the Yang-Mills theory described in the

above section belongs to the quantum Yang-Mills theory. Despite the tremen-

dous success in the quantum aspect of Yang-Mills theory, classical Yang-Mills

theories play a role which is of no less importance than quantum Yang-Mills the-

ories. If everything about the classical field configurations is understood, then

in principal all question concerning the corresponding quantum field theories can

be answered (Actor, 1979). Even if partial information is retrieved, it would be

useful for the construction of a complete quantum field theory. This is the ba-

sic hope which motivates research activities in classical Yang-Mills theories, as

classical and quantum theory progress in parallel, with the classical information

acting as a supporting platform for the quantum part.
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Studying solutions to the classical gauge field theories is then an interesting

pursuit. There are actually a huge number of classical solutions to the non-

Abelian Yang-Mills gauge theory. However, due to the natural limitations of this

thesis, we are not able to give a full account for all these solutions. We will only

concentrate on briefly discussing some of the more important classical Yang-Mills

solutions. These include the Euclidean space solutions (instanton and meron)

and the Minkowski space solutions (monopole and dyon). Monopole is of course

the more interesting one to us and will be discussed in detail in the next chapter.

However, before we go any further, we would like to briefly discuss some

development of classical gauge theory. For a long period starting from 1956,

there were not much progress made in the classical gauge theory. The first exact

solution of the classical pure SU(2) YM theory was found by Ikeda and Miy-

achi (1962). However this solution attracts little interest as it is only imbedded

Coulomb solution into the SU(2) theory. A more genuine non-Abelian Yang-Mills

solution was later discovered by Wu and Yang (1968). A very interesting feautre

of the Wu-Yang solution is that it describes a point-like non-Abelian magnetic

monopole and does not possess a string. Hence it seems that Yang-Mills theory

provides a natural stage for one to look for magnetic monopole solution.

Important progress was made by Nielson and Oleson (1973), who intro-

duced a ‘classical Higgs mechansim’ into classical gauge theory. This mechanism

is quite analogous to quantum field theoretic Higgs mechanism. It causes the

classical gauge field to become ‘massive’ in the sense that certain components

of the gauge potential must be short range (decreasing as exp(−Mr) at large r)

for the energy to be finite. In their example, Nielson and Oleson used two Higgs

field triplets to make all gauge field components decrease exponentially away from

an axis. Hence the gauge field is essentially contained within a tube or ‘vortex’.

Nielson and Oleson’s work directly inspired another important discovery, which is

the very important finite energy ’t Hooft-Polyakov magnetic monopole solution.
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We will discuss this in the next chapter.

We would also like to point out that classical Yang-Mills theory can actu-

ally be studied independently of exact solutions (Actor, 1979). Classical results

gained will improve the path-integral formulation of the quantum Yang-Mills the-

ory. However we do not follow this path in this thesis but concentrate in exploring

the properties of the important classical solutions. We will discuss in detail some

of the important solitonic solutions of the classical Yang-Mills gauge theory in

the next chapter before exploring our version of solutions.

1.4 Euclidean Space Solutions

Before we turn to discuss the monopole solution, we would like to give a brief

account on Euclidean space solutions here. Some of the well-known Euclidean

space solutions are the instanton and meron solutions. The instanton is a self-

dual solution of the Yang-Mills equations. It is interpreted as a tunnelling process

between two vacuum states of a quantum mechanical system (Callan et al., 1976;

Jackiw and Rebbi, 1976a, 1976b; ’t Hooft, 1976b). Belavin et al. (1975) found

the one instanton solution whereas the multi-instanton solutions were obtained

by ’t Hooft (1976a), Jackiw et al. (1977) and Witten (1977) separately.

The N -instanton solution is a vacuum fluctuation with N units of topolog-

ical charge. The main properties of the instanton are that it is nonsingular and

localized in all direction in E4 including the imaginary time axis. Since it is a self-

dual solution, it has vanishing energy and momentum density. This implies that

the instantons are not particles but corresponds to a vacuum tunnelling event in

the Minkowski space. This vacuum tunnelling event in turn implies that there

are more than one vacuum state in the theory. In fact there are denumerable in-

finity of vacuum as there exist instanton solution with arbitrary large topological
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charge q. By labelling a vacuum state with topological index n by |n >, then the

N -instanton solution will correspond to a tunnelling from the vacuum state |n >

to the vacuum state |n+N >.

Another type of Euclidean Yang-Mills solution are the meron solutions. A

meron is a pointlike concentration of one half unit of topological charge. Unlike

instanton, meron solutions are not self-dual and because of their singular nature

meron solutions have infinite action, which makes their physical relevance some-

what obscure. However, multimeron has been shown to exist (the only known

explicit solution describe two merons or a meron and an antimeron). No explicit

expression for the multi-meron solutions have been found and the only known

exact meron solutions are the one and two-meron solutions of de Alfaro et al.

(1976).

Similar to instantons, merons also correspond to vacuum tunnelling events

in the Minkowski space. However an instanton tunnels between two Gribov vacua

with topological index n = ±1
2

in the Coulomb gauge whereas a meron tunnels

between the vacuum state with topological index n = 0 and a Gribov vacuum

with n = 1
2
. The Gribov vacua were discovered by Gribov (1977) when he noticed

that the gauge potential Aa
µ in the non-Abelian gauge theory is not uniquely

determined in the Coloumb gauge. As a result of this ambiguity, the SU(2)

Yang-Mills theory has three rotationally symmetric vacua with topological index

n = 0 and n = ±1
2

(Gribov vacua). The degeneracy of these Coulomb gauge

vacua is removed by the merons and not the instantons.

The vacuum tunnelling process of the merons and instantons seem to sup-

port the conjecture of Callan et al. (1977, 1978b) that an instanton consist of

two merons. For small coupling the merons are bounded together in pairs to

form instantons. However when the coupling becomes large enough, the insta-

tons will start to dissociate into merons and the theory goes into the confining
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phase. Since quark confinement problem porposed by Callan et al. (1977, 1978a)

is based on semi-classical arguments, the overall Yang-Mills coupling must be

fairly weak otherwise the whole arguments break down.
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Chapter 2

Monopole, Multimonopole and
Dyon

2.1 Magnetic Monopole

Apart of the Euclidean solutions explained in previous chapter, we are more

interested in the Minkowski space solutions, which is the magnetic monopole

(and also dyon). Because of its importance, we devote some pages for detail

explanations on the magnetic monopole, including a brief historical development

on the studies of monopole. Analogous to electric charge, a magnetic monopole is

a particle that may be generally described as ‘a magnet with only one pole’. While

the Maxwell equations in vacuum are symmetric under a duality transformation

between the electric and magnetic field, this is no longer true in the general case

(when higher symmetry is considered). The simple reason is the absence of the

magnetic monopole in the theory. However, there are optimists who believe that

a physical theory should possess a symmetry between electricity and magnetism.

Historically, the first effort to study monopole had been made by Dirac

(1931) where he constructed an Abelian point-like monopole which contained

a singular string. One end of the string extends to infinity while a magnetic

monopole is situated at the other end. The quantized version of Dirac’s theory
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can solve an up-until-then an open problem in physics: the quantization of the

electric charge. The result shows that the product between the single electric

and the single magnetic charge is proportional to an integer. This suggests that,

if there exist a single magnetic monopole in the universe, then electric charge is

quantized, and vice versa.

As stated in chapter one, Nielson and Oleson (1973) made important

progress by introducing a ‘classical Higgs mechanism’ into classical gauge theory.

Following this line, ’t Hooft (1974) and Polyakov (1974, 1975) made important

breakthrough in the monopole theory by constructing classical solutions possess-

ing the properties of magnetic monopoles, in the framework of Georgi-Glashow

model. Preskill (1984) has emphasized that the essence of this breaktrough is

that while a Dirac monopole could be incorporated in an Abelian theory, some

non-Abelian models (i.e. the Georgi and Glashow model) inevitably contain

monopole-like solutions. Different to Dirac’s monopole, the ’t Hooft-Polyakov so-

lutions represent extended, localized and finite energy magnetic monopoles with

topological stability. This spherically symmetric monopole solution is one of the

most important solutions obtained so far.

Moreover, particle field theories such as Grand Unified Theories (GUTs)

also predict the existence of monopole solutions on mathematical ground. When-

ever there is an unbroken U(1) symmetry the existence of magnetic monopoles

is unavoidable. As is well known, electromagnetism possess a U(1) symmetry

which we might conferred as the unbroken U(1) symmetry in the present universe.

Hence this suggest that monopoles should be present in the universe, though no

succesful detections have been made so far. For information on experimental

detection on monopoles, readers are referred to the reports by Giacomelli (2000)

and for more complete mathematical details on monopoles, reports by Goddard

and Olive (1978) and Rossi (1982) are referred.
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The Georgi-Glashow model proposed by Georgi and Glashow (1972) is

believed to be a good toy model for the more realistic GUT models as it possess

many properties close to the GUT model. Specifically, this model is known as the

SU(2) Yang-Mills-Higgs theory and it contains a gauge field strength tensor F a
µν

coupled with a non-vanishing Higgs field triplet Φa which spontaneously breaks

the symmetry. We now explore the ’t Hooft-Polyakov solution more technically.

For more informations on the mathematics of the model readers are referred to

chapter four. The Lagrangian is given by

L = −1

4
F a

µνF
aµν − 1

2
DµΦaDµΦ

a − 1

4
λ

(
ΦaΦa − µ2

λ

)2

, (2.1)

with the vector gauge fields Aa
µ manifest as the gauge field strength tensor F a

µν,

µ is the mass of the Higgs field, and λ is the strength of the Higgs potential.

Both µ and λ are constants and the vacuum expectation value of the Higgs field

is µ/
√
λ. The Lagrangian (2.1) is gauge invariant under the set of independent

local SU(2) transformations at each space-time point. The covariant derivative

of the Higgs field and the gauge field strength tensor F a
µν are given by

DµΦ
a = ∂µΦ

a + eεabcAb
µΦ

c, (2.2)

F a
µν = ∂µA

a
ν − ∂νA

a
µ + eεabcAb

µA
c
ν. (2.3)

where e is the the gauge field coupling constant. By setting e to one here, the

equations of motion that follow from the Lagrangian (2.1) are

DµF a
µν = εabcΦbDνΦ

c, DµDµΦa = λΦa

(
ΦbΦb − µ2

λ

)
. (2.4)

The symmetric stress-energy tensor Tµν which follow from the Lagrangian (2.1)

and the field equation (2.4) is

Tµν = F a
µρF

aρ
ν +DµΦ

aDνΦ
a − gµνL. (2.5)

From Eq.(2.5) we can easily obtain the static energy as

E =
∫
d3x T00

=
∫

d3x
1

2
(Ea

nE
a
n +Ba

nB
a
n + (DnΦa)(DnΦa)) +

λ

4

(
ΦaΦa − µ2

λ

)2

(2.6)
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Before we go any further, we would like to stress that solutions of the clas-

sical field equations map the vacuum manifold M = S2
vacuum onto the boundary

of 3-dimensional space, which is also a sphere S2. These maps are characterized

by a winding number n = 0,±1,±2... which is the number of times M = S2
vacuum

is covered by a single turn around the spatial boundary S2. The important point

is that the solutions possessing a finite energy on the spatial asymptotic could

be separated into different classes according to the behavior of the field Φa. The

trivial case is that the isotopic orientation of the fields do not depend on the

spatial coordinates and asymptotically the scalar fields tends to the limit

Φa = (0, 0, a). (2.7)

This situation corresponds to winding number n = 0.

There are another type of solutions with the property that the direction of

isovector and isoscalar fields in isospace are functions of the spatial coordinates.

This is exactly the case ’t Hooft (1974) and Polyakov (1974, 1975) considered.

To construct the solutions corresponding to the non-trivial of the minimum of

the energy functional (2.6), the scalar field on the spatial asymptotic r → ∞

now takes values on the vacuum manifold |Φ| = a. However, the isovector of the

scalar field now is directed in the isotopic space along the direction of the radius

vector on the spatial asymptotic

Φa → ara

r
, (2.8)

For example, Eq. (2.8) describes a field which, in the x direction in space, has

only an isospin ‘1’ component, and has only an isospin ‘2’ and ‘3’ component

in the y and z direction respectively in space. In other words, it is ‘radial’ and

Polyakov calls it a ‘hedgehog’ solution. This asymptotic behavior defines a single

mapping of the vacuum M onto the spatial asymptotic, a single turn around the

boundary S2 leads to a single closed path on the sphere M = S2
vacuum and the

winding number of such a mapping is n = 1.
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For the construction of the monopole solutions, ’t Hooft (1974) considered

the ansatz

Aa
0 = 0, Aa

i = εamn
rm

er2
[1 −K(r)], Φa = H(r)

ra

er2
, (2.9)

which simplifies the equations of Eq.(2.4) to

r2H ′′ = 2KH2 +
λ

e2
H(H2 − r2), r2K ′′ = KH2 +K(K2 − 1), (2.10)

where prime means differentiation with respect to r. To avoid singularity at the

origin and achieve non-trivial spatial asymptotic conditions (2.7), the functions

K and H obviously must satisfy the following boundary conditions:

K(r) → 1,H(r) → 0, r → 0;

K(r) → 0,H(r) → r, r → ∞. (2.11)

Unfortunately, the system of non-linear coupled differential equations (2.10) in

general has no analytical solution. The only known exception is the very special

case λ = 0. This is called the Bogomol’nyi-Prasad-Sommerfield (BPS) limit which

will be discussed in the next section. However, equations (2.10) can be solved

numerically (Bais and Primark, 1976; Kirkman and Zachos, 1981) based on the

boundary conditions in Eq.(2.11).

To precisely interpret the solution as a monopole, ’t Hooft’s approach

was to search for a suitable definition of the electromagnetic field within the

theory (2.1) and he proposed a tensor that can be identified with the Abelian

electromagnetic field tensor,

Fµν = Φ̂aF a
µν − εabcΦ̂aDµΦ̂

bDνΦ̂
c, (2.12)

where Φ̂a is the unit vector of the Higgs field. The tensor (2.12) can also be

written in a more transparent form (Arafune et al., 1975),

Fµν = ∂µAν − ∂νAµ − εabcΦ̂a∂µΦ̂
b∂νΦ̂

c, (2.13)
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where Aµ = Φ̂aAa
µ, Φ̂a = Φa/|Φ|, |Φ| =

√
ΦaΦa. Here Aµ is the massless

component of the gauge potential Aa
i . Hence the Abelian electric field is Ei = F0i,

and the Abelian magnetic field is Bi = −1
2
εijkFjk.

For the ansatz in Eq.(2.9), one easily verifies that Aµ = 0 (in the no-string

gauge the massless potential is identically zero). Also Φ̂a = r̂a, so

F0i = 0, Fij = −(1/e)εijkr̂k/r
2, (2.14)

This is the electromagnetic field of a point magnetic monopole at rest with mag-

netic charge g = 1/e. This corresponds to a radial magnetic field. According to ’t

Hooft’s definition, the electromagnetic field tensor depends only on the unit vec-

tor of the Higgs field Φ̂a. In the string gauge, things are reversed. There Φ̂a = δa3

and the Higgs field terms in Eq.(2.13) vanishes. The massless component of the

gauge potential is Ai = A3
i and Fij = ∂iA

3
j − ∂jA

3
i .

Numerical results shows that the functions H and K approach rather fast

to the asymptotic values (Bais and Primark, 1976; Kirkman and Zachos, 1981).

Thus there is a Higgs vacuum outside a finite region, which is of the order of the

characteristic scale Rc. This scale is called the core of the monopole and the size

of monopole can be estimated by simple arguments, as shown by Preskill (1984).

The total energy of the monopole configuration consists of two parts: the energy

of the Abelian magnetic field outside the core and the energy of the scalar Higgs

field inside the core (Shnir, 2004). Inside the core, the original SU(2) symmetry

is restored, but outside the core this symmetry is spontaneously broken down to

the Abelian electromagnetic subgroup.

Hence the important properties of the ’t Hooft-Polyakov solution are: (1)

the gauge potential and Higgs field are nowhere singular, (2) the long range com-

ponent in the solution correspond to the electromagnetic field of a static magnetic

monopole, and (3) the solution has finite energy and is believed to be stable. The

stability of these solitons arises from the fact that the boundary conditions fall
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into distinct classess, of which the vacuum belongs only to one. These boundary

conditions are characterized by a particular correspondence (mapping) between

the group space and coordinate space. They are topologically distinct because

these mappings are not continuously deformable into one another. One might

argue that such configurations would be unstable since the absolute minimum

of the energy corresponds to the trivial vacuum. However, the stability of them

will be secured by the topology, if we try to deform the fields continously to the

trivial vacuum (2.7), then the energy functional would tend to infinity. In other

words, all the different topological sectors are separated by infinite barriers.

2.2 Prasad-Sommerfield Solution

The numerical ’t Hooft-Polyakov solution is obtained under finite value of Higgs

potential λ. Here we discuss the very special case λ = 0. In this limit of vanishing

Higgs potential, the Higgs field becomes massless and is not self-interacting. This

limit is widely known as the Prasad-Sommerfield (PS) limit. In the PS limit,

exact monopole solutions have been obtained by Prasad and Sommerfield (1975).

In fact, within the PS limit, the numerical ’t Hooft-Polyakov monopole solution

becomes the exact Prasad-Sommerfield solution. These exact solutions can be

obtained by solving the second order Euler-Lagrange equations as well as the

first order Bogomol’nyi equations. Hence the solutions are sometimes said to

satisfy the Bogomol’nyi condition or the Bogomol’nyi-Prasad-Sommerfield (BPS)

limit. Exact monopole solutions have been obtained only within the BPS limit

(so far).

In the BPS limit of vanishing Higgs potential, the scalar field also becomes

massless and the energy (2.6) of the system can be written as

E = ∓
∫
∂i(B

a
i Φ

a) d3x+
∫

1

2
(Ba

i ±DiΦ
a)2 d3x. (2.15)
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The system is said to satisfy the BPS limit if the following Bogomol’nyi equation

is satisfied

Ba
i ±DiΦ

a = 0, (2.16)

and it can also be seen that the energy of the system is independent from the

properties of the gauge field and completely defined by the Higgs field alone

E = ∓
∫
∂i(B

a
i Φa) d3x =

4π

e
M

µ√
λ
. (2.17)

This shows that the energies of the BPS solutions are minimally bound. Consid-

eration of higher value of λ will give a value of energies higher than that of the

Bogomol’nyi bound.

We now look for the exact Prasad-Sommerfield solution. Consideration of

the case λ = 0 simplifies equations (2.10) into

r2H ′′ = 2KH2, r2K ′′ = KH2 +K(K2 − 1). (2.18)

However we can also obtain the same solution from the first order Bogomol’nyi

equation (2.16). Substituting ’t Hooft’s ansatz into equation (2.16) yields

r
dK

dr
= −KH, r

dH

dr
= H + (1 −K2), (2.19)

which have an analytical solution in terms of elementary functions:

K =
r

sinh r
, H = r coth r − 1, (2.20)

Equation (2.20) is the so called Prasad-Sommerfield solution. The solution to the

first order BPS equation (2.19) will, of course, automatically satisfies the system

of field equations (2.10) of the second order.

In comparison with the ’t Hooft-Polyakov solution, the behavior of the

Higgs field of the monopole in the BPS limit differs in a dramatic way. The

reason for this is that in the limit V (φ) = 0 the scalar field becomes massless and
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the attractive force associated with the Higgs field becomes long range. Hence

the picture of the interaction between the monopoles is quite different in the BPS

limit, as compared to the naive picture based on pure electromagnetic interaction.

This argument is used in the construction of multimonopole, and will be discussed

in the next section.

2.3 Multimonopole

After obtaining the single charged magnetic monopole solutions, it was only by

natural desire that one continues to find multimonopole solutions. Besides ensur-

ing the possibility of ’t Hooft-Polyakov monopoles to exist together, the multi-

monopole solutions would also enable one to determine the interaction between ’t

Hooft-Polyakov monopoles precisely. However, it has been shown by Bogomol’nyi

(1976) that there are no spherically symmetric multimonopoles and the n = 1 ’t

Hooft and Polyakov monopole solution is the unique spherically symmetric solu-

tion. Weinberg and Guth (1976) also showed that finite energy multimonopole

solutions cannot be spherically symmetric but can have at most axial symmetry.

The first step is to investigate the interaction between widely separated

singly charged monopoles. Stated in the last sections, it was shown in the BPS

limit of vanishing λ, like-charged monopoles are non-interacting (Manton, 1977;

Weinberg, 1979; Goldberg et al., 1978; O’Raifeartaigh et al., 1979). This makes

the interpretation of non-interacting monopoles evident and the reason behind

this is quite simple, the Higgs field mediates an attraction (Manton, 1977) in-

dependently of the sign of the magnetic charges, while the Coulomb force due

to the unbroken U(1) symmetry is long range. For like-charged monopoles, the

Coulomb force is repelling. In the limit of vanishing Higgs potential, the Higgs

field becomes massless and the sef-interaction vanishes. The attractive Higgs
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force becomes long range and exactly cancels the repulsive Coulomb force be-

tween like magnetic charges. It is also clear that for λ 6= 0, the mass of the Higgs

field now decays exponentially with distance. At large distance, there are only

a repulsive phase and liked charged monopoles should be repelling. This was

confirmed numerically by Kleihaus et al. (1998).

Hence, in the absence of a repulsive force, nothing prevents in principle

the existence of multimonopole solution, and it is possible for the same magnetic

charge to get superimposed into one point in space. This was indeed the case as

the first exact multimonopole solution was obtained by Ward (1981). It was an

exact axially symmetric monopole of topological charge two, with the magnetic

charges all superimposed at one point location. Shortly after Wards’s work, a

generalization to axially symmetric multimonopole solutions with arbitrary topo-

logical charge is obtained (Rebbi and Rossi, 1980; Forgacs et al., 1981a; Forgacs

et al., 1981b; Prasad, 1981; Prasad and Rossi, 1981). In the BPS limit, these

solutions satisfy the Bogolmol’nyi lower bound for all n. The energy per winding

number is equal to that of the singly charged monopole, which clealy shows the

non-interactions of the monopoles. For the case λ 6= 0, as a results of the repul-

sion between like-monopoles, the mass of the n-monopole is always greater than

n-times the mass of a single monopole (Kleihaus et al., 1998).

In addition to axially symmetric multimonopoles, multimonopole solutions

with discrete symmetries (Sutcliffe, 1997; Houghton et al., 1998) were also found

in the limit of λ = 0 and n ≥ 3. These solutions were inspired by the observation

that Skyrmions have these kind of crystal symmetries (Battye and Sutcliffe, 1997)

and were constructed using twistor method. There were also some results which

represents multimonopole with finite separation. Brown et al. (1982) successfully

obtained a two arbitrarily separated SU(2) Yang-Mills-Higgs monopoles by using

the Atiyah-Drinfeld-Hitchin-Manin-Nahm (ADHMN) tecnique. The two zeros of

the Higgs field correspond to the location of the two monopoles.
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2.4 Dyons

In 1975, using the same model as ’t Hooft and Polyakov, Julia and Zee (1975)

extended the monopole study by further constructing a dyon solution. This is a

classical solution with both magnetic and electric charge. The way to do this is

to change the ansatz (2.9) by allowing Aa
0 to be non-zero:

Aa
0 = F (r)

ra

er2
, Aa

i = εamn
rm

er2
[1 −K(r)], Φa = H(r)

ra

er2
. (2.21)

The equations of motion (2.4) then become

r2F ′′ = 2FH2,

r2H ′′ = 2KH2 +
λ

e2
H(H2 − r2),

r2K ′′ = KH2 +K(K2 − 1) −KF 2. (2.22)

A non-zero Aa
0 will, of course, give a non-zero F a

0i and therefore an electric

field in addition to the magnetic field of the monopole. This extension of ’t Hooft-

Polyakov solution only becomes meaningful if one can show that a solution exist

with F 6= 0. Indeed, in the limit of µ2 = 0, λ = 0 with µ2/λ finite, an explicit

solution is known (Prasad and Sommerfield, 1975; Bogomol’nyi, 1976),

F = sinh γ(−1 + βr
coshβr

sinhβr
),

K =
βr

sinhβr
,

H = cosh γ(−1 + βr
coshβr

sinhβr
), (2.23)

where β and γ are arbitrary constants. Moreover, when Prasad and Sommerfield

(1975) constructed the exact dyon solution (2.23), it became obvious that in the

BPS limit the Aa
0 component of the gauge field enters the Lagrangian in a similar

way as the Higgs field. For non-zero µ2 and λ, as in the case of the monopole, one

cannot solve (2.22) in closed form. However Eq.(2.22) can be solved numerically

which satisfy the boundary conditions at infinity,

F (r) →Mr + C1, K(r) → 0, H(r) → r, r → ∞, (2.24)
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where C1 is the unknown constant that has to be found numerically. The bound-

ary conditions at r → 0 are the same as the monopole case with the profile

functions F (r) and H(r) behaving similarly.

To determine the electric charge of the dyon one needs to find the electric

field. At large r all definitions of the electromagnetic field tensor are the same

and the simple definition Fµν = Φ̂aF a
µν can be used. The dyon electric field at

large r is then

En = Φ̂aF a
0n = C1rn/er

3; (2.25)

The dyon electric charge Q can then be calculated by using the Gauss law,

Q = (4π/e)C1. (2.26)

While the magnetic charge is quantized because of the topological properties of

the monopole solution, there is no indication that the electric charge is quantized

at the classical level. It is associated with the long range behavior of the now

non-vanishing time component Aa
0 of the gauge field at spatial infinity, as shown

in Eqs.(2.24) and (2.26). The exact solution (2.23) is also easily shown to be

stable. One just needs to consider Ea
n in Eq.(2.6) to be non-zero and repeating

the same calculation as in the monopole case gives the energy

E = (µ/
√
λ)
√

(g2 + q2). (2.27)

where

g = Q = (4π/e)C1 = −(4π/e) sinh γ. (2.28)

The separate conservation of the electric and magnetic charge implies that this

static solution is stable.

From the field equations, Julia and Zee (1975) also emphasized on the

condition where |Aa
0| < 1 for r → ∞ because if it becomes bigger than one,
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