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OKSIDOREDUKTASE DARIPADA KAYU KERAS JENIS POPULUS ( POPLAR) 

YANG TERLIBAT DALAM RESPONS TERHADAP TEKANAN OKSIDA TIF: 

KAJIAN KRISTALOGRAFIK KE ARAH PEMAHAMAN MEKANISME 

PEMANGKINAN ENZIM 

 

ABSTRAK 

 

Penghasilan species oksigen reaktif (ROS) merupakan akibat daripada persekitaran 

sentiasa dalam keaadaan aerobik yang tidak boleh dielakkan dan ia boleh disingkirkan oleh 

beberapa jenis sistem enzim sebaik sahaja dihasilkan. Tiga jenis oksidoreduktase (Glutathion 

peroksidase, Gpx; thioredoksin, Trx; and glutaredoksin, Grx) daripada Populus trichocarpa × 

deltoides (kayu keras jenis poplar) telah dicirikan melalui pendekatan biokimia dan kristalografi 

X-ray. Gpxs terdiri daripada sekumpulan enzim yang mengawal tahap ROS dalam sel dan 

melindunginya daripada kerosakan oksidatif. Dalam kajian ini, saya telah mencirikan struktur 

kristal bagi Gpx5 poplar (PtGpx5) dalam bentuk terturun dan teroksida. Perbandingan antara 

kedua-dua struktur redoks menunjukkan bahawa perubahan konformasi yang drastik adalah satu 

keperluan untuk menghampirkan dua residu sistin yang berjauhan supaya membentuk ikatan 

disulfida intra-molekul. Trxs ialah sekumpulan enzim yang mengawalatur pelbagai protein 

melalui proses penurunan thiol-disulfida. Objektif kajian ini adalah untuk menerangkan proses 

pemangkinan sejenis isoform Trx baru poplar, PtTrxh4, memandangkan enzim ini hanya boleh 

diturunkan oleh Grx dan bukannya oleh sistem NADPH:thioredoksin reduktase yang biasanya 

digunakan oleh Trx. PtTrxh4 mengandungi tiga sistin; satu di bahagian terminal N protein (Cys4) 

dan dua lagi (Cys58 and Cys61) di tapak aktif tipikal Trx (WC1GPC2). Analisis dua struktur 

kristal PtTrxh4 dalam kajian ini, jenis liar dan mutan C61S, membolehkan kita mencadangkan 

satu mekanisme pemangkinan empat langkah yang juga disokong oleh kajian enzimatik. Grxs 

pula adalah protein redoks yang menggunakan elektron daripada GSH untuk pemangkinan proses 

penukaran thiol-disulfida. Di sini, saya mencirikan struktur PtGrxS12 yang berkompleks dengan 

GSH, di mana ia adalah struktur pertama dari kumpulan Grx tumbuhan jenis sub-kelas 1 yang 

memiliki tapak aktif atipikal 28WCSYS32. Protein ini mempunyai sistin tambahan (Cys87) dan 

peranan residu tersebut masih tidak diketahui. Maklumat tentang tapak ikatan GSH juga 

dirumuskan dalam kajian ini. Semua struktur protein yang dicirikan di sini mendalami 

pengetahuan kita tentang pemangkinan redoks dalam sel umbuhan dan interaksi enzim-substrat. 
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POPLAR OXIDOREDUCTASES INVOLVED IN THE OXIDATIVE ST RESS 

RESPONSE: A CRYSTALLOGRAPHIC SNAPSHOT TOWARDS THE 

UNDERSTANDING OF THE CATALYTIC MECHANISMS  

 

ABSTRACT 

 

The production of reactive oxygen species (ROS) is an unavoidable consequence of 

living in an aerobic environment and once produced, it can be removed by several different 

enzyme systems. Three oxidoreductases (glutathione peroxidase, Gpx; thioredoxin, Trx and 

glutaredoxin, Grx) from Populus trichocarpa × deltoides (poplar tree) were characterized 

using biochemistry and X-ray crystallography approaches. Gpxs are a group of enzymes that 

regulate the levels of ROS in cells, and protect them against oxidative damage. In this study, I 

have determined the crystal structures of the reduced and oxidized form of poplar Gpx5 

(PtGpx5). Comparison of both redox structures indicates that a drastic conformational change 

is necessary to bring the two distant cysteine residues together to form an intramolecular 

disulfide bond. Trxs are a family of ubiquitous enzymes which regulate various protein 

partners through the thiol-disulfide(s) reduction. The aim of this study is thus to precisely 

describe the catalytic mechanism of a new isoform of Trx that has been characterized in 

poplar, PtTrxh4, since it has been demonstrated recently to be reduced by Grx but not by the 

typical NADPH:thioredoxin reductase reducing system. PtTrxh4 contains three cysteines; one 

localized in an N-terminal extension (Cys4) and two (Cys58 and Cys61) in the usual Trx 

active site (WC1GPC2). Analyses of two PtTrxh4 crystal structures solved in this study, wild-

type and C61S mutant, allow us to propose a four-step disulfide cascade catalytic mechanism 

in accordance with enzymatic studies. Grxs are highly conserved redox-proteins that utilize 

electrons from GSH particularly to catalyze thiol-disulfide exchange reactions. Here, I present 

the structure of glutathionylated PtGrxS12, the first structure of plant Grx of subclass 1 with 

an atypical 28WCSYS32 active site. This protein possesses an additional cysteine (Cys87) in 

which the role of this extra active-site cysteine remains obscure. Details of the GSH binding 

site are summarized in this study. Protein structures solved here shed lights to our 

understanding of the redox mechanism in plants and to the enzyme-substrate interactions.      
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ÉTUDE CRISTALLOGRAPHIQUE DES OXYDORÉDUCTASES IMPLIQ UÉES DANS 

LA RÉPONSE AU STRESS OXYDATIF CHEZ LE PEUPLIER POUR  UNE MEILLEURE 

COMPRÉHENSION DES MÉCANISMES CATALYTIQUES  

 

RÉSUMÉ 

 

La production des espèces réactives de l'oxygène (ROS) est une conséquence inévitable de la 

vie dans un milieu aérobie. Une fois produites, ces espèces peuvent être éliminées par différents 

systèmes enzymatiques. Les structure de trois oxydoréductases (la glutathion peroxydase (Gpx), la 

thiorédoxine (Trx) et la glutarédoxine (Grx)) de Populus trichocarpa × deltoides (le peuplier) ont été 

résolues par diffraction des rayons X. Les Gpxs forment un groupe d’enzymes qui régulent la 

concentration des ROS dans les cellules, et qui les protègent des effets d’un stress oxydant. 

Contrairement à leurs homologues d’origine animale, les Gpxs végétales ne dépendent pas du 

glutathion (GSH) mais des Trx pour leur fonctionnement. De plus, elles possèdent une cystéine dans 

leur site actif au lieu d’une sélénocystéine. Dans cette étude, j'ai résolu les structures cristallines des 

formes réduite et oxydée de la Gpx5 de peuplier (PtGpx5) et montré que des changements 

conformationnels drastiques sont nécessaires pour permettre la formation d’un pont disulfure 

intramoléculaire. Les Trxs constituent une famille de petites protéines ubiquitaires, régulant diverses 

protéines cibles par la réduction de leur pont disulfure. Par cette étude structurale, mon objectif était de 

comprendre précisément le mécanisme catalytique d’une nouvelle isoforme caractérisée chez le 

peuplier, la PtTrxh4, dont la capacité à accepter des électrons de la Grx a été récemment démontrée. A 

la différence des autres Trxs h caractérisées jusqu’ici, la PtTrxh4 ne peut pas être réduite par la voie 

typique qui implique la NADPH-Trx réductase. Cette PtTrxh4 contient trois cystéines, la première 

localisée dans une extension en position N-terminale (Cys4) et deux (Cys58 et Cys61) situées dans le 

site actif classique (WC1GPC2) de la Trx. Les résolutions des structures de l’enzyme sauvage et du 

mutant C4S sous forme oxydée m’ont permis de proposer un mécanisme catalytique en quatre étapes 

en accord avec les études enzymatiques. Les Grxs sont des protéines qui utilisent des électrons de 

GSH en particulier pour catalyser des réactions d'échange de thiol-disulfure. Ici, je présente la 

structure de la PtGrxS12 (en complexe avec le GSH), la première structure de la Grx végétale sous-

classe 1 avec un motif du site actif atypique 28WCSYS32. Cette protéine possède une autre cystéine 

(Cys87), dont le rôle reste obscur. Le site de fixation du GSH est détaillé ultérieurement dans ce 

manuscrit. Ces structures éclaircissent notre compréhension du mécanisme d'oxydoréduction chez les 

végétaux et nous permettent de mieux comprendre les interactions enzyme-substrat. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 An overview of X-ray crystallography and protein crystallography  

 

X-ray crystallography is the science of determining the arrangement of atoms within 

a crystal from the manner in which a beam of X-rays is scattered from the electrons 

within the crystal. The method produces a three-dimensional picture of the electron 

density within the crystal, from which the mean atomic positions, their chemical 

bond, their disorders and sundry other information can be derived. By definition, a 

crystal is a solid in which a particular arrangement of atoms (its unit cell) is repeated 

indefinitely along three principal directions known as the basis (or lattice) vectors, 

which are not necessarily perpendicular. A wide variety of materials can form 

crystals; such as salts, metals, minerals, semiconductors, as well as various inorganic, 

organic and biological molecules, which has made X-ray crystallography 

fundamental to many scientific fields. 

The oldest and most precise method of X-ray crystallography is single-crystal 

X-ray diffraction, in which a beam of X-rays is reflected from evenly spaced planes 

of a single crystal, producing a diffraction pattern of spots called reflections. Each 

reflection corresponds to one set of evenly spaced planes within the crystal. The 

density of electrons within the crystal is determined from the position and intensity 

of the various reflections observed as the crystal is gradually rotated in the X-ray 

beam; this density allows the atomic positions to be inferred. For single crystals of 

sufficient purity and regularity, X-ray diffraction data can determine the mean 

chemical bond lengths and angles to within a few thousandths of an Angstrom and to 
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within a few tenths of a degree, respectively. The data also allow the static and 

dynamic disorder in the atomic positions to be estimated, which is usually less than a 

few tenths of an Angstrom. At its most basic level, X-ray crystallography is useful in 

identifying known materials, characterizing new materials and in discerning 

materials that appear similar by other experiments. However, X-ray crystal structures 

have many other applications; for example, they can account for unusual electronic 

or elastic properties of a material, shed light on chemical interactions and processes, 

or serve as the basis for understanding enzymatic mechanisms and designing 

inhibitors of therapeutic roles with hope of preventing diseases. The term "X-ray 

crystallography" is also sometimes applied to methods that involve X-ray diffraction 

from polycrystalline materials, such as powders of small crystals studied by X-ray 

powder diffraction. 

 Early protein crystallographers, proceeding by analogy with studies of other 

crystalline substances, examined dried protein crystals and obtained no diffraction 

patterns. Thus X-ray diffraction did not appear to be a promising tool for analyzing 

proteins. In 1934, J. D. Bernal and Dorothy Crowfoot (later Hodgkin) measured 

diffraction from pepsin crystals still in the mother liquor. Bernal and Crowfoot 

recorded sharp diffraction patterns, with reflections out to distances in reciprocal 

space that inversely correspond in real space to the distances between atoms. The 

announcement of their success was the birth announcement of protein 

crystallography. Ever since, X-ray crystallography has been the most prolific 

technique for the structural analysis of proteins and protein complexes, and is still the 

“gold standard” in terms of accuracy and resolution (Russell et al. 2004). Each new 

structure provided a specific step forward, each a harder puzzle due to its size, the 

resolution needed or any number of other complicating factors. To list but a few, 
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GroEL-GroES (Xu et al. 1997), F1-ATPase (Abrahams et al. 1994, Leslie & Walker 

2000), the nucleosome (Davey et al. 2002, Schalch et al. 2005), a bacterial potassium 

ion channel (Doyle et al. 1998), photosystem I (Ben-Shem et al. 2003, Amunts et al. 

2007), the ribosome (Ban et al. 2000), the plasma membrane proton pump (Pedersen 

et al. 2007) and a bacterial multidrug ABC transporter (Dawson & Locher 2006), 

certainly make the milestones seem closer as the protein structures proliferate. 

Nevertheless, the number of structures of macromolecular assemblies solved by X-

ray crystallography is still quite small compared to that of the individual proteins and 

it will probably be many years before we have a complete repertoire of high-

resolution structures for the hundreds of complexes in a typical cell. This discrepancy 

is due mainly to the difficult production of sufficient quantities of the sample and its 

crystallization (Russell et al. 2004). 

 

1.1.1 Nobel prize winners associated with crystallography 

 

The beauty and regularity of crystals impressed people such an extent that, in the 

past, crystals were regarded as products of nature with mysterious properties. 

Scientific investigation of crystals started in 1669, when Nicolaus Steno, a Dane 

working as a court physician in Tuscan, proposed that during crystal growth, the 

angles between the faces remained constant. For a given crystal form, individual 

crystals might differ in shape (for example, in the development of their faces), but 

they always have identical angles between the same faces. 

Before the famous first X-ray crystallographic diffraction experiment by von 

Laue, Friedrich and Knipping in 1912, the internal regularity of a crystal was 

suggested but never proven. X-ray crystallography has dramatically changed this 
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situation. The idea that crystals could be used as a diffraction grating for X-rays 

arose in 1912 in a conversation between Paul Peter Ewald and Max von Laue in 

Munich. Ewald had proposed a resonator model of crystals for his thesis, but this 

model could not be validated using visible light, since the wavelength was much 

larger than the spacing between the resonators. Von Laue realized that 

electromagnetic radiation of a shorter wavelength was needed to observe such small 

spacings, and suggested that X-rays might have a wavelength comparable to the unit-

cell spacing in crystals. Working with Friedrich and Knipping, they shined a beam of 

X-rays through a sphalerite crystal and recorded its diffraction (a large number of 

well-defined spots arranged in a pattern of intersecting circles around the spot 

produced by the central beam) on a photographic plate. Von Laue developed a law 

that connects the scattering angles and the size and orientation of the unit-cell 

spacings in the crystal, for which he was awarded the Nobel Prize in Physics in 1914. 

Table 1.1 summarized the Nobel laureates with their contributions in the domain of 

crystallography. 

Crystal structures of proteins began to be solved in the late 1950’s, beginning 

with the structure of sperm whale myoglobin (Kendrew et al. 1960) and hemoglobin 

(Perutz et al. 1960) by Max Perutz and Sir John Cowdery Kendrew, for which they 

were awarded the Nobel Prize in Chemistry in 1962. Since then, the progress of 

protein crystallography has followed an evolutionary rather than a revolutionary 

path. Many important advances have been achieved on the way, but most of the 

methods used by Perutz are still valid today and still useful, albeit often in modified 

versions (Dauter 2005). Since that success, over 50000 X-ray crystal structures of 

proteins, nucleic acids and other biological molecules have been determined 

(according to PDB statistics in June 2008).  
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Table 1.1 Nobel Prize laureates in scientific fields associated with crystallography. 
 

Year Domain Nobel Laureate(s) Findings / Scientific contributions 
1901 Physics W.C.Röntgen Discovery of X-rays 
1914 Physics M Von Laue Diffraction of X-rays by crystals 
1915 Physics W.H.Bragg & 

W.L.Bragg 
Use of X-rays to determine crystal structure 

1929 Physics L-V de Broglie The wave nature of the electron 
1937 Physics C.J.Davisson & 

G.Thompson 
Diffraction of electrons by crystals 

1946 Chemistry J.B.Sumner Discovery of enzymes that can be crystallized 
1954 Chemistry L.C.Pauling Research of the nature of the chemical bond and 

its application to the elucidation of the structure 
of complex substances 

1962 Physiology 
or Medicine 

F.Crick, J.Watson 
& M.Wilkins 

Discovery of the helical structure of DNA 
Books about the double helix 

1962 Chemistry J.C.Kendrew & 
M.Perutz 

Studies of the structures of globular proteins 

1964 Chemistry D.Hodgkin Determination of many biochemical substances 
structures including Vitamin B12 

1976 Chemistry W.N.Lipscomb Elucidation of the structure of boranes 
1982 Chemistry A.Klug Development of crystallographic electron 

microscopy and discovery of the structure of 
biologically important nucleic acid-protein 

complexes 
1982 Physics K.G.Wilson Conceptualizing the theory of critical 

phenomena in connection with phase transitions 
1985 Chemistry H.Hauptmanm & 

J.Karle 
Development of direct methods for the 

determination of crystal structures 
1988 Chemistry J.Deisenhofer, 

R.Huber & 
H.Michel 

Determination of the three-dimensional 
structure of a photosynthetic reaction centre 

1991 Physics P-G de Gennes Development of the methods of discovering 
order in simple systems that can be applied to 

polymers and liquid crystals 
1992 Physics G.Charpak Discovery of the multi wire proportional 

chamber 
1994 Physics C.Shull & 

N.Brockhouse 
Neutron diffraction 

1996 Chemistry R.Curl, H.Kroto & 
R.Smalley 

Discovery of the fullerene form of carbon 

1997 Chemistry P.D.Boyer, 
J.E.Walker & 

J.C.Skou 

Elucidation of the enzymatic mechanism 
underlying the synthesis of adenosine 

triphosphate (ATP) and discovery of an ion-
transporting enzyme 

2002 Chemistry J.B.Fenn, K.Tanaka 
& K.Wüthrich 

Development of methods for identification and 
structure analyses of biological macromolecules 

2002 Physics R.Davis Jr., 
M.Koshiba & 
R.Giacconi 

Pioneering contributions to astrophysics 
(detection of cosmic neutrinos and the discovery 

of cosmic X-ray sources) 
2003 Chemistry P.Agre & 

R.Mackinnon 
Discoveries concerning (water and ion) 

channels in cell membranes 
2006 Chemistry R.D.Kornberg Studies of the molecular basis of eukaryotic 

transcription 
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1.1.2 Integration and applications of crystallography in structural 
biology today 

 

The development and application of technologies in structural biology (availability 

of complete genome sequences, automation of cDNA cloning, automated protein 

expression screens, affinity tags and parallel purification strategies, high-throughput 

crystallization procedures, usage of third-generation synchrotron, automated sample 

changing and the use of high-energy sources and CCD detector technology) do 

accelerate the transition from gene to structure (Dry et al. 2000). X-ray 

crystallography has benefited from several technological advances in recent years 

that make the genome-wide protein structure determination a practical reality. 

Indeed, it is now used routinely by scientists to determine how a pharmaceutical 

interacts with its protein target and what changes might be advisable to improve it 

(Scapin 2006). The number of protein structures deposited in the Protein Data Bank 

now (June 2008) is almost 48 000, with the vast majority (85 %) determined using 

X-ray crystallographic methods. Among the available protein crystal structures, only 

34 % (~14000 structures) of them actually represent unique proteins (structures with 

similar sequences at 90 % identity were excluded). Thousands of studies describing 

such structures have been published in the scientific literature, and 14 Nobel prizes in 

chemistry or medicine have been awarded to protein crystallographers (see Table 

1.1). 

There is a wide spectrum of experimental and computational methods for the 

identification and structural characterization of macromolecular complexes. These 

methods need to be combined into hybrid approaches to achieve greater accuracy, 

coverage, resolution and efficiency than any of the individual methods. New methods 

must be capable of generating possible alternative models consistent with 
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information such as stoichiometry, interaction data, homology to known structures, 

docking results and low-resolution images. There is a need to describe the structures 

and dynamics of stable and transient complexes (Russell et al. 2004). As motions of 

macromolecules throughout their conformational landscapes generate biological 

activity, these motions can be investigated by NMR, neutron scattering, molecular 

dynamics, UV to IR spectroscopy, cryo-electron microscopy, and visible-ray or X-

ray techniques (Bourgeois & Royant 2005). X-ray crystallography provides insight 

into protein dynamics via the analysis of mean-square atomic displacements and TLS 

(translation, libration, screw) parameters (Chaudhry et al. 2004), or when a series of 

static structures assigned to various states along a reaction pathway is morphed into 

movies (Echols et al. 2003). 

Structure-based drug design has contributed to the discovery of a number of 

drugs and late-stage clinical candidates. It is now common for a series of ligand-

protein structures to be available in discovery projects. The availability of X-ray 

derived structural information on protein-ligand complexes is increasing, and this is a 

useful tool in lead optimization (Davis et al. 2003).  Indeed, knowledge of 3-

dimensional structure based function properties of a drug target is very essential for a 

successful in silico designing of drugs (Kishan 2007). However, some difficulties 

during structure determination processes and lack of knowledge of conformational 

freedom associated with available protein structures often hurdle the structure based 

drug designs.  

Structural genomics may contribute to a comprehension and efficient 

structural description of complexes in an additional way. Although structural 

genomics currently focus on single proteins or their domains, it could be expanded to 

the sampling of domain-domain interactions (Aloy et al. 2003, Apic et al. 2001, Sali 
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2003). Indeed, recent developments in the experimental and computational 

techniques have allowed structural biology to shift its focus from structures of 

individual proteins to the structures of large assemblies (Sali et al. 2003, Baumeister 

2002, Sali & Kuriyan 1999). In contrast to structure determination of individual 

proteins, structural characterization of macromolecular assemblies usually poses a 

more difficult challenge. Nevertheless, a comprehensive structural description of 

large complexes generally requires the use of several experimental methods in order 

to maximize efficiency, completeness, accuracy and resolution (Sali et al. 2003). 

Coupled with X-ray crystallography, hybrid approaches have been successfully 

elucidating models of the actin-myosin complex (Pellecchia et al. 1999), the yeast 

ribosome (Spahn et al. 2001, Beckmann et al. 2001) and 20S proteasome (Groll & 

Huber 2005, Borissenko & Groll 2007), pre-mRNA splicing complex SF3b (Golas et 

al. 2003) and complex virus structures (Zhou et al. 2001, Baker et al. 2003). 

Structural biology is a great unifying discipline of biology. Thus, structural 

characterization of many protein complexes may be the way to bridge the gaps 

between genome sequencing, functional genomics, proteomics and system biology. 

The goal seems daunting, but the prize will be commensurate with the effort 

invested, given the importance of molecular machines and functional networks in 

biology and medicine (Russell et al. 2004). It seems that in the near future, 

macromolecular crystallography will move along two parallel paths, system-oriented 

and discovery-oriented (Stevens 2004). The system-oriented approach corresponds to 

the traditional, slower, but more focused way of solving crystal structures of 

macromolecules and the discovery-oriented approach is, in other words, the 

structural genomics, speedier and wider track. 
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1.1.3 Understanding the basis of crystallography 

 

When we see an object, light rays bounce off (are diffused by) the object and enter 

the eye through the lens, which reconstructs an image of the object and focuses it on 

the retina. In a simple microscope, an illuminated object is placed just beyond one 

focal point of a lens, which is called the objective lens. The lens collects lights 

diffused from the object and reconstructs an image beyond the focal point on the 

opposite side of the lens, as shown in Figure 1.1. 

 

 

Figure 1.1 Action of a simple lens. Rays parallel to the lens axis strike the lens and 
are refracted into paths passing through a focus (F or F’ ). Rays passing 
through a focus strike the lens and are refracted into paths parallel to the 
lens axis. As a result, the lens produces an image at I of an object at O 
such that (OF) (IF’ ) = (FL) (F’L ) (Rhodes 2006). 

 

 

 For a simple lens, the relationship of object position to image position in 

Figure 1.1 is (OF) (IF’ ) = (FL) (F’L ). Because the distances, FL and F’L  are constant 

(but not necessarily equal) for a fixed lens, the distance OF is inversely proportional 

to the distance IF’ . Placing the object just beyond the focal point F results in a 

magnified image produced at a considerable distance from F’  on the other side of the 
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lens, which is convenient for viewing. In a compound microscope, the most common 

type, an additional lens, the eyepiece, is added to magnify the image produced by the 

objective lens.  

In order for the object to diffract light and thus be visible under 

magnification, the wavelength (λ) of the light must be, roughly speaking, no larger 

than the object. Visible light, which is electromagnetic radiation with wavelengths of 

400 - 700 nm (nm = 10-9 m), cannot produce an image of individual atoms in protein 

molecules, in which bonded atoms are only about 0.15 nm or 1.5 angstroms (Å = 10-

10 m) apart. Electromagnetic radiation of this wavelength falls into the X-ray range, 

so X-rays are diffused by even the smallest molecules.  

 Even though individual atoms diffract X-rays, it is still not possible to 

produce a focused image of a single molecule, for two reasons. First, X-rays cannot 

be focused by lenses. Crystallographers sidestep this problem by measuring the 

directions and strengths (intensities) of the diffracted X-rays and then using a 

computer to simulate an image-reconstructing lens. In short, the computer acts as the 

lens, computing the image of the object and then displaying it on a screen. Second, a 

single molecule is a very weak scatterer of X-rays. Most of the X-rays will pass 

through a single molecule without being diffracted, so the diffracted beams are too 

weak to be detected. Analyzing diffraction from crystals, rather than individual 

molecules, solves this problem. A crystal of a protein contains many ordered 

molecules in identical orientations, so each molecule diffracts identically, and the 

diffracted beams for all molecules augment each other to produce strong, detectable 

X-ray beams. 

  In brief, determining the structure of a protein by X-ray crystallography 

entails growing high-quality and well-ordered crystals (that will diffract X-rays 
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strongly) of the purified protein, measuring the directions and intensities of X-ray 

beams diffracted from the crystals (regular and repeating array of many identical 

molecules), and using a computer to simulate the effects of an objective lens and thus 

produce an image of the crystal’s contents. Finally, the crystallographer must 

interpret that image, which entails displaying it by computer graphics and building a 

molecular model that is consistent with the image. 

 Electron densities can be probed by the scattering of X-rays. This is usually 

done by creating crystals, containing many trillions of molecules arranged in a 

regular three-dimensional pattern. When this pattern is illuminated with X-rays, 

diffraction of the X-rays occurs. The diffraction pattern encodes the information 

about the electron density distribution in the crystal. The diffracted rays are 

themselves, like the incident X-rays, electromagnetic waves with amplitude and 

phase and form a three-dimensional pattern, known as the reciprocal lattice. They are 

an indirect image of the electron density and are related to it by a Fourier transform. 

To recover the electron density from this diffraction pattern by inverse Fourier 

transform, both amplitudes and phases are needed. Experimentally usually only the 

amplitudes can be measured. The phase information remains hidden within these 

amplitude data and has to be recovered by computational techniques, often requiring 

additional measurements. This situation is known as the “Phase Problem in 

Crystallography”. It is indeed a problem, because the phases influence the electron 

density to a much larger extent than the amplitudes do. 
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1.1.4 Protein crystals 

 

1.1.4.1 Preparation and handling of biological macromolecules for 
crystallization 

 

In the crystallization of biological macromolecules the quality (purity and 

homogeneity) and quantity of the required material is important. Difficulties in 

crystal growth sometimes may be linked to the nature or source of the biological 

material. Better crystallization conditions or diffracting crystal habits could be found 

by switching from one organism to another. This is because variability in sequences 

between heterologous species may lead to different conformations, and consequently 

to different crystallization behaviors. In practice, proteins isolated from eukaryotes 

are frequently more difficult to crystallize than their prokaryotic counterparts. Often 

their degree of structural complexity is higher. They can possess additional domains 

that may contribute to less compact and/or more flexible structures. Post-translational 

modifications (addition of other biochemical functional groups, changing the 

chemical nature of an amino acid or making structural changes like the formation of 

disulfide bridges) are often responsible for structural or conformational 

microheterogeneity. Purification, stabilization, storage and handling of 

macromolecules are therefore essential steps prior to crystallization. The “freshness” 

of the starting material and physiological state of cells is very important. Some 

proteins from unicellular organisms have been isolated in their native state only 

when cells are in exponential or pre-stationary growth phase (for an example, see 

Lorber & DeLucas 1990).  

Special cares are needed in handling pure macromolecules in order to ensure 

that they are not damaged or lost before or during the crystallization trials and for 
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their reproducibility. To achieve this, several guidelines should be taken into account 

(see Ducruix & Giegé 1999 for details).  

1. Diluted protein solutions are concentrated by ultrafiltration in devices using 

pressure (optimizing stir rate to prevent adsorption on to membrane surfaces and 

damage by shearing) or centrifugal force (remove aggregates formed as a result 

of a decrease in pH, of oxidation, or of an increase in salt or protein 

concentration), by dialysis against hygroscopic compounds (e.g. PEG or gel-

filtration matrices), or by precipitation (addition of ammonium sulphate). 

2. High concentrations of denaturing agents should be avoided because they 

inactivate or unfold proteins. In contrast, mild non-ionic detergents (e.g. octyl 

glucoside, heptyl thioglucoside and alkyl thiomaltosides are very useful in 

membrane protein biochemistry) help to solubilize proteins. 

3. For better reproducibility, the pH of buffers after mixing of all ingredients 

should be adjusted since it may change after dilution or in the presence of other 

compounds. 

4. Freeze-thawing of macromolecules should never be repeated to avoid 

denaturation. Therefore, experimentation on aliquots to limit repeated handling 

of stock solutions is highly recommended.  

5. Any undesired molecules that might hinder crystallization should be removed by 

dialysis (e.g. glycerol, excess ligands), ultrafiltration, or size-exclusion 

chromatography.  

6.  It is also worthwhile to prepare macromolecules with or without their ligands 

(e.g. coenzyme, metal ions) or try additives (e.g. ions, reducing agents, 

chelators) because one or the other form may be more able to crystallize.  
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1.1.4.2 Properties of protein crystals 

 

Whereas inorganic crystals can often be grown to dimensions of several centimeters 

or larger, it is frequently impossible to grow protein crystals as large as 1 mm in their 

shortest dimension. In addition, larger crystals are often twinned (two or more 

crystals grown into each other at different orientations) or otherwise imperfect and 

not usable. Roughly speaking, protein crystallography requires a crystal of at least 

0.2 mm in its shortest dimension, although modern methods of data collection can 

sometimes succeed with smaller crystals, and modern software can sometimes 

decipher data from twinned crystals. 

 Inorganic crystals derive their structural integrity from the electrostatic 

attraction of fully charged ions. On the other hand, protein crystals are held together 

by weaker forces, primarily hydrogen bonds between hydrated protein surfaces. In 

other words, proteins in the crystal stick to each other primarily by hydrogen bonds 

through intervening water molecules. Protein crystals are thus much more fragile 

than inorganic crystals; gentle pressure with a needle is enough to crush the hardiest 

protein crystal. Growing, handling, and mounting crystals for analysis thus require 

very gentle techniques. If possible, protein crystals are often harvested, examined, 

and mounted for crystallography within their mother liquor, the solution in which 

they formed. This is because protein crystals are not only susceptible to chemical but 

also physical degradation, therefore they need to be maintained and stabilized in an 

equilibrated liquid environment as how they were formed and yet crystals will not be 

resolved (some sort of encapsulating effect). 

 Real macroscopic crystals are actually mosaics of many submicroscopic 

arrays in rough alignment with each other. The result of mosaicity is that an X-ray 
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reflection actually emerges from the crystal as a narrow cone rather than a perfectly 

linear beam. Thus the reflection must be measured over a very small range of angles, 

rather than at a single, well-defined angle. In protein crystals, composed as they are 

of relatively flexible molecules held together by weak forces, this mosaicity is more 

pronounced than in crystals of rigid organic or inorganic molecules, and the 

reflections from protein crystals therefore suffer greater mosaic spread than do those 

from more ordered crystals. The crystal mosaicity is a direct indicator of the physical 

perfection of the macromolecular crystal and it provides a simple measurement of 

crystal quality independent of many experimental parameters. It has been used to 

characterize successfully the improvement seen in some microgravity samples, for 

example, a reduction in the reflection mosaic spread providing a corresponding 

increase in the signal-to-noise ratio of the reflection (Snell et al. 1995, Ng et al. 

1997). 

 Careful analysis of electron-density maps usually reveals many ordered water 

molecules on the surface of the protein in the structure. Additional disordered water 

is presumed to occupy regions of low density between the ordered particles. Ordered 

water molecules refer to water molecules that occupy the same site on every protein 

molecule in every unit cell (or a high percentage of them) and thus show up clearly 

in electron-density maps. Disordered water molecules refer to bulk water molecules 

that occupy the spaces between protein molecules which are in different 

arrangements in each unit cell, and thus show up only as uniform regions of low 

electron density. The quantity of water varies among proteins and even among 

different crystal forms of the same protein. The number of detectable ordered water 

molecules averages about one per amino-acid residue in the protein. Both the ordered 

and disordered water are essential to crystal integrity and maintaining the activity of 
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protein molecules in crystalline form (Frey 1994, Timasheff 1995), so drying 

destroys the crystal structure. For this reason, protein crystals are subjected to X-ray 

analysis in a very humid atmosphere or in a solution that will not dissolve them, such 

as the original mother liquor or a protective harvest buffer (with a higher 

concentration of precipitant or supplemented with cryoprotective agents such as PEG 

400, PEG 600, glycerol or MPD) (Heras & Martin 2005).  

 NMR analysis of protein structure suggests that the ordered water molecules 

seen by X-ray diffraction on protein surfaces have very short residence times in 

solution. Thus most of these molecules may be of little importance to an 

understanding of protein function. However, ordered water molecules are of great 

importance to the crystallographer. As the structure determination progresses, 

ordered water molecules become visible in the electron-density map. Assignment of 

water molecules to isolated areas of electron density (small regions of disconnected 

density) improves the overall accuracy of the model, and improvements in accuracy 

in one area of the model give accompanying improvements in all other regions. 

 

1.1.4.3 Evidence that solution and crystal structures are similar 

 

Well-ordered crystals are difficult to grow because globular protein molecules are 

large, spherical, or ellipsoidal objects with irregular surfaces, and it is impossible to 

pack them into a crystal without forming large holes or channels between the 

individual molecules. These channels, which usually occupy more than half the 

volume of the crystal, are filled with disordered solvent molecules. The protein 

molecules are in contact with each other at only a few small regions, and even in 

these regions many interactions are indirect, through one or several layers of solvent 
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molecules. This is one reason why structures of proteins determined by X-ray 

crystallography are the same as those for the proteins in solution. 

In a few cases, the structure of a protein has been obtained from more than 

one type of crystals (in different space groups). The resulting subunit models were 

identical, suggesting that the molecular structure was not altered by crystallization. 

One of the recent examples is the crystal structure of the Type IIP restriction 

endonuclease MspI bound to DNA (Xu et al. 2005) containing its cognate 

recognition sequence that has been determined in both monoclinic and orthorhombic 

space groups. These two independent crystal forms present an identical structure of a 

novel monomer-DNA complex, suggesting that this is not merely a crystallographic 

artifact.  

 

1.1.4.4 Growing protein crystals 

 

1.1.4.4.1 The crystallization phase diagram 

 

The crystallization process can be illustrated by a phase diagram, which indicates 

which state (liquid, crystalline or amorphous solid [precipitate]) is stable under a 

variety of crystallization parameters. It provides a mean of quantifying the influence 

of certain parameters, such as the concentration of protein, precipitant(s), additive(s) 

and so on, on the production of crystals. Thus, phase diagrams form the basis of the 

design of crystal optimization experiments (Ataka 1993, McPherson 1999, Ducruix 

& Giegé 1999). 

Figure 1.2 illustrates a typical crystallization phase diagram, consisting of 

four zones representing different degrees of supersaturation: a zone of high 
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supersaturation, where the protein will precipitate; a zone of moderate 

supersaturation, where spontaneous nucleation will take place; the metastable zone 

(just below the nucleation zone) of lower supersaturation, where crystals are stable 

and may grow but no further nucleation will take place (the conditions in this region 

are the best for the growth of well-ordered crystals); and a zone of undersaturation, 

where the protein is fully dissolved and will never crystallize (Chayen 2004, Ducruix 

& Giege 1999). 

To obtain good structural data, crystals need to be single and have dimensions 

of at least 100 µm3, preferably much larger. In an ideal experiment, once nuclei have 

formed, the concentration of protein in the solute will drop, thereby leading the 

system into the metastable zone, where few single crystals will grow (Figure 1.2). 

More often than not, either no crystals form at all or excess nucleation occurs, 

whereby numerous clusters of tiny crystals are formed instead of a few sizeable ones. 

An additional frustrating problem is the formation of large single crystals that do not 

diffract (Chayen 2004).  

By examining the crystallization phase diagram and solubility properties of 

the sample, an understanding may be gained to optimize the process of crystal 

growth. The aim is to devise methods that will enable the experimenter to manipulate 

the phase diagram and actively control the crystallization environment in order to 

lead to crystal growth in the direction that will produce the desired results (Chayen 

2005). This can be achieved in various ways (see section below), for example, 

control of the nucleation stage; dynamic separation of the nucleation and growth 

phases; and influencing the kinetics of the crystallization process. 
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Figure 1.2 Schematic illustration of a protein crystallization phase diagram (top 
panel) and various crystallization set-ups explained in terms of phase 
diagrams (bottom panel). The adjustable parameter can be precipitant or 
additive concentration, pH, temperature and so on. The three major 
crystallization methods are represented, showing their different routes 
to the nucleation and metastable zones, assuming the adjustable 
parameter is crystallizing agent concentration. The black circles 
represent the starting conditions. The solubility is defined as the 
concentration of the protein in the solute that is in equilibrium with 
crystals. The supersolubility curve is defined as the line separating 
conditions where spontaneous nucleation (or phase separation, 
precipitation) occurs from conditions where the crystallization solution 
remains clear if left undisturbed. In the bottom panel is the schematic 
representation of solubility phase diagram and correlation between 
protein and crystallizing agent concentrations in (a) batch, (b) vapour-
diffusion and (c) dialysis crystallization experiments. Cip and Ci are the 
initial concentrations of protein and crystallizing agent respectively, Cfp 
and Cf are their final concentrations (Figure adapted from Ducruix & 
Giegé 1999). 

 

 

1.1.4.4.2 Factors influencing protein crystal growth 

 

The two most important keys to success of a crystallographic project are purity and 

quantity of the macromolecule under study. Impure samples usually will not make 

suitable crystals, and even for proteins of the highest purity, repeated trials will be 

necessary before good crystals result. 

Many variables influence the formation of protein crystals and each protein is 

unique. It is not possible to foresee the conditions that can cause or promote 

crystallization of a protein. The various parameters that affect crystallization are not 

independent of each other and their interrelation may be complicated and difficult to 

distinguish (McPherson 1999). There is no universal guideline to crystallize 

macromolecules successfully. The only way to do this is to identify the important 

components and refine each of them distinctively, based on knowledge on protein 

properties and its behavior observed from purification experiences. Again, these 
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components vary with proteins. In general, protein purity and concentration, 

precipitant type and concentration, buffer type and pH, and temperature are the most 

important factors for protein crystallization. They are normally being considered first 

when determine its effect on crystallization. More subtle ones like cleanliness, 

vibration and ultrasound (Edwards & Palmer 1990), convection, source and age of 

the protein and the presence of ligands are also among parameters that should also be 

taken into considerations. Clearly, the problem of developing a reliable source of 

crystals entails controlling and testing a large number of parameters. Indirectly, the 

difficulty and importance of obtaining good crystals has prompted the invention of 

crystallization robots that can be programmed to set up many trials under 

systematically varied conditions. However, when varying the more conventional 

parameters fails to produce good crystals, the crystallographer may take more drastic 

measures, e.g. mutagenesis. Sometimes limited digestion of the protein by a 

proteolytic enzyme removes a disordered surface loop, resulting in a more rigid, 

hydrophilic, or compact molecule that forms better crystals. A related measure is 

adding a ligand, such as a cofactor, that is known to bind tightly to the protein. The 

protein-ligand complex may be more likely to crystallize than the free protein, either 

because the complex is more rigid than the free protein or because the cofactor 

induces a conformational change that makes the protein more amenable to 

crystallizing. In a nutshell, Table 1.2 summarizes the factors (physical, chemical and 

biochemical factors) which affect the crystallization of macromolecules. 
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Table 1.2 Important factors affecting macromolecular crystallization (McPherson 
1990; McPherson 1999). 

 
Physical Chemical Biochemical 

Temperature / temperature 
fluctuation 

Buffer pH Purity of macromolecule 

Vibration / sound / 
mechanical perturbation 

Precipitant type Substrate / coenzyme / 
ligand / inhibitor / 

effectors 
Time / rate of growth Precipitant concentration Inherent symmetric of the 

macromolecule 
Equilibrium rate Macromolecule 

concentration 
Biochemical modification 

Dielectric constant of 
medium 

Ionic strength Genetic / post-transitional 
modification 

Viscosity of medium Additive / specific ions Isoelectric point 
Pressure Metal ions Macromolecule stability 
Gravity Detergent / surfactant Aggregation state of 

macromolecule 
Homogeneity of 
macromolecule 

Degree of supersaturation Storage time of 
macromolecule 

Electric / magnetic fields Reducing / oxidizing 
environment 

Source of macromolecule / 
history of sample 

Volume of crystallization 
sample drop 

Present of amorphous 
substances / impurities 

Proteolysis / hydrolysis 

Methodology / approach 
of crystallization 

Cross-linker Microorganism 
contamination  

 

 

1.1.4.4.3 Crystallization techniques 

 

1.1.4.4.3.1 Batch crystallization 

 

The batch technique is attractive because of its inherent simplicity and 

reproducibility. It requires nothing more than the combination of two or more 

solutions (precipitating reagents and protein solution) into one, and a period of time 

until spontaneous nucleation commences, suddenly bringing the solution to a state of 

higher supersaturation. With luck, crystals grow gradually from the supersaturated 

solution without further processing. An automated system for microbatch 
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crystallization has been designed by Chayen et al. (1990, 1992). In the micro-batch 

technique (Figure 1.3a), smaller volumes, as little as 0.5 µl, can be used. But usually 

people tend to grow protein crystals in 2 to 3 µl drop, containing the protein and the 

precipitant, which is dispensed into the well of a “Terazaki-type” microtiter plate, 

covered with paraffin oil. The oil acts as a sealant to prevent evaporation. It does not 

interfere with the common precipitants, but it does interfere with organic compounds 

that dissolve in the oil (Chayen 1997, Chayen 1998). During the incubation period, 

the concentration of a precipitant agent remains constant since evaporation is limited 

and, therefore, the volume of the drop remains the same during the experiment. On 

the other hand, the concentration of the protein changes on formation of either 

crystals or amorphous precipitant. If the concentration of precipitant agent is chosen 

in such a way that the solution is in an undersaturated state, crystallization will never 

occur. 

The main disadvantage of this method could be that the equilibration occurs 

very rapidly, thus affecting the rate of crystal growth (increases nucleation rate) and 

consequently decreases the size and the quality of crystals obtained. The 

manipulation of the crystals from the drop covered by oil could be difficult too. 

However, since the use of very small volumes (up to 50 nanoliters by using robotic 

system) of protein solution can be made, the micro-batch technique is quite useful as 

an initial screening method. Although the evaporation of water from the drop 

covered by oil is negligible, it does occur, and therefore the 'life-time' of micro-batch 

trials is usually about 2 to 3 weeks (see http://www-cryst.bioc.cam.ac.uk/ for details). 

 

 

 




