
UNIVERSITI SAINS MALAYSIA

Laporan Akhir Projek Penyelidikan
Jangka Pendek

Development of an Automated Unit
Testing Tool for Java Program

by
Dr. Kamal Zuhairi Zamli
Dr. Nor Ashidi Mat Isa

2009

iii) Kualiti impale 0 0 [2J 0 0QualiZvojimpacts

iv) Pcmindahan tclmologi/potcnsi pcngkol11crsialan: 0 0 [2J 0 0Technologv transjer/commercializatiorrpotential
.,.

v) Kualiti dan usahasama : 0 0 [2J 0 0Qualizv and intensity ofcollaboration

vi) Pcnilaian kcpcutingall sceam kcselunlhan: 0 0 [2J 0 0Overall assessment ojbenejils

School of Electrical and Electronic Engineering

00

D ~O

00

00

LAPORAN AKHIR PROJEK PENYELIDIKAN JANGKA PENDEK
FINAL REPORT OF SHORT TERAf RESEARCHPROJECT
Sila kemukakan laporan akhir ini melalui Jawatankuasa Penyelielikal1 eli Pusat
Pengajian dan Dekan/PengarahiKetua Jabatan kepaela Pejabat Pelantar Penyelidikan

1ll.1111

Tajuk Projek:
Title ofProject

Development of An Automated Unit Testing Tool for Java Program

Pusat Tanggungjawab (PTJ):
SchooV[)epartment

ii) Kualiti output:
Qualiry ofoutputs

i) Pcneapaian objcktif projck:
Achievement ojprojecl oNectives

Laporan Akhir Projek Penyelidikan Jangka Pendek
Final Report OfShort Term Research Project

7. SiIa sediakan laporan teknilmllengkap yang menerangkan keseluruhan projek ini.
[SiIa gunakan kertas berasinganJ
Applicant are required to prepare a Comprehensive Technical Report explaning the project.
(This report must be appended separately)

Please refer to the attachment

Senaraikan kata kunci yang mencerminkan penyelidikan anda:
List the key words that reflects your research:

Bahasa Malaysia

Alat Pengujian Unit Secara Automatik

Pengujian Softwer

Bahasa lnggeris

Automated Unit Testing Tool

Software Testing

2

Laporan Akhir Projek Penyelidikan Jangka Pendek
Final Report O/Short Term Research Project

Two students are now completing thcir MSc.
- Mohd Firdaus Alias, Development of Change

Impact Analysis Tool for Java Program

- Mohd Annuar Mat 1sa, Development of an
Automated Code CoverageTool for Java Program

1 student is completing his PhD
- Mohammed Fadel Jamil Klaib, An Automat6d T-Way Strategy for Combinatorial Testing

Tandatangan Penyelidik
Si nature a Researcher

3

28 January 2009

Tarikh
Date

,,.....

Laporan Akhir Projek Penyelidikan Jangka Pendek
Final RepoJ't 0IShort Term Research Project

Komen .Jawatankuasa Penyelidikan Pusat Pellgajiall/Pusat
Comments by the Research Committees ofSchools/Centres

The project has generated the following outputs:
1. International Journal Publications (3)
2. International Conference Publications (3)
3. Local Conference Publications (3)
4. Awards in Local Exhibition (1)
5. Awards in International Exhibition (1)
6. MSc Mixed Mode Dissertation (1)

Two eScience Fund projects have been secured based on the work done in this project
(Kindly refer to the attachment report)

Tarikh
Date

--·;~'ii>!;'l\y>:;,alf:-·'--;;<:"'_"~l

O'R K.I~MPLZUf-iAIA ZPMLI

304.PElIEC'T.6035:L95

JUMLAH GERAJV:- j9,985,IJO

NOPROJEK:-

PJWEL:- J/PENDEK

PENAJJl. ..-- JANGKA PEI\lDEI<

JABATAN BENDAHARI
UNIT l{UMPULAN WANG A.h.1ANAH

UNIVERSITI :sAThTS MAU\.YSIA.
KfUv1PTJS KEJTJRUTERAAN

SERI AMPANGAN

PENYATA t<UMPUU\!'J WANG

TEMPOH BERAKHIR 31/12/20Q8

Df:VELOPMEI'.JT OF AN AUTO/v\ATED UNIT TESTING TOOL FOR JAVA PROGRAM

Tempoh Projek:15107f2006 - 14J07/200B

V(n
Penlntukan

(<3)

Perbelanjaan
se.hingga

31/12.12007
(b)

Tall~Jgungan

semasa
2008­
(c)

PerbelanjaGln
SE.'fl1asa

2008
(d)

Jumlah
Perbe!anjaan

2008-
(c: + d)

.Jumlal1
Perbelanjaan

Terkumpul
(b+c+d)

Baki Perunlukan
Semasa

2008
(a-(b+c+d)

._-----------------_._-------_._---,-,-----,-_.-
Tt ()()(); GAJl KAKIHl\IGAN AWAM

.21000: PERBELAN,JAf-.N PERJI\LANAi\\ DAN SAHAHID

:::. ~:3()qq: PERHlJBIJNGAI-J DAN lrrllJTI

::37QOO: BEf<ALA~J DANALAT PAKAI HABIS

.~~qqq: PENYELENGGARAAN &PEMBA.lI(jIN KEelL

;~SiQQO: PERKHIDMATlIN IKTISAS 8. HosrTAlITI

~

7,500.00

:3.,8')0.00

650.00

4,292.00

T50.o0

2,993.00

__. 1S~:~.o{!...

7K~.13 0.00 (713,35)

3:544.50 0.00 510.00

0,00 0,00 0,00

2000.00 0.00 1,629,00

0.00 0.00 0,00

5:'I06.S13 0.00 0,00

_ '~A89,56- - ---1-,425,E150,00_____M___

(713.3:5)

510.00

0.00

1,629.00

0.00

0,00

1,42:5.E'5---'-_._-

7,124.78

4,054.50

0.00

3,62900

0.00

5,106.93

--19;9152'1

:37522

(254.50)

650.00

663.00

750,00

(2,\'113.93)
--_._-69.ig-

Juml8lh Bl9sar ______19
1
mI5.0(!- 18,489.56 0.00 '1,425,(:35 .__-,-:1,425.65

Page 133

'19,915.21 69J9

304.PELECT.6035195

USMShortTennGrants­
DevelopmentofAnAutomatedUnitTestingTool

forJavaProgrmn

FinalReport

Period: 15July 2006 -14July2008

Document identifier:

Date:

Version:

Document status:

Author

304.PELECT.6035195

15 January, 2009

1.0

Final Report

Dr Kamal Zuhairi Zamli

Signature of Project Leader

........~ .

(Dr Kamal Zuhairi Z'1mli)

PPKEE

Abstract

Software testing relates to the process of executing a program or system with the intent of
finding errors. Covering as much as 25 to 35 percent of the development costs and resources,
software testing is an integral part of the software development lifecycle. Despite its
importance, current software testing practice lacks automation and is still primarily based on
highly manual processes from the generation of test cases (i.e. from the specifications
documents) up to the actual execution of the test. Although the emergence of helpful
automated testing tools in the market is blooming, their adoptions are lacking as they do not
adequately provide the right level of abstraction and automation required by test engineers.

JTst is a Java based automated lmit testing tool that addresses some of the aforementioned
issues. The main novel features of JTst are the fact that it provides a sOlmd methodology and
work context for the testing process as well as permits automated combinatorial test case
generations and parallel execution for Java classes, enabling higher product quality at lower
testing costs.

Keywords: Automated Unit Testing Tool, Software Testing

Abstrak ", ",,' '.

Pengt*an softwer melibatkan proses melarikan sesuatu program atau sistem dengan tujuan
untuk mengesan kesalahan. Dengan kos pembangunan dan sumber meliputi 25 hingga 30
peratus, pengujian adalah antara bahagian utama dalam kitar hayat pembangunan softwer.
WalauplU1 ia penting, kaedah dan praktis untuk pengujian softwer semasa masih
bergantung kepada proses manual meliputi al<tiviti penghasilan kes ujian kepada pengujian
kes tersebut. Walaupun terdapat semaldn banyak perkembangan alatan untuk pengujian,
penerimaan mereka adalal1 sedikit kerana gagal memberikan kemudal1an dan automasi
yang secukupnya kepada jurutera pengujian.

JTst adalah peralatan pengtljain sofh-ver yang dapat meringankan masalah yang telah
diterangkan sebelumnya itu. Sumbangan utama JTst meliputi pembangunan metodologi
dan konteks kelja serta membenarkan penerbitan kombinasi ujian kes dan larian serentak
untuk menghasilkan produk sofvver yang berkualiti pada kos yang lebih rendah.

Kata Kunci: Alat Pengujian Unit Secara Automatik, Pengujian Sofwer

2

Introduction

Computing technology has gone a long way since the first Babbage computer in 1871. Today,
many chores that were once manual have been taken over by computers. Factories use
computers to control manufacturing equipments. Electronics manufacturing use computers
to test everything from microelectronics to circuit card assemblies. The automation provided
by computers avoids the errors that humans make when they get tired after multiple
repetitions.

Software testing is one area which can also benefit from automation. According to Glen
Myers [17], testing is the process of executing a program with the intent of finding errors.
Testing covers several aspects:

• Unit testing is carried out during the programming activity. It makes sure
that each elementary element (e.g. modules, methods) has a correct behavior,
and aims at avoiding errors in these elementary elements during execution.

• Functional testing (i.e. integration testing) aims at ensuring correctness of
operations and their conformance to the functional requirements.

• Performance testing (load testing or stress testing), aims at ensuring system
performance when subjected to significant competition in the access to
resources (e.g. processor, memory, disk, and network)

Although an important part of software development (i.e. covering as much as 25 to 35
percent of the development costs [8,19]), current software testing practice is still based on
highly manual processes from the generation of test cases (i.e. from the specifications
documents) up to the actual execution of the test. These manually generated tests are
sometimes executed using ad Iwc approach, typically requiring the construction of a test
driver for the particular application under test [7, 17, 19]. The conshTlction of a test driver
puts extra burden to test engineers especially if the test cases are significantly large.

Additionally, test engineers are also under pressure to test increasing lines of code in order to
meet market demands for more software functionalities. In order to attain the required level
of quality, test engineers need to maintain high test coverage. Viewing from the
aforementioned perspectives, testing is a tedious and error prone process. 'While tl1ere are
significant proliferations of helpfUl automated testing tools in the market, much of which
does not adequately provides the right level of abstraction and automation as required by
test engineers [22].

In order to address some of this issue, this paper prQposes a new software testing tool, called
JIst, based on the use of Java technology [10]. The main aim of JTst is to provide high level of
abstraction for testing as well as permit automated combinatorial test case generations and
execution for Java classes, and hence allow higher product quality at lower testing costs.

Addressing the aforementioned aim, the objectives of this project are:

1. To build an automated unit testing tool, called JTst, for Java programs.
2. To identify the main characteristics and requirements for an automated

unit testing tool.

3

3. To demonstrate the feasibility of developing JTst using mi.wd
programming language with C++ and Java.

4. To utilize an object-oriented analysis and design techniques using the
Unified Modeling Language (UML) for designing JTst.

Related Work - _ '

Concerning related work, the following paragraphs survey the current state-of-the-art on
automated Java testing tools. This survey is based on our earlier work described in [2, 3, 4]).

• Jaca

Jaca [16], developed at the State University of Campinas, is an automated testing tool
that permits testing of Java classes by corrupting the method interfaces and attributes.
Jaca does not require the application's source code, but it needs the some information
about the application such as class name and method interfaces.

• JUnit

JUnit [11,15] is a testing tool used to write and run automated and repeatable
tests. In JUnit, test engineer need to write a unit test case, essentially a collection of
tests designed to verify the behavior of a single unit within a user program. The
unit test case can then be automatically executed by the JUnit environment.

• FIONA

FIONA [20] is an automated software testing tool for distributed Java application.
FIONA provides a Java Virtual Machine Tool Interface that enables the inspection
and execution of faults of distributed application running in the Java Virtual
Machine.

• SFIT

SPIT [2, 3, 4, 21, 22, 23] is an automated software testing tool, developed in USM, for
evaluating Java COTs in the absence of source code. Although the current version is
lacking in terms of softvvare components integration and CUI support, SHT can permit
up to 2500 test cases to be defined and automatically executed in a single click of a
button.

• Simple

Simple [1] is automated functional testing tool that can be llsed to assess reliability,
robustness and performance of a system as a whole. The aim of simple is to facilitate
testing of Java classes used in safety critical appi'ications.

Based on the aforementioned survey, the common characteristics of these tools can be
summarized as follows:

i. Requires high level abstraction

4

Ideally, the testing tool should not assume that the user has significant
knowledge of Java in order to be able to use the tool. In fact, a helpful tool
should be sufficiently high level to facilitate the testing process in the sense
that test engineers need not need to do any coding whatsoever in order to
perform the actual testing.

ii. Supports testing in the absence of source code

In line with the current trends of using commercial-of-the-shelves (COTs)
components to speed up software development, there is a need for an
automated testing tool to be able to perform the functional and unit testing
even in the absence of source code.

iii. Enables test automation

Test automation relieves the test engineer from routine task as well as allows
multiple test cases to be executed in a single experiment. Additionally, test
automation provided by the tools must also be sufficiently intuitive for the test
engineers to master. Providing some level of intuition is important to help junior
engineers to grasp the testing work context particularly in terms of how each testing
activity fits together in the whole picture.

In general, test automation can come in a number of forms. In a nut shell, the test
automation should relieve the test engineer from the routine tasks of creating Java
test drivers for execution. In addition, test automation should also facilitate the
generation and execution of the actual test cases. Here, parallel execution of test
cases can help to speed up the testing process. In this manner, test engineers can put
significant focus on tl1e job at hand (i.e. coming up with good test cases) and be
released from manually writing test drivers.

iv. Provides Graphical User Interface Support

GUI can help improve usability of the test tool. Often, GUI interface is better
that command line interface as far as ease of use is concerned.

v. Permits extended test coverage

Ideally, the more test coverage the better quality-the sofhvare is. To ensure
high test coverage, test cases need to cover all the control flow paths.
Nevertheless, in the absence of source code (e.g. COTs), covering all control
flow paths is difficult. One way of alleviating from this difficulty is to
generate as much as possible new test cases, for instance, through
combinational test cases that are deduced from the given test cases. With
combinational test cases, a set of ne\'\T and unique combination of test cases
can be produced in order to help extends the test coverage.

~

Using the aforementioned. characteristics, Table 1 presents a digest of the Java based
automated sofhvare testing tools discussed earlier.

5

Legends Automated Java
Testing Tool

~ Implemented feature

J J F S S

~ Not implemented feature A U I F I

C N 0 I M

D Not enough information A I N T P

T A L

E

Characteristics

High level abstraction " X X " X

Testing in the absence of source code " "Test automation " " " " "Graphical User Interface support " " " " "Extended test coverage X X X X X

Table 1 - Summary of Automated Java Testing Tool

Referring to Table I, it can be observed that no single tool support all the characteristics identified
earlier. In fact, no single tool surveyed here supports extended test coverage using combinatorial
approach discussed earlier. Thus, developing a new and automated Java testing tool with the
abovementioned features would be an appealing task. It is the development of such a tool, called
}Tst, is the main focus of this research.

A key idea in JTst is the fact that tests are performed based on the values of the interface
parameters (i.e. on the data types of the parameter lists) and not on the behavioral specifications.
Thus, JTst is suitable for performing automated black box testing particularly involving
commercial-of-the-shelves-components (COTs) where no source code and design are usually
available apart from some user documentations.

.,.
Another key idea in rfst is that the test cases can be combinatorially generated based on some
base test cases, the concept borrowed from Ammann and Offutt [5]. Ideally, these base test cases
can either be collected from known combination of input variables that causes failures to the
module under test from real systems in various application domains [12] or from the program
specifications (see Figure 1).

6

7

While exhaustive testing for all combinations would be impractical, partitioning the
combinations might still be useful in order to detect faults. For this reason, JTst permits the
concurrent execution of the test cases to alleviate bottIe neck in testing combinatorial test cases
(discussed later).

JTstCombinatorial Test
Case Generations

Test Outcome

Pass "./

Fail X

Base Test
Cases

Conformance
Analysis

Figure 1-JTst Overview

Failure
Empirical Data

D
DeJD
Requirement
Specifications

Concerning its implementation, JTst consists of a number of related components consisting
of the Class Inspector; the Test Editor; the Test Combinator; the Automated Loader; and the
Data Logger/Log (see Figure 2). The working context (i.e. process flow) for these
components is summarised in Figure 3. The fun$tionalities for each of these components
will be discussed next.

Combinatorial techniques are known to causes test data explosion [24, 25, 26]. Suppose that test
input variables are 10, eacll had 3 values say 0, 1, and 2. Then, there are 310 = 59,049 possible
parameter combinations. Now, if the test input variables are increased to 13, then there are 3 13 =

1,594,323 possible parameter combinations, This simple example illustrates that a small change in
the input parameters can cause massive increase in the parameter combinations,

Kulm and Okum [13] suggest that from empirical observation, the number of input variables
involved in software failures is relatively small (i.e. in the order of 3 to 6), in some classes of
software. If t or fewer variables are known to cause fault, test cases can be generated on all t-'way
combinations of disu'ete values (i.e. using equivalent class or boundary value analysis for
continuous value variables). Empirical evidence suggests that in some software implementation,
the execution of these test cases can typically uncover 50% to 75% of faults in a program [9,14].

Combinatorial
Test Cases

initiates initiates

queries class
interfaces and

attributes

Log

Test
Engineer

D
Module Under

Test

J
Figure 2 - JTst Main Components

Figure 3- JTst Wark Context

Class Inspector

One useful feature of JTst is to allow unit testing in the absence of source codes. In this case, the
class inspector can optionally be used to obtain details information of the Java class interface in
order to permit black box testing. To do so, the class inspector exploits Java Reflection API in
order interrogate Java classes for method interfaces including public, private, and protected ones
(see Figure 4). This information can be used to set up the base test cases in the fault file (discussed
next).

8

Figure 4 - Interrogating Java Class

Test Editor

As its name suggests, the test editor allows the user to edit and setup the test cases (i.e. including
the base test cases) in a JTst fault file. Here, the test case definition follows certain predefined
formatting rules in order to facilitate the parsing of data for automatic recombination (see Figure
5).

@FaultFile
11111111111111111111111/1/111111111111111

Comnwn Header Definition
IIIIIIIIIIIIIIIIIIIIII1/1/11II11111111111
classname: adder
methodllame; add_basictypes_integer
specifier; private
para111types : 2
retumtype; in t
parameter; pmtypesfO]=Illteger.TYPE
parameter; partypes[l]=Illteger.TYPE

IIIIIIIII111111IIIIIIIIIIIIIIIIIIIIIIIIII
Body - Test case 0

1/1111111111111IIIIIIIII11111//1/1////111
arglist:arglistlOl=new Integer(Integer.AfAX_VALUE)
arglist : mx1istUhzt?w Integer(Integer.MA.>CVALUE)

11/1/1/1/1/1/1////11/1////11/1111III/11/1
Body - Test case 1

11/1/11IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
arglist:llrglistfOJ=llew blteger(Izlfeger.MIN_'VALUE)
arglist : Ilrg list/1J=new [llfeger(Integcr.M[N_l/ALUE)

Figure 5 - Sample Fault File

Test Combinator

Test combinator manipulates the base test case in order to generate combinatorial test cases (see
Figure 6).

9

BASE
TEST CASES

Test case 1:
a,b,c _

Test case 2:
d,e,f _

Test case 3:
9,h,i _

Test case N:

...ITst
Test Combinator

COMBINATORIAL
TEST CASES

Test case 1:
a,b,c _

Test case 2:
a,b,f _

Test case 3:
a,b,i _

Test case 4:
a,e,c _

Test case 4:
a,e,f _

Test case 4:
a,e,i _

Figure 6 - JTst Test Combinator

To illustrate the JTst combinator algorithm, consider the following running example. Let a
method MI has four inputs variables X = {A,B,C,D}. For simplicity sake, let us assume that the
base test case for MI has been identified in Table 1.

Table 2 - Base Data Values for Method Ml

Input Variables

Base A B C D
Values

T1 Cl Large99

T2 2000 C3 Small

The test cases data can be viewed as a matrix with specified columns and rows. Here, one can
traverse one colunm at a time (called sensitivity variable in JTst implementation), whilst keeping
other colunm fixed to permutate and generate new test cases from existing ones. Table 3 depicts
the possible combinatorial test cases with the sensitivity variable set to A.

Table 3 - Base and Combinatorial Data Values for Methodrvh With Sensitivity = A

Input Variables

A B C D

Base Values T1 99 Cl Large

T2 2000 C3 Small

Combina torial
Values

10

The complete pseudo code for single column sensitivity is given as follows (see Figure 7):

begin
set the input variable as sensitivity variable, V
for each defined test case till the end

begin
hold test case valuefor Iwn sensitivity variable, D
for each value ofthe sensitivity variable, P

begin
combineP,D
get the next value ofP

end
get the next value ofD

end
end

Figure 7 - Single Column Sensitivity Algorithm

Here, the algorithm starts by setting the input variable V, which corresponds to the specific input

column (e.g. if v=O a sensitive variable will be column 0). For each defined test case until the end,
the algorithm holds the test case value for non-sensitivity variable D (Le. the valiles for the other

variables). The inner loop varies all the sensitivity variable values of P and combines to that of the
non sensitive variable D.

Apart from permitting sensitivity column to be a single column, JTst combinator algorithm also
allows the sensitivity column to be a combination of 2 or more columns or all columns (see Table
4). Here, repetitive test cases are automatically removed.

Table 4 - Base and Combinatorial Data Values for Method MJ With Sensitivity = All

Variables

Input Variables

Base Values

A

T1

T2

B

99

2000

C

Cl

C3

D

Large

Small

Combinatoria

I Values

11

The pseudo code for multiple column sensitivity is given as follows (see Figure 8):

begin
for each input variable
begin

set the input variable as sensitivity variable V
for each defined test case till the end

begin

hold test case millefor non sensitivif'f vm'iable D
far each value ofthe sensitivity variable P

begin
combineP,D
if (P,D) combination already exist then
reject P,D combination
get the next the value ofP

end
get the next value ofD

end
assign the next sensitivity variable V

end
end

Figure 8 - All Column Sensitivity Algorithm

Concernjng the number of generated test cases, combinatorial recombination can generate new
test cases following the following formulae.

In the case of a single column, provided that all the base data values are unique, recombination
can regenerate new test cases as follows:

The no of new test cases = n2

where n = number of completely define test cases

In the case of all columns, provided that all base data values are unique, recombination can
regenerate new test cases based on:

The no of new test cases = (p"Yt2) - ep
where n = the number of completely define test cases

p = the number of input variables ~

ep = the number of repetitive combinatorial values
= n*(p-l)

Automated Loader

JTst automated loader have two main responsibilities, The first responsibility is to iteratively
parse the test cases (defined in JTst fault files), and automatically generates and executes the
appropriate Java code driver. The second responsibility is to manage concurrent execution of test

12

cases. Here, the JTst automated loader is actually consists of two sub-components: Loader and
Concurrent Manager (see Figure 9)

1--------------------'
I JTst I
I Automated I

Loader I
I I
I assigns token I
I checks-out token to the JTst loader
I if it is available I

JTst I
I Concurrent
I Manager I
I Pool of I
I tokens regenerate tokens I
I upon request I
L J
Figure 9 - JTst Automated Loader & Token Passing Mechanism

Concurrent execution is achieved in JTst through a well-known token passing algorithm. Sample
concurrent execution of test cases is shown in Figure 10. In the current version, JTst has been
tested to concurrently execute up to 15,000 test cases per execution.

Figure 10 -Concurrent Ex~cutionof Test Data

Here, a token is always associated for each concurrent execution. Once all the tokens have been
used up, no further concurrent execution is allowed until one or more concurrent executions have
terminated (i.e. release its token). Here, the number of defined tokens in tl1e pool of tokens can be
dynamically configured through tl1e user interface provided should the need arise. Obviously,
the more tokens are allowed, the slower the test case executions will be. This token setting can be

illustrated in Figure 11.

13

1

I
I
I
!

Figure 11 - Token Generation for Concurrent Execution

interacts

«Controller»
ReflectionManager

«Boundary»
MainlnspectorPanel

implements

«Utility»
lTstConstant

interacts

14

«Controller»
StreamGobbler

is composed of

«Boundary»
MainGeneratorPanel

Figure 12 - ITst Class Diagram Implementation

AutomatedLoader

«Controller»
lTstCombinator

Data Logger/Log

Data logger is a text browser with customised search capability to perform offline analysis of the
output captured by the automated loader (see Figure 2) in the form of logs. Here, logs are special
database storing the input output behavior of the module under test (MUD. If the specification of
the MUT method exists, conformance analysis can be made using this database.

Nevertheless, in the absence of source codes and formal specification, the h-ivial outcome of
"doesn't hang and doesn't crash" suffices to determine whether MDT passes the minimum
testing requirement. In this case, the operating system can be queried if the test program
terminates abnormally and a process monitor can be employed to detect hangs. A key issue here
is the fact that the faults can always be reproducible with the same sets of inputs.

In this research project, JTst has been implemented using Borland C++ Builder 6.0 and Java
Development Kit 1.5. Figure 12 depicts the overall JTst class diagram expressed using the Unified
Modeling Language (UML) notation.

JTst Implementation Summary

15

Demonstration of Correctness

Experiment 1: Demonstration of Correcbless for Single Column Sensitivity Algoritlul1

Local

Screen

Networked

ParameteT4
LAN

PPP
ISDN

Table 5 ~ B;;j.se Data Input

Window

Linux
Macintosh

PaTameter 2 Parameter 3

ithJTst

IE

Other

Netsca e

Parameter 1

Experimentations w

Two experiments will be discussed here involving tlle algoritlul1 for single column sensitivity,
and algoritlu11 for all coluum sensitivity. In each experiment, fue following input data will be
used (see Table 4.1). 'TIle rationale for using these data inputs stemmed from the fact fuat
historically the same data inputs have been used by other researchers in the area. By adopting the
same data inputs, objective comparison may be made amongst different algOritlu11
implementation.

In this section, JTst will be evaluated in terms of its correctness as well as its applicability as a
helpful unit testing tool. To demonstrate its correctness, it is necessary to prove fue the algorifums
behave as expected, that is, in terms of the conformance from expected results and the actual
results. Now, to demonstrate its applicability, a simple step-by-step case study evaluation will be
demonstrated.

In this experiment, parameter 2 is arbitrarily selected to be the sensitivity variables. Based on tlle
input data in Table 5, the fault file for this input is as follows.

The graphical user interfaces are implemented in the MainGeneratorPanel and the
MainInspectorPanel class. The JTst combinatory implements both the single column and all
column sensitivity algorithms. The class inspector functionalities are implemented by the
ReflectionManager. The ReflectionManager class heavily relies on the Reflection API for
performing most of its functionalities. The loader and generator, concurrent execution
functionalities are handled by the AutomatedLoader. At a glance, due to the advantage of
separation of concern, one may question the fact that both the loader and generator and the
concurrent execution fLmctionalities are combined into a single class (i.e. in the AutomatedLoader
class). Nevertheless, a counter argument suggests that combining both the loader generator and
concurrent execution functionalities in a single class facilitates implementation as well as
improves cohesion because both components are tightly coupled Witll each other. If there is a
need to change the loader generator, it is highly likely that tlle same change need to be
propagated through the concurrent execution functionalities as the components need to rely on
the Reflective API to collaborate with each other. StreamGobbler implements the database file
access. As seen in Figure 12, fue StreamGobbler class is declared to be a composition of the
AutomatedLoader class. The rationale for using the composition relationship is that the injector
needs to "use" the StreamGobbler every time it needs to perform fue database access. Thus, fue
AutomatedLoader and StreamGobbler class share the same lifetime (i.e. if the AutomatedLoader
object exists, so does fue StreamGobbler object). Finally, as fue name suggests, fue JTstConstant
class defines all the JTst constant.

@FaultFile
IIIIIIIIIIIIIIIIIII111111111111111/11111/

Class information
IIIIIIIIIIIIIIIIIIIIII/IIIIIIIIIII/IIII/I
classname : not specified
metlwdname : not specified
specifier: 4
paramtypes : not specified
retumtype: not specified
parameter: parhJPesfO]=Sh'ing.class
parameter: partypes[l]=Sh'ing.class
parameter: parhJPes[2]=String.class
parameter: partypes[3]=Sh-ing.class

1//11/1//I/1/1/1//11/1IIII/I//IIIII/1//11
Test case 0

1///1///IIII//III//1///I//II////1/11/I1/1
m-glist : arglistfO]= Netscape
m-glist :arglist[l]= Windows
arglist : arglist[2]= LAN
arglist :arglistf3J= Local

III/IIIIII//I/1//II//1I///1//1///111/11//
Test case 1

1//I/1///I/1///I/11/11/I/1///1////1//11/1
arglist : arglistfOJ= IE
arglist :arglist[lJ= Macintosh
arglist : arglist[2J= PPP
arglist : arglist[3J= Net,vorked

1//11///I/III/1/I//1/1//111111IIIIIIIIIII
Test case 2

III
arglist :arglistfOJ= Other
arglist :arglist[l]= Limrx
arglist : arglist[2J= ISDN
arglist : arglist[3J= Screen

Figure 13 - Fault File for Experiment 1

Given the above fault files, it is expected that the combinatorial test cases would yeild n 2 or 3 2=

9 test cases_ The 9 expected results are depicted in the Table 6 below.

16

i

esults for Experiment 1
ter2 Parameter 3 Parameter 4

ws LAN Local

osh PPP Networked
x ISDN Screen

ws LAN Local
I

ws PPP Local
ws ISDN Local

,

tosh LAN Networked

tosh PPP Networked

tosh ISDN Networked

lX LAN Screen

x PPP Screen

lX ISDN Screen
,

,

ed. I

!

...

I

•
i

~

Linu
Lim

Lint

Windo
Windo

Windo

Macin

Macin
Macin

IE

IE

IE

Other

Other
Other

Other Linu

Netscape
Netsca e
Netsca e

Netsca e Windo
IE Macint

Parameter 1 Parame

//111111111IIIIIIIIIIIIIIIIIIIIIIIIIIIIII
Test case 0

IIIIIIIIIIIIIIIIII11//11111//111IIIIIIIII
arglist : arglist[O]= Netscape
arglist : arglist[IJ= \Nindows
arglist : arglist[2J= LAN
arglist : arglistf3J= Local

1//11111111IIIIII/IIIIIIIII/IIIIIIIIIIIII
Test case 1

IIIIIIIiillliIIII/I/!1/111/111IIIIIIIiIII
arglist : arglist[OJ= Netscape
arglist : arglistfIJ= Windows
arglist : arglist[2J= PPP
arglist : arglist[3J= Local

Table 6- Ex ected R

17

//1111111111111IIIIIIIIIIII1//111111111II
Test case 2

III
arglist: arglist[O]= Netscape
arglist : arglistfIJ= Windows
arglist : arglistl2J= ISDN

@FaultFile
III

Class information
11//11111IIIIIIIIIII111//111//11111IIIIII
classname : 110t specified
methodname : not specified
specifier: not specified
paramtypes : 4

return type: not specified
parameter: partypes[O]=String.class
parameter: parlypes[I]=Stril1g.class
parameter: partypes[2]=Stril1g.class
parameter: partypes[3]=String.class

Values

Base Values

Combinational

Using JTst, the following output fault file is generat

arglist : arglistf3J= Local

IIIIII1///11IIIIIIIIIIIIIIIIIIIIIIIIIIIII
Test case 3

III
arglist : arglist[O]= IE
arglist : arglistflJ= Macintosh
arglist : arglist[2J= LAN
arglist : arglistf3J= Networked

IIIIIIIIIIIIIIIIIIIIIIIIIIIIII1//111IIIII
Test case 4

IIIIII1111///11IIIIIIIIIIIIIIIIIIIIIIIIII
arglist : arglist[OJ= IE
arglist : arglistflJ= Macintosh
arglist : arglistf2J= PPP
arglist : arglist[3J= Networked

IIIIIIIIIIIIIIIIIIII1/11111IIIIIIIIIIIIII
Test case 5

IIIIIIIIIIIIIIIIIIII11//11111111111111III
arglist : arglist[O]= IE
arglist : arglistfll= Macintosh
arglist : arglist[2J= ISDN
arglist : arglist[3J= Networked

//IIIIIIIIIIIIIIIIIII11//111//11IIIIIIIII
Test case 6

III
arglist : arglist[oJ= Other
arglist : arglist[1J= LimiX
arglist : arglist[2J= LAN
arglist : arglistL3J= Screen

111/1111I11/1/11IIIIIIIIII11//1111///1111
Test case 7

IIIII1/1111IIIIIIIIIIIIIIIII1//11IIIIIIII
arglist : arglist[OJ= Other
arglist : arglistflJ= LinllX

arglist : arglist[21= PPP
arglist : arglist[3J= Screen

IIIIIIIII11/1/11IIIIIIIIIIIIIIIIIIlillIII
Test case 8

IIIIII11/1/1IIIIII111111111/1/11111111III
arglist : arglistI01= Other
arglist : arglist[1J= Linllx
arglist : arglistl2J= ISDN
arglist : arglistl3J= Screen
IIIII1///11IIIIIIIIIIIIIIIIIIIIIIIIIIIIII

Figure 14 - Output Fault File for Experiment 1

Referring to Table 6 and the output fault file in Figure 1<1, it can be seen that the expected output
as well as the actual output matches. Therefore, the]Tst for single column sensitivity algorithm

18

demonstrated to be correct. Although not shown here, the sensitivity column can also be mlunm
aor any other desired columns.

Experiment 2: Demonstration of Correctness for All Columns Sensitivity Algorithm

Here, all parameters have been selected to be the sensitivity variables. Based on the input data
given in Table 5, the fault file for this input is as follows.

@FaultFile
IIIIIIIIIIIIIIII/IIIIIIIIIIIIIIIIIIIIIIII

Class information
IIIIIIIIIIIIIII111/1111IIIIIIIIIIIIIIIIII
classname : not specified
methodname : not specified
specifier: lWt specified
paramtypes: 4
retumtype: not specified
parameter: partypes[ol=String.class
parameter: partypesW=String.class
parameter: partypes[21=String.class
parameter: partypes[31=String.class

1/11IIIIIIIIIIIIIII1111111111111111111111
Test case 0

1/11IIIIIIIIIII1/11IIIIIIIIIIIIIIIIIIIIII
arglist :arglist[ol= Netscape
arglist :arglist[l]= Windows
arglist :arglist[2]= LAN
arglist :arglisI[3]= Lom!

IIIIIIIIIII111111111111111/1111111/111III
Test case 1

1/11IIIIIIIIIIIIIIIIIIIIIII/IIIIIIIIIIIII
arglist : arglist[O]= IE
arglist :arglist[I]= Macintosh
arglist: arglist[2/= PPP

arglist : arglist[3]= Networked

11/1//1/1IIIIIIIIII/IIIIIIfill/II/IIIIIII
Test case 2

111/11//1111111111/111111111/1111/111IIII
arglist : arg!istfOJ= Ofher
arglist :arglistlll= Linl/x
arglisl: IIrglisf/21= ISDN
mslisl :arglisl131= Screen

Figure 15 - Fault File for Experiment 2

Given the above fault file, it is expected that the combinatorial test cases would be (p * n 2) - n*
(p-1) or (4'"3 2) -3(4-1) = 27 test cases. The 27 expected results are depicted in the Table 7 below.

19

20

Employing JTst, the following output file is generated.

T bl 7 E dR

Class infurmatiol1
/1/11////1/////1//1////1////11/1111111//1
classname : not specified
Inethodnallze: 1101 specified
specifier: not specified
paramtypes : 4

rehmz./ype: not specified
parameter: partypes[O]=String.class
parmneler : partypes/I/=String.class
parameter: partypes[2J=Slring.class
parameter: partypes[3]=String.class

@FaultFile
//1/1///II/II///II/II!///I/!//III!/I!fill

a e - xpecte esu ts
Parameter 1 Parameter 2 Parameter 3 Parameter 4

Netscape Windows LAN Local
Base Values IE Macintosh ppp Networked

Other Linux ISDN Screen

Netscape Windows LAN Local
IE Windows LAN Local

Other Windows LAN Local
Netscape Macintosh ppp Networked

Column 0 IE Macintosh ppp Networked
Other Macintosh PPP Networked

Netscape Linux ISDN Screen
IE Linux ISDN Screen

Other Linux ISDN Screen

Netscape Macintosh LAN Local
Netscape Linux LAN Local

Column 1 IE Windows PPP Networked
IE Linux PPP Networked

Other Windows ISDN Screen
Other Macintosh ISDN Screen

Netscape Windows PPP Local
Netscape Windows ISDN Local

Column 2
IE Macintosh LAN Networked
IE Macintosh ISDN Networked

Other Linux LAN Screen
Other Linux ppp Screen

Netscape Windows LAN Networked
Netscape Windows LAN Screen

Column 3
IE Macintosh ppp Local
IE Macintosh ppp Screen

Other Linux ISDN Local
Other Linux ISDN Networked

/////////////////1/1/////1//1/1////III/II
Test case 0

//////1/////III/////1/1/1//III//III/II/II
arglist : argUstfOl= Netscape
arglist :argUstW= Windows
arglist : argUst[21= LAN
arglist : argUst[31= Local

//////////////////1/////1/1//////////////
Test case 1

//////1///fill/////1////1/1/1////////////
arglist : argUstfOl= IE
arglist :argUstW= Windows
arglist : argUst[21= LAN
argUst : m-gUst[31= Local

///1/////////////////1///////////////////
Test case 2

//III/III/III/II/II11/////////////11/1/1/
arglist :argUstfOl= Other
argUst :arglistW= Windows
arglist : arglist[21= LAN
arglist : m-gUst£31= Local

III/III/II/III/II///1/1//1///////////////
Test case 3

/1/////////////////////1//1///////////1//
arglist : argUstfOl= Netscape
arglist :argUstW= Maantosh
arglist : arglist[21= PPP
arglist : arglist£31= Netu.,urked

///////////////////////////////////III/II
Test case 4

/11/////11////IIIlilt///!I//////III//lIlt
arglist :arglistfOl= IE
arglist :m'glistW= Macintosh
arglist : arglist[21= PPP
arglist : arglist[31= Networked

//////III////1////////////////////1//1///

Test case 5
II/II/II////11//////1//////11////////////

arglisf: arglisf/OJ= Other
argUst : llrglisfLll=]V1acintosh
arglist: arglistl21= PPP
arglist : arglist[31= Networked

/III/III/fill1//////////1//111/III/III/II
Test case 6

////////1/1/////II///1///////////////////
arglist :arglist[ol= Netscape
arglist :arglist[IJ= LinIlX
arglist : arglist[2J= ISDN
arglist : arglist[31= Screen

21

IIIIIIIIIIII111/111111//1111111//1/11111/
Test case 7

IIIIIIIIIIIIIIIIIIIIIII1111//111111111111
argUst : arglistfOJ= IE
argUst :arglist[l]= Lin/Ix
arglist : m-gUst[2J= ISDN
argUst :arglist[3J= Screen

IIIIIIIIIII/III/IliffIIIIIIIII//II//IIIII
Test case 8

111//111IIIIIIIIIIIIIIIIIII//II//IIIIIIII
argUst : arglistfOJ= Other
argUst :arglist[l]= Linux
arglist :arglist[2]= ISDN
argUst :arglist[3J= Screen

IIIIIIIIIIIII1//IIIIIIII/11111II1//IIIIII
Test case 9

11//IIIIIIIIIIIIIIIIIIIIIII/1IIIIIIIIIIII
arglist : arglistfOJ= Netscape
arglist :arglistllJ= Macintosh
arglist : arglist[2J= LAN
arglist :arglist[3J= Local

111/11111IIIIIIIIIIII//IIIIIII/111/11IIII
Test case 10

IIIIIIIIIIIIIIIIIII1//1IIII/IIIIIIIIIIIII
arglist :arglistfOJ= Netscape
arglist :arglistllJ= LimlX
arglist : arglisU2/= LAN
arglist : arglist[3J= IJJcaJ
11111//1/111/1111///1/1/1////////1/////11

Test case 11.

1111/1//111111111111111111/111/111IIII1/1
argUst : arglistfOJ= IE
argUst :arglistf1J= Windows
arglist : arglist[2J= PPP
arglist :arglistl3J= Netrmrked

IIIIIIIIIIIIIII!!!IIII//1111/1/1/1/11I11/
Test case 12

/////////111/1//11//11//11///1/1///1II/11
argUst : arglislIOI= IE
argUst :arglistlll= Limlx
argUst :arglisl/2J= PPP
arglist :arglisI/3/= Networked

//1/1//1/11111/1/1//1////1/111//11/11/1/1
Test case 13

1/1/11//1111///1/11/1//1/1/1IIII1//1/1II/
argUst : arglisl/O/= Other
arglist :arglistlll= Windows
argUst :arglist[2]= ISDN
arglist :arglistl3]= Screen

/11/1//1/11/11///1111111///11////1/1//1/1
Test case 14

22

11///1//1//11/11//1/////IIIII/II11/II///1
arglist : arglistfOl= Other
arglist :arglistW= Macintosh
arglist : arglist[21= ISDN
arglist :arglistf31= Screen

11/111111111111111/11/1111/111/11//111111
Test case 15

IIIIIIIIIIIIIIIIIIIIIIIIIIII11/11/11IIIII
arglist :arglistfOl= Netscape
argUst :argUstW= Windows
m-glist :arglistf21= PPP
argUst : arglistf31= Local

IIIIIIIIIIIIIIIIIIIIIIIIIII11/II//1111111
Test case 16

//11/11111/111/1111IIIIIIIIIII1111//11/11
argUst :arglistfOl= Netscape
arglist :arglistW= Windows
arglist : arglist[21= ISDN
arglist :arglist[31= Local
1111/111111111/11111111IIIIIIIII111/1111I

Test case 17
1111111/11//IIIIIIIIII/IIIIIIIII11/1111//
arglist : arglistfOl= IE
argUst :m-glistW= Macintosh
argUst : arglist[21= IAN
arglist : arglistf31= Networked

IIII111/11//1/1/1/11//11//IIIIII111/1/IfI
Test case 18

IIIIIIIIIIIIIIIII11/1/IIIIIIIIIIIIIII/III
arglist :arglistfOl= IE
argUst :arglistW= Macintosh
arglist :arglist[2J= ISDN
arglist : arglistf31= Networked

IIIIIIIII11/I/III/IIII/IIIII/IIIII1/111//
Test case 19

II//////I!/1/1////1///11//11//1//11////1/
arglist :arglisiI0]= Other
arglist : arglistLl1= Linux

arglist: IIrglist/2J= LAN
arglisi : arglist[31= Screen

II/I!/!Iifill/III///11/1//11/11IfillIIf1/
Test case 20

11/1111111/1//11//1//IIIIIII/II1/I//I1/II
argUst : arglistfOl= Other
arglist :arglist[IJ= Limlx

arglist : arglist[21= PPP
arglist : arglist[31= Screen

11///11/1//11/1/1111//111111111///1/11/11
Test case 21

1//1111111/11/111/1111/11//1/11111/1111/1
arglist : arglistfOl= Netscape

23

arglist : arglist[l]= Windou)s
argUst : argUstf2J= LAN
arglist :arglistf3J= Nehwrked

//1///////1////////////II/II//////////11/
Test case 22

//II/II///III/II/III////////////11///////
arglist : arglist[oJ= Netscape
arglist :arglist[l]= Windaws
arglist :arglistf2J= LAN
arglist :arglistf3J= Screm
//fill////IIIfillIII/II/II/III/IIIIII///1

Test case 23
//1//////////////11I//////////JIllJill///
arglist : arglist[OJ= IE
arglist :arglistfl]= Macintosh
arglist :argUstf2J= PPP
arglist :arglistf3J= wcal

//II/II/////11I//////////////////////////
Test case 24

//III/II/////II/II/////III//fillIII/II/II
arglist : arglist[oJ= IE
arglist :arglist[l]= Macintosh
argUst :arglistf2J= PPP
arglist :arglistf3J= Screen

//III/III////III/IIIIII/II///////////////
Test case 25

/1////////III/III/////////////////fill///
arglist : arglist[OJ= Other
arglist :arglist[l]= Linllx
arglist : arglistI2J= ISDN
arglist :arglistf3J= Local

////////////////////////IIIIII//III/III//
Test case 26

/1////////////III////III////////III//////
arglist : arglist[OJ= Other
iwglist :arglist[l]= Lil1llX

argUst : arglist12J= ISDN
arglist : arglistI3J= Networked

Figure 16 - Output Fault Fi~ for Experiment 2

Observing the base input in Table 7 and the output fault file in Figure 16, both the expected result
and actual result matches implying that the algorithm for all column sensitivity is correct.

Applicability of JTst

One experiment will be demonsu'ated here in order to highlight the features of JTst. In particular,
the experiment will highlight the JTst automation and (concurrent) execution capabilities. The
experiment involves an adder class module. The main purpose of the adder module is to perform

24

addition of two integer numbers as well as two complex floating point numbers. The complete
source code implementation for the adder module is straightforward and will not be shown here.
Here, we aim to demonstrate that JTst have sufficiently rich features to perform unit test on a
typical Java module.

There axe three methods declared in the adder module. The method interface
add_basictypes_integer, is declaxed as private, retums an integer, and takes two integers as input
parameters. Unlike the method interface add_basictypes_integer, the method interface
addjavajnteger, is declaxed as protected, retums void, and takes two Integer class as input
parameters. Finally, the method interface add_user_defined_Complex_Double, is declaxed as public,
retums void, and takes two user defined class called Complex. Here, the user defined Complex
class takes a constructor of the real part and imaginary paxt of type String (and later converted to
floating points) in order to initialize the Complex object.

For each of the method interfaces, 65 test cases were (combinatorially) defined. Concerning the
method interface add_basichJpes_integer, unit testing is still possible although the method is
declared as private (and returns an integer). The snapshot of the output can be seen in Figure 17.

Figure 17 -]Tst Unit Testing Snapshot for add_basictypes_integer

.,.
In testing the method interf,lCe add_basiclypes_inleger, an alanning result is observed when two
maximum boundary values based on the Java pre-defined constant Integer.MAX_VALUE are
added together. It is expected that the operation would throw a floating point overflow exception
(i.e. integer out-of-bound). Rather, the operation gives a wrong value of -2 (see Figure 17).
Similarly, adding two minimum boundary values based on Java pre-defined constant
Integer.MIN_VALUE also produces erroneous answer. These results show that the adder
module used in this experiment could not tolerate even the simplest robust inputs.

As far as the method interface addjavajnteger is concemed, it is also possible to test all the 65 test
cases even though the method is declared as void protected. Similax to the method interface

25

j!
!I
;1
I,

1\

!I
!i
'I
II
I!
:i

III,
"Ii
:1

Ii

II
II

II

II

II:

II
II,

II:

1I

11

'II

Ii
I
i I

i i

I

ad~'Cbasictypes_integer, the method interface would fail to give correct results when the boundary
values were used.

Finally, concerning the method interface add_user_defined_Complex_Double, 65 test cases were also
(combinatorially) defined. Unlike the two method interfaces defined earlier,
add_user_defined_Complex_Double is declared as void public. While public method is universally
accessible to all, it is also necessary to demonstrate the fact that JIst can also test public methods
in order to qualify as a general software testingtool.

In order to initialize the Complex object as the passing parameters of the method interface
add_user_defined_Complex_Double, two input String classes were used for the real and imaginary
part of the complex numbers of interest as part of the constructor. The reason for using string
inputs is to demonstrate that SFIT can also trigger Java exception handling mechanism in the case
of invalid String class inputs (e.g. "@#@$%" and "&"%?") As discussed earlier, the two Sh'ing
inputs will undergo floating point conversion in the Complex class before that addition takes
place. This issue is further demonstrated in the snapshot given in Figure 18.

Figure 18 - JIst Unit Testing Snapshot for add_user..J1efined_ComplexJJouble

Overall, all the JIst features have been demonstrated and summarised in the experimentations
given in this section. In fact, JTst has successfully facilitated the process of finding errors through
unit testing. In the next section, details assessment of JTst 'wil] be made.

The main issues which are under consideration in this section relate to the applicability of JTst as
a helpful unit testing tool. Such consideration may help to improve JIst by providing necessary
feedback based on the author's practical experiences.

The first issue for JTst assessment relates to the fact that all JTst algorithms are correctly
implemented. Experimentation with all JTst algoritlm1 implementation in earlier section
demonsh'ates that the expected results match with the actual results, indicating conformance.

26

. I

1
:1
:i

'i I

Addressing the correctness issue is important to ensure that the final unit results are meaningful
and that errors are not mistakenly coming from JTst itself rather from the module under test.

Secondly, there is also issue relating to the fact that some software implementation do not come
source codes. In the absence of source codes; unit testing is still possible using JTst. Recall that,
JTst provides an inspector tool for interrogating module under question for class name and
method interfaces. This information would then be used in order to do the actual unit testing
through the method interface.

Although the running experiment with JTst discussed earlier demonstrated testing of module
with known source code, the same experiment could have been done in the absence of source
code. The reason for having tested modules with source code is to enable comparison with the
expected results with the actual value. In this way, the true behavior ofJTst can be ascertained.

In all the experiments discussed earlier, JTst has been successful to test even on the private
method interfaces. Recall that in object-oriented languages, private methods are inaccessible to
any module other than itself. The fact that JTst can access the private method reflects the
suitability of JTst as a robust unit testing tool. As discussed earlier, the capability of JTst to access
private method is actually made possible by the use of computational reflection. For this reason,
computational reflection is seen a useful technique for implementing an automated unit testing
tool.

In addition to allowing the testing of private methods (and public ones), JTst also permits testing
of protected methods. Conceptually, protected methods are only accessible to the child of the
module under test derived from inheritance relationship. As seen earlier, JTst can still
successfully test the component under test without the need to rely on inheritance relationship.
With such a feature, JTst appears to be a useful testing tool for object oriented program.

Apart from injecting private and protected methods, the experiment discussed earlier also
demonstrated the fact that JTst can also test user-defined classes (see Figure 18). The significant of
this capability demonsh'ates the scalability of JTst for testing commercial software module which
sometimes does not use standard Java classes.

Perhaps, the most important feature of JTst is its automation support. As a comparison, Figure 19
depicts traditional testing versus automated testing provided by JTst. As the figure illustrates, a
number of saving in terms of test driver generations and feedback loops can be observed. In this
respect, JTst can be compared to JUnit [11, 15J.ln order to use JUnit, programmers would still be
required to write test drivers. In JTst, no programming would be required as the test drivers are
automatically generated by the JTst automated loader. Such a feature is helpful to relieve the test
engineers from the lTnmdane tasks inherent in the testing process.

27

r-~'- I want to test my Java Code ")

~-~-~.~~
C ..the old way ~ingJTst

Develop est Cases

Build the test drivers

(Manually analyse results

~ J=-_~-,--------,-----------.
'-- J_av_a_cO,de_T_e'_te_d J

Execute each test driver sequentially

Runtime
errors?

~---..-.l~-- _____

Must gain access to source COde)

Develop Java test drivers for each
test case In every class

Develop test cases for each method
In a class file

__________...-.-1 ----'

Figure 19 - JTst versus Traditional Testing

Apart from automation support, JTst also permits (concurrent) test execution. This feature is
useful in the case where there are many test cases to be executed (see Figure 17 and Figure 18
respectively). Indeed, there could be significant time saving given proper utilization of such

feahlre.

JTst approach is similar to JACA [16] in the sense that JACA also uses computational ret1ection in
order to inject faults in a Java program. At a glance, JACA appears to have all the features of JTst.
Nevertheless, a closer look reveals that, unlike JTst, JACA requires that the test engineer who
performs the testing have substantial knowledge of Java in order to undertake the injection
process, that is, in order to manually write the test driver program. As seen earlier, the driver
code for JTst are automatically generated and executed in a single-click of a button. Furthermore,
the injection process in JTst is highly automated allowing 15,000 test cases to be executed at a
particular instant. As such, JTst can be seen as offering a high level of abstraction for Java based

unit testing.

28

I

Future Work

One useful avenue to improve JTst would be to integrate the sensitivity measure matrix such as
the CRASH scale [6] [18]. The CRASH scale refers to the acronyms which stands for Catastrophic,
Restart, Abort, Silent, and Hindering. Catastrophic failures refer to failures that can cause the
whole system to stop functioning. Restart failures means that the system hangs and require user
intervention to kill the appropriate tasks. Abort failures refer to abnormal termination of the tester
process. Silent failures are false successes, that is, when error should have occurred. Finally,
hinderll1g failures mean return incorrect error codes. With the CRASH scale, it is possible to
measure how sensitive is the components under test in response to the extreme inputs and
stressful environment. Furthermore, with such integration, it may be possible to simplify and
automate the process of objectively rating the software resilience against faults.

Apart from the integration with sensitivity measure mah'ix, it would also be useful to investigate
the support for parallel execution of test cases within a large scale distributed environment such
that of the GRlD. With such features, more time saving can be obt:'1in as far as testing is
concerned.

Finally, another aspect which could be investigated is the application of JTst as a testing tool for
real mission critical applications. Only through comprehensive and thorough evaluations can the
true value of JTst be known.

Concluding Remarks

The work discussed in this thesis is significant ll1 order to alleviate the difficulties in software
testing, that is, by automating (and parallelizing) the test execution process as well as permitting
extended test coverage through combinatorial generation of test cases. As human are more and
more dependent toward software, this work presents a small leap toward the betterment of the
techniques and processes for the ensuring quality software.

[1] N.J.P. Acantilado and c.P. Acantilado. "Simple: A Prototype Software Fault Injection Tool",
MSc Thesis, Naval Postgraduate School, Monterey, California, December 2002.

[2] M.l. Ahmad. "A Software Fault Injection Tool", MSc ESDE Dissertation, Sd1001 of Electrical
and Electronics, University Science Malaysia, May 2005.

[3] M.l. Ahmad, AR Mohd Saad, M.N. Mat Isa, Kamal Z. Zamlj, "Design of Software Fault
Injection Tool Using Computational Reflection", in proceedings of the International
Conference on Science and Technology: Application in Industry & Education (ICSTIE 2006)
Dec 8-9, UiTM Penang.

[4] MD. Alang Hassan. "Enhancing and Evaluating A Software Fault Injection Tool", MSc ESDE
Dissertation, School of Electrical and Electronics, University Science Malaysia, December
2005.

29

J

[5] P.E. Ammann and AJ. Offutt. "Using Formal Methods to Derive Test Frames in Category­
Partition Testing". In Proc. of the 9th Annual Conf(;/'ence on Comput(;/' Assurance (CaMPASS '94)/
IEEE CS Press, June 1994, pp. 69-80.

[6] The Ballista Project. URL http://www.ices.cmu.edufballista

[7] K. Beck and E. Gamma. "Test hlfected: Programmers Love Writing Tests", Java Reports Vo13,
No 7/ 1998/ pp 37-50.

[8] B. Beizer. Software Testing Technique. Thomson Computer Press, 2nd Edition, 1990.

[9] S. R Dalal, A Jain, N. Karunanithi, J. M. Leaton, C. M. Lott, G. C. Patton, and B. M. Horowitz,
"Model-Based Testing In Practice". In Proc. of the 21st Inti, Conf on Software Engineering, ACM
Press, May 1999/ pp. 285-294.

[10] Java Programming Language. URL http://iava.sun.com

[11] JUnit Website - URL http:Uv,rww.junit.org

[12] D.R Kuhn and M.J. Reilly. "An Investigation of the Applicability of Design of Experiments to
Software Testing". In Proc. of the 27th NASA/IEEE Software Engine(;/'ing Workslwp, IEEE CS
Press, December 2002, pp. 69-80.

[13] D.R Kuhn and V. Ohm. "Pseudo-Exhaustive Testing for Software". In Proc. of the 30th
NASA/IEEE Software Engineering Workshop, IEEE CS Press, April 2006.

[14] D.R Kuhn and D.R. Wallace. "Software Fault Interactions and Implications for Software
Testing". IEEE Transactions on Software Engineering 30(6)/ June 2004/ pp. 418-421.

[15] A Matt. "Testing Java Interface ,"lith JUnit". Dr Dobb's Journal, February 2003.

[16] RL.O. Moraes, and E. Martins. "Jaca - A Software Fault Injection Tool". In Proc. of the 2003
Inti. IEEE Conf on Dependable Systems and Networks, IEEE CS Press, p.667.

[17] G.J. Myers. The Art of Software Testing, Jo1m Wiley and Sons, 1976.

[18]}. Pan, P. Koopman, and D. Seiwiorek, "A Dimensionality Model Approach to Testing and
Improving Software Robustness", in Proceedings of the IEEE Systems Readiness TechnologJJ
Conference, IEEE CS Press, 1999/ pp, 493-502.

[19] R Pressman. Softl,vare Engineering: A Practitioner's Approach, 5U1 Edition McGraw Hill,
2000.

120] G.J. Silva, RJ. Drebes, J. Gerchman, T.S. Weber. "FIONA: A Fault Injector for Dependability
Evaluation of Java-based Network Applications". In Proc. of the 3"[IntI. Symposium on
Network Computing and Applications (NC04).

[21] K.Z. Zamli, N.A Mat Isa, O. Sidek, and M.I. Ahmad. "Ensuring Dependability of COTs: A
Work in Progress". In the CD-ROM Proc. of the IntI. Conference on Robotics, Vision, and
Information Processing (ROVISP05), Penang, Malaysia, July 2005.

[22] K.Z. Zaml~ M.D. Alang Hassan, N.A Mat Isa, and S.N. Azizan. "SPIT - An Automated
Software Fault Injection Tool". In Proc. of the 2nd Malaysian Software Engineering Conference
(lvIySec2006), Kuala Lumpur, December 2006, pp. 99-105.

30

[23] K. Z. Zamli, M. D. Alang Hassan, N.A. Mat Isa, S.N. Azizan. "An Automated Software Fault
Injection Tool For Robustness Assessment of Java COTs". In Proc. Of the IEEE IntI. Conference
on Computing and Informatics (ICOCI06), IEEE CS Press, June 2006.

[24] K.Z. Zamli, N.A. Mat Isa, M.F.J. Klaib and S.N. Azizan. "Designing a Combinatorial Java
Unit Testing Tool". In Proc. of the lASTED IntI. Conference on Advances in Computer Science and
TecJl1wlogy (ACST 2007), Phuket, Thailand, April 2007.

[25] Kamal Z. Zamli, Nor Ashidi Mat Isa, Mohammad Fadel Jamil Klaib, Zainal Hisham Che Soh,
and Che Zalina Zulkifli, "On Combinatorial Explosion Problem for Software Configuration
Testing". In Proc. ofthe IntI. Conference on Robotics, Vision, Information and Signal Processing 2007
(ROVISP2007), Nov 28-30, 2007, Penang, pp. 26-30.

[26] Kamal Z. Zamli and Nor Ashidi Mat Isa, "JTst: An Automated Unit Testing Tool for Java
Program", in the American Journal of Applied Science, Vol 5, No 2, pp. 77-82.

Project Members

The project members for this project are:

1. Dr Kamal Zuhairi bin Zamli (Project Leader)
2. Dr Nor Ashidi Mat Isa
3. Siti Norbaya Azizan (RO)

4. Mohamad Fadel Jamil Klaib (RO) - writing up PhD Thesis
5. Mohd Firdaus Alias (RO) - writing up MSc Thesis
6. Mohd Annuar Mat Isa (RO) - writing up MSc Thesis

31

Current Project Outputs - Publications & Awards

Local Conference Publications

1. M.L Ahmad, A.R. Mohd Saad, M.N. Mat Isa, Kamal Z. Zamli, "Design of Software Fault Injection

Tool Using Computational Reflection", in proceedings of the International Conference on Science

and Technology: Application in Industry & Education (ICSTIE 2006) Dec 8-9, UiTM Penang.

2. Kamal Z. Zamli, Mohd Daud Alang Hassan, Nor Ashidi Mat Isa, Siti Norbaya Azizan,

"Implementing an Automated Java Unit Testing Tool: Some Early Experiences", in proceedings of
the 2nd Malaysian Software Engineering Conference 2006 (MySec06), pp. 99-105.

3. Kamal Z. ZamJi, Mohamed Fadel Jamil Klaib, Nor Ashidi Mat Isa, "Combinatorial Explosion

Problem in Software Testing - Issues and Practical Remedies", in proceedings of the 3rd Malaysian
Software Engineering Conference 2007 (MySec07), pp. 24-28

International Conference Publications

4. Kamal Z. Zamli, Mohd Daud Alang Hassan, Nor Ashidi Mat Isa, Siti Norbaya Azizan, "An

Automated Software Fault Injection Tool For Robustness Assessment of Java COTs", in

proceedings of the IEEE International Conference on Computing and Informatics (ICOCI06), Kuala
Lumpur, Jlme 6-8, 2006.

5. Kamal Z. Zamli, Nor Ashidi Mat Isa, Mohammed Fadel Jamil Klaib, Siti Norbaya Azizan,

"Designing a Combinatorial Java Unit Testing Tool", in proceedings the lASTED International
Conference on Advances in Computer Science and Technology (ACST 2007), Phuket, Thailand,
Apr 2-4, 2007.

6. Kamal Z. Zamli, Nor Ashidi Mat Isa, Mohammad Fadel Jamil Klaib, Zainal Hisham Che Soh,

and Che Zalina Zulkifli, "On Combinatorial Explosion Problem for Software Configuration
Testing", in proceedings of the International Conference on Robotics, Vision, Information and
Signal Processing 2007 (ROVISP2007), Nov 28-30, 2007, Penang, pp. 26-30.

International Journal Publications

7. Kamal Z. Zamli, Nor Ashidi Mat Isa, Mohd Daud Alang Hassan, "Software Testing and

Automation", in International Journal of Factory Automation, Robotics and Soft Computin& Issue
2 (April 2007), pp. 38-43.

8. Kamal Z. Zamli, Nor Ashidi Mat lsa, Mohamed fadel Jamil Klaib, Siti Norbaya Azizan, "A Tool

for Automated Test Data Generation (and Execution) Based on Combinatorial Approach", in

International Journal of Software Engineering and Its Applications, July 2007, pp. 19-34.

9. Kamal Z. Zamli and Nor Ashidi Mat Isa, "JTst: An Automated Unit Testing Tool for Java
Program", in the American Journal of Applied Science, VoIS, No 2, pp. 77-82.

32

