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GANDINGAN BEM-FEM UNTUK KESAN AKUSTIK KEATAS KESTABILAN 
AEROANJALAN STRUKTUR 

 
ABSTRAK 

 
 

Satu siri kerja telah dijalankan untuk membangunkan satu asas bagi skim komputasi 

dalam pengiraan pengaruh gangguan akustik terhadap kestabilan aeroanjalan struktur. 

 

 Pendekatan am merangkumi tiga bahagian. Bahagian pertama adalah 

formulasi perambatan gelombang akustik yang ditakrifkan oleh Persamaan Helmholtz 

dengan menggunakan pendekatan Elemen Batas; yang membolehkan pengiraan 

tekanan akustik pada batas-batas akustik-struktur. Masalah dinamik struktur ini 

diformulasikan dengan menggunakan Kaedah Elemen Terhingga. Bahagian ketiga 

pula melibatkan penentuan beban aerodinamik yang tidak stabil pada struktur melalui 

pendekatan komputasi aerodinamik yang am.  

 

 Sepertimana masalah kestabilan aeroanjalan dinamik dilihat, kesan gangguan 

tekanan akustik terhadap struktur aeroanjalan dianggap merangkumi tekanan akustik 

insiden yang bebas daripada pergerakan struktur dan tekanan akustik yang 

bergantung pada pergerakan struktur. Ini ditakrifkan sebagai analogi aerodinamik 

akustik. 

 

Dalam proses pembangunan ini, penumpuan teliti telah diberikan kepada 

masalah taburan akustik. Persamaan yang menakrifkan masalah akustik-aerodinamik 

ini kemudiannya telah diformulasikan dengan melingkungi tekanan total (insiden 

ditambah dengan tekanan tertabur), dan analogi aerodinamik akustik. Satu pendekatan 

am untuk menyelesaikan persamaan takrifan ini sebagai satu persamaan stabiliti telah 

diformulasikan untuk membolehkan pengunifikasian penyelesaian masalah ini. 
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 BEM-FEM COUPLING FOR ACOUSTIC EFFECTS ON AEROELASTIC 
STABILITY OF STRUCTURES 

 
ABSTRACT 

 
 

A series of work has been carried out to develop the foundation for the 

computational scheme for the calculation of the influence of the acoustic disturbance to 

the aeroelastic stability of the structure.  

 

The generic approach consists of three parts. The first is the formulation of the 

acoustic wave propagation governed by the Helmholtz equation by using boundary 

element approach, which then allows the calculation of the acoustic pressure on the 

acoustic-structure boundaries. The structural dynamic problem is formulated using 

finite element approach. The third part involves the calculation of the unsteady 

aerodynamics loading on the structure using generic unsteady aerodynamics 

computational method.  

 

Analogous to the treatment of dynamic aeroelastic stability problem of structure, 

the effect of acoustic pressure disturbance to the aeroelastic structure is considered to 

consist of structural motion independent incident acoustic pressure and structural 

motion dependent acoustic pressure, referred to as the acoustic aerodynamic analogy.  

 

In the present development, rigorous consideration has been devoted to the 

acoustic scattering problem. The governing equation for the acousto-aeroelastic 

problem is then formulated incorporating the total pressure (incident plus scattering 

pressure), and the acoustic aerodynamic analogy. A generic approach to solve the 

governing equation as a stability equation is formulated allowing a unified treatment of 

the problem.  

  



 1

CHAPTER ONE 
INTRODUCTION 

 
 

1.0 Background 
 

Aeroelasticity deals with the science that studies the mutual interaction between 

aerodynamic forces and elastic forces for an aerospace vehicle. One of the major 

research areas in the field of aeroelasticity is flutter control. Flutter is a physical 

phenomenon that occurs in a solid elastic structure interacting with a flow of gas or 

fluid. Flutter is a structural dynamical instability, which consists of violent vibrations of 

the solid structure with rapidly increasing amplitude. It usually results either in serious 

damage of the structure or in its complete destruction. Flutter occurs when the 

parameters characterizing fluid-structure interaction reach certain critical values. The 

physical reason for this phenomenon is that under special conditions, the energy of the 

flow is rapidly absorbed by the structure and transformed into the energy of mechanical 

vibrations. In engineering practice, flutter must be avoided either by design of the 

structure or by introducing a control mechanism capable of suppressing harmful 

vibrations. Flutter is known as an inherent feature of fluid-structure interaction and, 

thus, it cannot be eliminated completely. However, the critical conditions for flutter 

onset can be shifted to the safe range of the operating parameters. This is the ultimate 

goal for the design of flutter control mechanisms [1].  

 

Efforts to suppress flutter could be done both passive flutter suppression (with 

redistribution of wing’s mass and rigidity) and active flutter suppression (by actuating 

the control surfaces on the wing). Various active flutter suppression methods such as 

active control system using optimal control, adaptive control, neural networks, etc, have 

been implemented. But there are many other alternatives that can be implemented for 

flutter suppression system. One of the emerging innovations is, using sound waves as 
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an alternative for flutter suppression system. The idea stems from the fact that the 

interaction between sound and structure could create vibration.  

 

Structure-acoustic interaction, in particular the vibration of structures due to 

sound waves, is a significant issue that is found in many applications. Historically, the 

approach to the analysis of situations embodying the interaction of vibrating elastic 

structures with an ambient acoustic fluid has evolved through a sequence of distinct 

stages. Early analytical attempts were typically motivated by practical applications. 

Thus the first interaction analyses were prompted by the development of underwater 

sound sources required for echo-ranging submerged targets, originally icebergs, after 

the Titanic’s tragedy (1912), and then submarines ‘during World War I. While 

interaction phenomena are generally associated with submerged structures, many of 

the early radiation loading studies were stimulated by the development of 

loudspeakers, i.e. by structures whose low structural impedance does not dwarf the 

light radiation loading exerted by the atmosphere. 

 

In early 1960’s an energy formulation of the acoustic-structure interaction 

problems has been developed, this formulation set the stage for the application of finite 

element methods to cavity-structure analysis. This numerical method makes the 

consideration of complex cavity and structure geometry, structure boundary condition, 

and acoustic boundary condition conceptually no more difficult than simpler problems. 

Three different formulations were derived using the pressure, fluid particle 

displacement, or velocity potential as the fundamental unknowns in the fluid region. 

The finite element approach for the structural-acoustic interaction problem seems well 

developed in 1970. As a powerful alternative to the finite element method, the 

boundary element method (BEM) or the boundary integral element method (BIEM) had 

its beginnings in the early 1960s based on the boundary integral equation theory 

developed in 1800s and 1900s. Most of the boundary element method applications in 
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acoustics focused on the acoustic radiation and scattering problems, where finite 

element methods have an incompatible advantage for dealing with infinite domain [2]. 

Due to many engineering problems which are not ideally suited for either the boundary 

element or finite element method, a combination of both methods seem to be the most 

efficient way of analysis.  

 

Another intensive research area in acoustic-structure field is an acoustic 

excitation of the aircraft structure that has been one of the main concerns during 

certain flight operations, as exhibited by the acoustic loads on B-52 wing during take off 

as reported by Edson [3], which reaches acoustic sound pressure levels as high as 164 

dB. Modern new and relatively lighter aircrafts may be subject to higher acoustic sound 

pressure level, such as predicted for the NASP [4].  Typical structural acoustic and high 

frequency vibration problems that can severely and adversely affect spacecraft 

structures and their payloads have also been lucidly described by Eaton [5]. For many 

classes of structures exhibiting a plate-like vibration behavior, such as antennas and 

solar panels, their low-order mode response is likely to be of greatest importance. 

Assessment of combined acoustical and quasi-static loads may be significant.  The 

stages in the evolution of approaches to the vibrations of elastic shells and plates in an 

acoustic fluid and to the resulting sound field have been described by Junger [6].  

 

Modeling of structural-acoustic interaction by using coupled BEM-FEM 

approaches has been attempted by many investigators such as given by Holström [7], 

Marquez, Meddahi, and Selgas [8] who considered two dimensional fluid-solid 

interaction problem, Zhang, Wu, and Lee [9] who considered acoustic radiation from 

bodies submerged in a subsonic non-uniform flow field, Chen, Ju, and Cha [10] who 

considered symmetric formulation to compute responses of submerged elastic 

structures in a heavy acoustic medium, Tong, Zhang, and Hua [11] who considered 

vibration and acoustic radiation characteristics of a submerged structure, Citarella, 
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Federico and Cicatiello [12] who considered vibro-acoustic analysis in automobile 

compartment, and Chuh Mei and Pates [13,14], who also considered the control of 

acoustic pressure using piezoelectric actuators by using coupled BE/FE Method. A 

common feature of those investigations is the joining of the boundary element method 

with the finite element method. The finite element method was used to model the 

structures, while fluid domain was handled by a boundary element method.  

 

1.1  Problem Definition 

Active flutter suppression system using sound wave can be categorized as a 

class of fluid-structure interaction problem.  Hence the aerodynamics loads, acoustic 

loads and elastic structure problem must be solved simultaneously. Fluid-structure 

interaction should be described by a system of partial differential equations, a system 

that contains both the equations governing the vibrations of an elastic structure and the 

aerodynamic and acoustic equations governing the motion of fluid flow. The system of 

equations of motion should be supplied with appropriate boundary and initial 

conditions. The structural, aerodynamic, and acoustic parts of the system must be 

coupled in the following sense. The aerodynamic and acoustic equations define a 

pressure distribution on the elastic structure. This pressure distribution in turn defines 

the so-called aerodynamic and acoustic loads, which appear as forcing terms in 

structural equations. On the other hand, the parameters of the elastic structure enter 

the boundary conditions for the aerodynamic and acoustic equation.  

 

The aerodynamic forces applied on the structure can be generally split into two 

parts; the external aerodynamic forces (motion independent) and motion induced 

aerodynamic forces. The external aerodynamic forces are usually provided, typical 

example are the continuous atmospheric turbulence, impulsive-type gusts, store 

ejection forces or control surface aerodynamic forces due to pilot’s input command.  

The generation of motion induced aerodynamic forces normally relies on the theoretical 
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prediction that requires the unsteady aerodynamic computations. Since this type of 

forces depends on the structural deformation, the relationship can be interpreted as an 

aerodynamic feedback.  

 

Analogous to the treatment of dynamic aeroelastic stability problem of structure, 

in which the aerodynamic effects can be distinguished into motion independent and 

motion induced aerodynamic forces, the effect of acoustic pressure disturbance to the 

aeroelastic structure (acousto-aero-elastic problem) can be viewed to consist of 

structural motion independent incident acoustic pressure and structural motion 

dependent acoustic pressure, which is known as the scattering pressure. This can be 

referred to as the acoustic aerodynamic analogy. 

 

Due to the complex geometry of many structural problems, numerical methods 

have become the tool of choice. The finite element method (FEM) is a well established 

technique that offers many advantages when modeling the structure. The boundary 

element method (BEM) has become a popular technique when modeling acoustic 

domains. 

 

1.2  Objective  

 The overall objective of the present study was to establish a computational 

procedure for the effects of acoustic disturbance to the aeroelastic stability of structure 

through rigorous formulation and validation and gets the overall problem solved 

through viable and reproducible computational routine. To perform this task, the 

generic approaches that consist of three parts are considered. The first part involves 

the formulation of the acoustic wave propagation governed by the Helmholtz equation 

by using boundary element approach, which then allows the calculation of the acoustic 

pressure on the acoustic-structure boundaries. The second part addresses the 

structural dynamic problem using finite element approach. The acoustic-structure 
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interaction is then given special attention to formulate the BEM-FEM fluid-structure 

coupling. The third part involves the calculation of the unsteady aerodynamic loading 

on the structure using a conveniently chosen unsteady aerodynamics computational 

method. Fig. 1.1 shows the integration strategy for the calculation of the acoustic 

effects on aeroelastic structure.  

 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1: Integration strategy for the calculation of the acoustic effects on 

aeroelastic stability of structure 

 

A simplified yet illustrative and instructive example has been worked out, and 

the computational scheme has been validated using classical results. The purpose was 

to develop an in-house computational scheme using MATLAB® which is considered 

user friendly for instructional as well as further development purposes. 

 

 

 

COMPUTATIONAL METHOD FOR 
ACOUSTIC EFFECT ON 

AEROELASTIC STRUCTURE 
Formulation of 

Helmhotz Equation 
For Acoustic Wave 

Propagation 
Structural 

Dynamic Problem 
Formulation 

Calculation of 
Unsteady 

Aerodynamics 

Boundary Element 
Method 

Finite Element 
Method 

Unsteady 
Aerodynamics 
(DLM & DPM) 

Linear Solid 
Element 

Linear Shell 
Element 

Acoustic-Structure 
Coupling 

Aero-Structure 
Coupling 

Generalized Aerodynamic
Forces 

Normal Modes 
Calculation 

Unified Treatment 
ACOUSTIC-AEROELASTIC 

COUPLING 

Generic Approach-1: 
Flutter Calculation 

Acoustic Aerodynamic 
Analogy 

Generic Approach-2: 
Dynamic Response 



 7

1.3  Thesis Outline  

 Outline of this thesis will start with introduction, where the background, problem 

definition, and objective of this thesis are briefly discussed.  

  

The next step is chapter two, which primarily will deals with Helmhotz integral 

equation for the three dimensional acoustic field. Next the discretization of Helmhotz 

integral equation into boundary element equations and derivation of the influence 

coefficient matrix H and G using standard procedure for iso-parametric four node 

quadrilateral linear boundary elements treatment are implemented. The objective is to 

develop and validate the boundary element method as an accurate numerical 

technique for acoustic domains. Some case studies to perform the correctness of the 

in-house developed BEM computational program written in MATLAB® are also given 

  

Chapter three will discuss the linear finite element formulation of the structure. 

The objective is to acquire a finite element program to accurately model the structural 

system and obtain pertinent linear theory information needed to couple with the 

boundary element method. Some case studies to perform the correctness of the in-

house developed FEM computational program written in MATLAB® are also given 

 

Chapter four, the coupled BEM-FEM formulation representing fluid structure 

interaction problem will be described for structure-acoustic application. The objective 

involves coupling the boundary element method and the finite element method to 

model the total coupled system. Some case studies to perform the correctness of the 

in-house developed coupled BEM-FEM computational program written in MATLAB® 

are also given.  

 

Chapter five, the unsteady aerodynamic loads formulation using Doublet Point 

Method (DPM), aero-structure coupling and flutter calculation using K-method will be 
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described for structure-acoustic application. The objective is to develop and validate 

the unsteady aerodynamic loads calculation (DPM) and flutter calculation using K-

Method as an accurate numerical computational routine for further utilization in 

acoustic-aeroelastic stability calculation. Some case studies to perform the correctness 

of the in-house developed unsteady aerodynamic computational program as well as 

flutter calculation using K-Method written in MATLAB® are also given 

 

Subsequently in chapter six, BEM-FEM acoustic-aeroelastic (AAC) coupling 

representing acoustic-aerodynamic-structure interaction problem will be described for 

the calculation of the influence of the acoustic disturbance to the aeroelastic stability of 

the structure application. The objective involves coupling the boundary element method 

and the finite element method for acoustic-structure interaction and incorporating aero-

structure coupling to model the total coupled system. Some case studies to perform the 

correctness of the in-house developed BEM-FEM acoustic-aeroelastic coupling (AAC) 

computational program written in MATLAB® are also given.    

  

Chapter seven finally serves as the summary and conclusions chapter, whereby 

the essence of this thesis is succinctly revisited to conclude the works that has been 

retained, and where further refinement of the method is proposed for further works in 

the future. 
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CHAPTER TWO 
BOUNDARY ELEMENT FORMULATION 

 
 
 

 
2.0 Introduction 
 
 In this chapter, Helmhotz integral equation for the three dimensional acoustic 

field is considered. Next the discretization of Helmhotz integral equation into boundary 

element equations and derivation of the influence coefficient matrix H and G using 

standard procedure for iso-parametric four node quadrilateral linear boundary elements 

treatment are implemented. The objective is to develop and validate the boundary 

element method as an accurate numerical technique for acoustic domains. Some case 

studies to perform the correctness of the in-house developed BEM computational 

program written in MATLAB® are also given.   

  

The Boundary Element Method (BEM) is a numerical analysis technique used 

to obtain solutions to the partial differential equations of a variety of physical problems 

with well defined boundary conditions [15]. The differential equation, which is defined 

over the entire problem domain, is transformed into a surface integral equation over the 

surfaces that enclosed entirely the problem domain. The surface integral equation can 

then be solved by discretizing the surfaces into smaller regions - boundary elements. A 

major advantage of the boundary element method over the finite element method is 

that the discretization occurs only on the surfaces rather than over the entire domain, 

and the number of boundary elements required is generally a lot less than the number 

of finite elements required. This is particularly advantageous for acoustic applications 

where the problem domain often involves the entire three dimensional spaces in free 

field. 
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2.1 Helmholtz Integral Equation for the Acoustic Field 
 
 For an exterior acoustic problem, as depicted in Fig. 2.1, the problem domain V 

is the free space Vext outside the closed surface S. V is considered enclosed in 

between the surface S and an imaginary surface Λ at a sufficiently large distance from 

the acoustic sources and the surface S such that the boundary condition on Λ satisfies 

Sommerfeld’s acoustic radiation condition as the distance approaches infinity. 

For time-harmonic acoustic problems in fluid domains, the corresponding boundary 

integral equation is the Helmholtz integral equation [16]. 

( ) ( ) ( )0
0 0S

g pcp R p R g R R dS
n n

⎛ ⎞∂ ∂
= − −⎜ ⎟∂ ∂⎝ ⎠
∫     (2.1) 

 

Figure 2.1: Exterior problem for homogeneous Helmholtz equation 

 

where n0 is the surface unit normal vector, and the value of c depends on the location 

of R in the fluid domain, and where g the free-space Green’s function. R0 denote a 

point located on the boundary S, as given by 

 ( )
0

0
04

ik R Reg R R
R Rπ

− −

− =
−

      (2.2) 

To solve Eq. (2.1) with g given by Eq. (2.2), one of the two physical properties, acoustic 

pressure and normal velocity, must be known at every point on the boundary surface. 

At the infinite boundary Λ, the Sommerfeld radiation condition in three dimensions can 

be written as [16]: 
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0

lim 0
R R

gr ikg
r− →∞

∂⎛ ⎞+ ⇒⎜ ⎟∂⎝ ⎠
 as r ⇒∞ , 0r R R= −   (2.3) 

which is satisfied by the fundamental solution. 

The total pressure, which consists of incident and scattering pressure, serves as an 

acoustic excitation on the structure. The integral equation for the total wave is given by 

 ( ) ( ) ( ) ( )0
0

0 0

( ) ( )inc
S

g R R p r
cp R p R p R g R R dS

n n
⎡ ⎤∂ − ∂

− = − −⎢ ⎥∂ ∂⎣ ⎦
∫   (2.4)  

where inc scatteringp p p= + , and where  

 

ext

int

,  R V1 
,  R S1/ 2
,  R S / 4 (non smooth surface)
,  R V0

c
π

∈⎧
⎪ ∈⎪= ⎨ ∈Ω⎪
⎪ ∈⎩

    (2.5) 

 

 

Figure 2.2: Discretizing the continues surfaces a) into smaller regions - 

boundary elements b) 

 

2.2 Discretization into BE Equations 
 

The Helmholtz equation is then dicretized by dividing the boundary surface S 

into N elements as depicted in Fig.2.2. The discretized boundary integral equation 

becomes, 

 0
1 1

N N

i inc
j jS S

cp p pgdS i gvdSρ ω
= =

− − =∑ ∑∫ ∫     (2.6) 
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where i indicates field point, j source point and Sj surface element j, and for 

convenience, g  is defined as   

g g
n
∂

≡
∂

                               (2.7) 

Let 

       
j

ij

S

H gdS= ∫      (2.8),      
j

ij
S

G gdS= ∫       (2.9)  

Substituting g in Eq. (2.2) to be the monopole Green’s free-space fundamental solution, 

it follows that: 

 ( )
( )

( )4

j iik R R

ij j i
S S S j i

eG gdS g R R dS dS
R Rπ

− −

= = − =
−∫ ∫ ∫    (2.10)  

or, in Cartesian coordinate system,  

 
( ) ( ) ( )

( ) ( ) ( )

2 2 2

2 2 2
4

j i j i j i

j

ik x x y y z z

ij
S

j i j i j i

eG dS
x x y y z zπ

− − + − + −

=
− + − + −

∫    (2.11)  

where Rj is the coordinate vector of the midpoint of element j and Ri is the coordinate 

vector of the node i. In the development that follows, four-node iso-parametric 

quadrilateral elements are used throughout. To calculate ijH , the derivative g has to be 

evaluated 

 ( ) ˆ
ˆ

j j j

T
ij

S S S

gH gdS dS g ndS
n
∂

= = = ∇
∂∫ ∫ ∫      (2.12) 

where 

 ˆ
x

y

z

n
n n

n

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

        (2.13) 

and 
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( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

( )

2 2 2

2 2 2

2 2 2

2 2 2 2 2 2

2 2 2 2 2 2

1

4

1

4

4

i j i j i j

i j i j i j

i j i j i j

ik x x y y z z

i j i j i j i j i j i j

ik x x y y z z

i j i j i j i j i j i j

ik x x y y z z

i j

xe ik
x x y y z z x x y y z z

yeg ik
x x y y z z x x y y z z

ze

x x

π

π

π

− − + − + −

− − + − + −

− − + − + −

⎛ ⎞
⎜ ⎟− +⎜ ⎟
⎜ ⎟− + − + − − + − + −⎝ ⎠
⎛ ⎞
⎜ ⎟∇ = − +⎜ ⎟
⎜ ⎟− + − + − − + − + −⎝ ⎠

−
− ( ) ( ) ( ) ( ) ( )2 2 2 2 2 2

1

i j i j i j i j i j

ik
y y z z x x y y z z

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

⎛ ⎞⎢ ⎥
⎜ ⎟⎢ ⎥+⎜ ⎟⎢ ⎥⎜ ⎟+ − + − − + − + −⎢ ⎥⎝ ⎠⎣ ⎦

          (2.14) 

For a four-node iso-parametric quadrilateral element, the pressure p and the normal 

velocity v at any position on the element can be defined by their nodal values and 

linear shape functions, i.e. 

 ( ) [ ]
1

2
1 1 2 2 3 3 4 4 1 2 3 4

3

4

,

v
v

v N v N v N v N v N N N N
v
v

ξ η

⎡ ⎤
⎢ ⎥
⎢ ⎥= + + + =
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (2.15) 

 ( ) [ ]
1

2
1 1 2 2 3 3 4 4 1 2 3 4

3

4

,

p
p

p N p N p N p N p N N N N
p
p

ξ η

⎡ ⎤
⎢ ⎥
⎢ ⎥= + + + =
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (2.16) 

where the shape functions in the element coordinate system as depicted in Fig. 2.3 

are, 

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 2

3 4

1 11 1        1 1
4 4
1 11 1        1 1
4 4

N N

N N

ξ η ξ η

ξ η ξ η

= − − = − + −

= + + = − − +
   (2.17)  

The four node quadrilateral element can have any arbitrary orientation in the three-

dimensional space. Using the shape functions (2.17), the integral on the left hand side 

of Eq. (2.6), considered over one element j, can be written as:  

[ ]
1 1

1 2 3 42 2
1 2 3 4

3 3

4 4

j j

ij ij ijii ij
S S

j j

p p
p p

pg ds N N N N g dS h h h h
p p
p p

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎡ ⎤= = ⎣ ⎦⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

∫ ∫  (2.18)     
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Figure 2.3: Shape function N3 for a four node elements 

while that on the right hand side 

[ ]
1 1

1 2 32 2
1 2 3 4

3 3

4 4

j j

n

i ij ij ij ij
S S

j i

v v
v v

gvdS N N N N g dS g g g g
v v
v v

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥

⎡ ⎤⎢ ⎥ ⎢ ⎥= = ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

∫ ∫  (2.19) 

where  

 
j

k
ij jk

S

h N g dS= ∫   k = 1,2,3,4    (2.20) 

 
j

k
ij k j

S

g N g dS= ∫   k = 1,2,3,4    (2.21) 

The integration in Eq. (2.18) and (2.19) can be carried out using Gauss points [7,17].  

These Gauss points in the iso-parametric system are defined as: 

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1 2 2

3 3 4 4

1 1, 1, 1      , 1,1
3 3
1 1, 1,1      , 1, 1
3 3

ξ η ξ η

ξ η ξ η

= − =

= − = − −
    (2.22) 

Substituting equations (2.18) and (2.19) into equation (2.6) for all elements j, there is 

obtained 

1 1

1 2 3 4 2 21 2 3 4
0

1, 13 3

4 4

n

N N
n

ij ij ij ij ij ij ij iji i inc
j j i j n

nj j

p v
p v

c p p h h h h i g g g g
p v
p v

ρω
= ≠ =

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥

⎡ ⎤ ⎢ ⎥ ⎢ ⎥⎡ ⎤− − = ⎣ ⎦⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

∑ ∑   

(2.23) 

Equation (2.23) can be rewritten as 
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1 1

2 21 2 3 4 1 2 3 4
0

1 13 3

4 4

n

N N
n

ij ij ij ij ij ij ij ij inc
j j n

nj j

p v
p v

h h h h i g g g g p
p v
p v

ρω
= =

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎡ ⎤ ⎡ ⎤= +⎣ ⎦ ⎣ ⎦⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

∑ ∑  (2.24) 

The discretized equation forms a set of simultaneous linear equations, which relates 

the pressure pi at field point i due to the boundary conditions p to v at source surface Si 

of element i and the incident pressure pinc. In matrix form: 

     [ ]{ } [ ]{ } { }0 incp i v pρ ω= +H G              (2.25)  

where, H and G are two N x N matrices of influence coefficients, while p and v are 

vectors of dimension N representing total pressure and normal velocity on the 

boundary elements. This matrix equation can be solved if the boundary condition 

v p n= ∂ ∂  and the incident acoustic pressure field pinc are known. 

  

2.3 Implemented BEM Formulation 
 

Based on the BEM formulation for four node iso-parametric quadrilateral linear 

acoustic elements, a computational routine written in MATLAB® have been developed 

and implemented in order to solve BEM problems for time-harmonic acoustic fluid 

domains. The programs routine can be described in the following steps: 

• The element discretization is supplied by using commercial meshing software such 

as PATRAN®.  

 

Figure 2.4: Four node linear three dimensional acoustic boundary element j, 

that is influencing a node located at Ri 
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• Compute the influence vectors He and Ge for each four node linear three 

dimensional acoustic boundary element j, that is influencing a node located at Ri = 

(xi, yi, zi) as shown in Fig. 2.4.  

• Compute the space angle constant for a node on a non-smooth surface. For a node 

coinciding with three or four element corners, the space angle constant Ce is the 

quotient of Ω/4π and it’s towards the acoustic medium as shown in Fig. 2.5. The 

space angle for a sphere is 4π and for smooth surface the space angle is 2π, and 

Ce = 1.  

• Assembly all local element influence matrix He and Ge into the global influence 

matrix H and G according to each degree of freedom. 

• Solve the acoustic BEM equations by adding the known prescribed physical 

boundary condition (pressure, normal velocity or impedance), the output are 

vectors providing the node boundary pressure and/or the node normal velocity. 

• Compute induced acoustic pressure at an arbitrary point in a three dimensional 

fluid domain. 

 

Figure 2.5: Space angle constant Ce for a node on a non-smooth surface 

   

2.4 Acoustic BEM Numerical Simulation 
 

In order to verify the correctness of the developed boundary elements acoustic 

formulation, a numerical test case is conducted to test the validity of the method. To 

avoid complexity, the assumed acoustic source, is monopole source which creates the 

acoustic pressure. For a pulsating sphere an exact solution for acoustic pressure p at a 
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distance r from the center of a sphere with radius a pulsating with uniform radial 

velocity Ua is  

( )0( )
1

ik r a
a

iz kaap r U e
r ika

− −=
+

          (2.26) 

where z0 is the acoustic characteristic impedance of the medium and k is the wave 

number. 

0

0.5
1

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Discretization of one octant pulsating sphere

 

Figure 2.6:  Discretization of one octant pulsating sphere  

 

Fig. 2.6 shows the discretization of the surface elements of an acoustics 

pulsating sphere representing a monopole source. BEM calculation for scattering 

pressure from acoustic monopole source will be compared with exact results. The 

results are exhibited in Fig.2.7 where the calculated surface pressures on the pulsating 

sphere are shown. The calculation was based on the assumption of f=10 Hz, ρ=1.225 

Kg/m3, and c=340 m/s which shows the excellent agreement between the 

computational procedure developed and the exact one. In Fig. 2.8, the excellent 

agreement of BEM calculation for acoustic pressures anywhere in three dimensional 

fluid domains with exact calculation serves to validate the developed MATLAB® 

program for further utilization. 
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Pressure distribution of pulsating sphere BEM [real part]
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Figure 2.7: BEM surface pressure [Real, Imaginary, and Magnitude] 

 

 

 



 19

 

 

Figure 2.8: Comparison of surface pressure on pulsating sphere; exact and 

BEM results 

 

2.5 Summary 
 

The excellent agreement of BEM calculation for acoustic pressures in three 

dimensional fluid domains with exact calculation has been carried out and a 

computational scheme for acoustic boundary element problem has given satisfactory 

results. Hence, the objective to develop and validate the boundary element method as 

an accurate numerical technique for acoustic domains has been accomplished and 

serves to validate the in-house developed BEM computational program written in 

MATLAB® for further utilization.   
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CHAPTER THREE 
FINITE ELEMENT FORMULATION 

 

3.0 Introduction 

In this chapter, linear finite element formulation of the structure is described. 

The objective is to acquire a finite element program to accurately model the structural 

system and obtain pertinent linear theory information needed to couple with the 

boundary element method. Some case studies to perform the correctness of the in-

house developed FEM computational program written in MATLAB® are also given. 

The finite element method has become a very powerful tool in analyzing static 

and dynamic response of structures. The finite element method is capable of handling 

complex structural analysis. Many rectangular and triangular type finite elements are 

currently being used in commercial and in-house codes. Any type of finite element can 

be applied to the following formulation. Two elements selected for this study are 

considered here; these are an eight node hexahedral for solid element modeling and 

four node quadrilateral for shell element modeling. The FEM formulation on this 

chapter is mostly based on Weaver and Johnston [17]. For convenience in further 

reference and development, as well as for completeness, these formulations are 

summarized in the following sections. 

3.1 Eight node hexahedral solid elements 

Formulations for iso-parametric hexahedral linear solid elements with three 

translational degrees of freedom (DOF) per node are considered.  

  

Figure 3.1: Eight node hexahedral solid elements 
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Nodal quantities will be identified by the node subscript. Thus {xi,yi,zi} denote the node 

coordinates of the ith node, while {uxi,uyi,uzi} are the nodal displacement DOFs. The 

shape function for the ith node is denoted by Ni. The element geometry is described by: 

1

1 2 2

1 2

1 2

1 1 ... 11
...
...
...

n

n

n n

N
x x x Nx
y y yy
z z z Nz

⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ =
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥

⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

M
      (3.1) 

The four rows of this matrix relation express the geometric conditions which the shape 

functions must identically satisfy.  

1

1
n

i
i

N
=

= ∑  
1

n

i i
i

x x N
=

= ∑  
1

n

i i
i

y y N
=

= ∑  
1

n

i i
i

z z N
=

= ∑   (3.2)  

The first one: sum of shape functions must be unity, is an essential part of the 

verification of completeness. The displacement interpolation is 

 

1
1 2

2
1 2

1 2

x x x xn

y y y yn

z z z zn
n

N
u u u u

N
u u u u

u u u u N

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎢ ⎥⎣ ⎦

K

K
M

K

     (3.3) 

The three rows of this matrix relation express the interpolation conditions 

 
1

n

x x ii
i

u u N
=

= ∑   
1

n

y y ii
i

u u N
=

= ∑   
1

n

z z ii
i

u u N
=

= ∑   (3.4) 

The identical structure of the geometry definition and displacement interpolation 

characterizes an iso-parametric element. The interpolation functions for eight node 

solid element are: 

 

( )( )( ) ( )( )( )

( )( )( ) ( )( )( )

( )( )( ) ( )( )( )

( )( )( ) ( )( )( )

1 5

2 6

3 7

4 8

1 11 1 1       1 1 1
8 8
1 11 1 1       1 1 1
8 8
1 11 1 1       1 1 1
8 8
1 11 1 1       1 1 1
8 8

e e

e e

e e

e e

N N

N N

N N

N N

ξ η ζ ξ η ζ

ξ η ζ ξ η ζ

ξ η ζ ξ η ζ

ξ η ζ ξ η ζ

= − − − = − − +

= + − − = + − +

= + + − = + + +

= − + − = − + +

  (3.5) 

We restrict attention to linear elastostatic analysis without initial stresses. For a general 

solid element the proportional matrix can be presented as: 
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( )( )

1 0 0 0
1 0 0 0

1 0 0 0
(1 2 )0 0 0 0 0

21 1 2
(1 2 )0 0 0 0 0

2
(1 2 )0 0 0 0 0

2

v v v
v v v
v v v

vED
v v

v

v

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥−
⎢ ⎥

−⎢ ⎥
= ⎢ ⎥− − ⎢ ⎥−⎢ ⎥

⎢ ⎥
⎢ ⎥−⎢ ⎥
⎢ ⎥⎣ ⎦

 (3.6) 

The strains are related to the element node displacements by 

 e= ∇B N         (3.7) 

where 

    

0 0

0 0

0 0

x

y

z

y x

z x

z y

∂⎡ ⎤
⎢ ⎥∂⎢ ⎥

∂⎢ ⎥
⎢ ⎥∂
⎢ ⎥

∂⎢ ⎥
⎢ ⎥∂⎢ ⎥∇ =
∂ ∂⎢ ⎥

⎢ ⎥∂ ∂
⎢ ⎥
∂ ∂⎢ ⎥

⎢ ⎥∂ ∂
⎢ ⎥

∂ ∂⎢ ⎥
⎢ ⎥∂ ∂⎢ ⎥⎣ ⎦

,    ( ) 1T

x

y

z

ξ

η

ζ

−

⎡ ⎤∂⎡ ⎤∂
⎢ ⎥⎢ ⎥ ∂∂ ⎢ ⎥⎢ ⎥
⎢ ⎥∂ ∂⎢ ⎥ = ⎢ ⎥⎢ ⎥∂ ∂⎢ ⎥⎢ ⎥
⎢ ⎥∂ ∂⎢ ⎥
⎢ ⎥⎢ ⎥∂ ∂⎣ ⎦ ⎢ ⎥⎣ ⎦

J ,    

x x x

y y y

z z z

ξ η ζ

ξ η ζ

ξ η ζ

⎡ ⎤∂ ∂ ∂
⎢ ⎥∂ ∂ ∂⎢ ⎥
⎢ ⎥∂ ∂ ∂

= ⎢ ⎥∂ ∂ ∂⎢ ⎥
⎢ ⎥∂ ∂ ∂
⎢ ⎥
∂ ∂ ∂⎢ ⎥⎣ ⎦

J   (3.8)  

and for deriving the consistent mass matrix the interpolation function is rearranged as 

 

1
1 8

2
1 8

1 8
24

0 0 0 0
0 0 0 0
0 0 0 0

x

y

z

u
u N N

u
u N N

N Nu u

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎢ ⎥⎣ ⎦

K

K
M

K

    (3.9)  

The element stiffness and mass matrix is formally given by the volume integral where 

the integral is taken over the element volume. 

e

e T

V

dV= ∫K B DB        (3.10) 

and 

  
e

e T

V

dVρ= ∫M N N        (3.11) 

By applying gauss integration the element stiffness and mass matrix became: 
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( ) ( ) ( )

1 1 1

1 1 1

, , , , , ,T d d dξ η ζ ξ η ζ ξ η ζ ξ η ζ
− − −

= ∫ ∫ ∫K B DB J
   

 
, , , , , ,

1 1 1

n n n
T

j k l j k l j k l j k l
l k j

R R R
= = =

= ∑∑∑K B DB J
    (3.12) 

and 

 
( ) ( ) ( )

1 1 1

1 1 1

, , , , , ,T d d dρ ξ η ζ ξ η ζ ξ η ζ ξ η ζ
− − −

= ∫ ∫ ∫M N N J
   

 
, , , , , ,

1 1 1

n n n
T

j k l j k l j k l j k l
l k j

R R Rρ
= = =

=∑∑∑M N N J
    (3.13) 

 

3.2 Four node quadrilateral shell elements 

Formulations for Iso-parametric four node quadrilateral linear shell elements 

with three translational and two rotational degrees of freedom (DOF) per node are 

considered.  

 

Figure 3.2: Four node quadrilateral shell elements 

 

For a general shell element the proportional matrix can be presented as: 

2

1 0 0 0
1 0 0 0

10 0 0 0
2

(1 ) 10 0 0 0
2

10 0 0 0
2

v
v

v
E kD
v v

k
v

k

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥

= ⎢ ⎥
− −⎢ ⎥

⎢ ⎥
⎢ ⎥

−⎢ ⎥
⎢ ⎥⎣ ⎦

     (3.14) 

x 

y 
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The displacement in the shell can be written in the terms of nodal generalized 

displacements as: 

 2 1 1 22 2

x xi

y i yi i i i i i i

z zi

u u
t tu N u N N

u u

ζ θ ζ θ
⎡ ⎤ ⎧ ⎫
⎢ ⎥ ⎪ ⎪

= − +⎨ ⎬⎢ ⎥
⎪ ⎪⎢ ⎥

⎣ ⎦ ⎩ ⎭

∑ ∑ ∑v v    (3.15) 

Vector v1 and v2 are determined in the following way; let v3 be the unit vector along the 

thickness of the shell, then: 

 1 3

2 1 3

  

  
yx

x

=

=

v v v
v v v

        (3.16) 

where v3 is the unit vector in the y direction. 

The interpolation functions for four node shell element are: 
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= + − = − +
    (3.17) 

and the displacement interpolation function is given by 
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   (3.18) 

Differentiating N to x,y,z coordinate  
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      (3.19) 

The strains are related to the element node displacements by 
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