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KAJIAN FITOKIMIA, FARMAKOLOGI DAN FARMAKOKINETIK LIGNAN  

PHYLLANTHUS NIRURI LINN. SEBAGAI AGEN ANTIHIPERURISEMIK BERPOTENSI  

 

ABSTRAK 

Ekstrak metanol dari daun Phyllanthus niruri L. menunjukkan aktiviti antihiperurisemik oral 

yang bergantungan dos di dalam tikus hiperurisemia yang diaruh dengan kalium oksonat 

dan asid urik. Fraksinasi ekstrak tersebut melalui kromatografi resin memberi fraksi kurang 

polar yang menunjukkan penurunan tertinggi dalam asid urik plasma. Penulenan 

seterusnya fraksi itu berdasarkan aktiviti antihiperurisemik menghasilkan empat lignan, 

filantin, hipofilantin, filtetralin dan nirantin. Struktur kimia sebatian-sebatian ini dielusidasi 

dan dikenalpasti melalui perbandingan takat lebur, spektra resonans magnetik nukleus, 

ultraungu, inframerah dan jisim mereka dengan nilai yang dilaporkan sebelumnya. Filantin 

menunjukkan kesan antihiperurisemik yang tertinggi bila dibanding dengan lignan yang 

lain. Pada 20 mg/kg, filantin menurunkan asid urik plasma ke tahap yang serupa dengan 

10 mg/kg benzbromaron dan allopurinol. Akan tetapi, filantin tidak berupaya untuk 

menurunkan secara signifikan asid urik plasma ke tahap lebih rendah daripada tahap tikus 

normourisemik walaupun pada dos tertinggi, 20mg/kg. 

  

Mekanisme bagi aktiviti antihiperurisemik P. niruri dan lignannya telah dikaji menggunakan 

esei enzim xantina oksidase dan kajian urikosurik. Ekstrak metanol P. niruri menunjukkan 

aktiviti perencatan xantina oksidase in vitro dan in vivo yang sederhana dengan masing-

masing IC50 sebanyak 39.39 μg/ml dan ED50 sebanyak 157.91 mg/kg. Akan tetapi, lignan 

tidak menunjukkan perencatan xantina oksidase in vitro dan menunjukkan aktiviti 

perencatan in vivo yang agak lemah pada 10 mg/kg. Sebaliknya, rawatan oral ekstrak 

metanol P. niruri (100 – 1000 mg/kg) menunjukkan aktiviti urikosurik dengan peningkatan 

sebanyak 1.10 hingga 7.14 ganda dalam ekskresi asid urik urin berbanding tikus 
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hiperurisemik yang tidak menerima sebarang rawatan. Lignan, filantin, hipofilantin dan 

filtetralin pada 10 mg/kg turut menunjukkan ekskresi dan klearans asid urik lebih tinggi 

sehingga 2.51 dan 11.0 ganda, masing-masing lebih tinggi berbanding tikus hiperurisemik 

kawalan. Filantin menunjukkan potensi yang serupa dengan benzbromaron dan 

probenesid pada dos 10 mg/kg dan peningkatan dalam ekskresi serta klearans asid urik 

urin bergantung pada dos. Berdasarkan penemuan kajian ini, kesan antihiperurisemik 

ekstrak metanol P. niruri mungkin disebabkan terutamanya oleh kesan urikosurik dan 

sebahagian kecil melalui perencatan xantina oksidase, manakala kesan antihiperurisemik 

lignan diakibatkan oleh kesan urikosuriknya. Pemberian bersama pirazinamida dan 

benzbromaron atau filantin kepada tikus hiperurisemik menunjukkan penekanan signifikan 

dalam aktiviti urikosurik mereka tidak seperti tikus yang diberi pirazinamida bersama 

probenesid. Filantin menunjukkan aktiviti urikosurik menyerupai benzbromaron, mungkin 

melalui perencatan penyerapan semula pada tapak post-perembesan tubul berlingkar 

proksimal.  

 

Kaedah analisis baru yang mudah dan sensitif menggunakan kromatografi cecair prestasi 

tinggi dengan pengesanan pendarfluor telah dibangunkan untuk penentuan empat lignan 

yang telah dipencilkan. Kaedah ini mempunyai had pengesanan untuk filantin, hipofilantin, 

filtetralin dan nirantin sebanyak 80, 8, 80 dan 40 kali, masing-masing lebih sensitif 

berbanding nilai yang diperolehi dengan kaedah pengesanan ultraungu. Kaedah tersebut 

telah berjaya diaplikasi bagi kuantifikasi lignan dalam sampel pokok P. niruri serta dalam 

kajian farmakokinetik dan biokeperolehan lignan dalam tikus. Kandungan lignan tertinggi 

didapati pada daun, diikuti buah, dahan dan batang manakala bahagian akar mempunyai 

kandungan lignan paling rendah. Selepas pemberian intravena kepada tikus, lignan 

dikeluarkan secara perlahan dari badan dengan nilai klearans min yang kecil serta nilai 

separuh hayat min antara 3.35 hingga 4.40 jam. Kepekatan plasma puncak berikutan 
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pemberian oral dicapai selepas 1 jam. Akan tetapi, penyerapan lignan tersebut tidak 

lengkap dengan nilai kiraan bagi biokeperolehan oral mutlak sebanyak 0.62, 1.52, 4.01 dan 

2.66 % masing-masing untuk filantin, hipofilantin, filtetralin dan nirantin.  
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PHYTOCHEMICAL, PHARMACOLOGICAL AND PHARMACOKINETIC STUDIES OF 

PHYLLANTHUS NIRURI LINN. LIGNANS AS POTENTIAL ANTIHYPERURICEMIC AGENTS 

 

ABSTRACT 

The methanol extract from the leaves of Phyllanthus niruri L. showed dose-dependent oral 

antihyperuricemic activity in potassium oxonate- and uric acid-induced hyperuricemic rats. 

Fractionation of the extract by resin chromatography gave a less polar fraction which 

exhibited the highest reduction of plasma uric acid.  Further antihyperuricemic-guided 

purification of the fraction afforded four lignans, phyllanthin, hypophyllanthin, phyltetralin 

and niranthin. Their structures were elucidated and confirmed by comparison of their 

physico-chemical properties, nuclear magnetic resonance, ultraviolet, infrared and mass 

spectra with those reported previously. Phyllanthin showed the highest dose-dependent 

antihyperuricemic effect when compared with that of the other lignans. At 20 mg/kg, 

phyllanthin decreased the plasma uric acid to the same extent as 10 mg/kg of 

benzbromarone and allopurinol. However, phyllanthin was not able to significantly reduce 

the plasma uric acid level below that of normouricemic rats even at the highest dose        

of 20 mg/kg. 

 
The mechanisms of antihyperuricemic activity of P. niruri and its lignan constituents were 

investigated using the xanthine oxidase enzyme assay and uricosuric studies. P. niruri 

methanol extract exhibited moderate in vitro and in vivo xanthine oxidase inhibitory activity 

with an IC50 of 39.39 μg/ml and an ED50 of 157.91 mg/kg, respectively.  However, the 

lignans did not display xanthine oxidase inhibition in vitro and showed a relatively weak    

in vivo inhibitory activity at 10 mg/kg. On the other hand, oral treatment with P. niruri 

methanol extracts (100 - 1000 mg/kg) showed uricosuric activity of 1.10 to 7.14 folds 

increase in urinary uric acid excretion when compared to the non-treated hyperuricemic 

rats. Likewise, the lignans, phyllanthin, hypophyllanthin and phyltetralin at 10 mg/kg 
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exhibited up to 2.51 and 11.0 fold higher in urinary uric acid excretion and clearance, 

respectively compared to the hyperuricemic control rats. Phyllanthin at 10 mg/kg increased 

the urinary uric acid excretion and clearance in a dose-dependent manner and exhibited 

similar potency with those of benzbromarone and probenecid. Based on the findings of the 

present study, it seems very likely that the antihyperuricemic effect of  P. niruri methanol 

extract may be attributable mainly to its uricosuric action and partly through xanthine 

oxidase inhibition, while the antihyperuricemic effect of the lignans was attributable to their 

uricosuric action. The co-administration of pyrazinamide with benzbromarone or 

phyllanthin to the hyperuricemic rats exhibited a significant depression of their uricosuric 

activity unlike those rats given pyrazinamide and probenecid. Phyllanthin showed 

uricosuric activity resembling that of benzbromarone, probably by the inhibition of 

reabsorption at the post-secretory site of the proximal convulated tubule.  

 
A new, simple and sensitive analytical method using HPLC with fluorescence detection 

was developed for the simultaneous determination of the four isolated lignans. The method 

recorded limits of detection for phyllanthin, hypophyllanthin, phyltetralin and niranthin of 

80, 8, 80 and 40 times, respectively more sensitive than those derived from the HPLC-UV 

detection method. The method was successfully applied for quantification of the lignans in 

P. niruri plant samples and pharmacokinetic and bioavailability studies of the lignans in 

rats. The highest amount of lignans was found in the leaves followed by the fruits, 

branches and stem whilst the roots have the least amount of lignans. Following 

intravenous administration to the rats, the lignans were eliminated slowly from the body 

with a small mean clearance value and a mean half-life of 3.35 to 4.40 hr. Their peak 

plasma concentration upon oral administration was achieved after 1 hr. However, their 

absorption was incomplete with a calculated absolute oral bioavailability of 0.62, 1.52, 4.01 

and 2.66 % for phyllanthin, hypophyllanthin, phyltetralin and niranthin, respectively. 
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CHAPTER ONE 

INTRODUCTION  

 

1.1      Hyperuricemia: A global scenario and its management 

Hyperuricemia or high level of blood uric acid is a common biochemical abnormality 

encountered in clinical practice. About 10 % of adults are documented to have 

hyperuricemia at least once in their lifetime (Dincer et al., 2002). The prevalence of 

hyperuricemia in the general population has been reported to be from 5 to 30 %, 

although it is higher in some ethnic groups (Vazquez-Mellado et al., 2004). For 

instance, Klemp et al. (1997) reported that hyperuricemia was more commonly found in 

Maori men (27.1 %) than in European men (9.4 %) while Chou and Lai (1998) reported 

that the prevalence of hyperuricemia was 41.4 % among Taiwan aborigines. 

Meanwhile, Li et al. (1997) found that the prevalence of hyperuricemia were higher in 

urban than rural population of Beijing. Hyperuricemia seems to be more prevalent 

worldwide, probably due to improvements in standard of living, increasing longevity and 

the usage of certain drugs such as salicylate and pyrazinamide. This has resulted in 

significant morbidity and increase in costs of the health care system (Vazquez-Mellado 

et al., 2004; Kim et al., 2003; Klemp et al., 1997).  

 

Hyperuricemia is often associated with a number of human diseases (Ruilope and 

Garcia-Puig, 2001). Classically, hyperuricemia is a major risk factor for gout, 

urolithiasis and uric acid nephropathy. In addition, it has also been linked with other 

diseases such as diabetes mellitus, preeclampsia, hypertension, vascular diseases and 

stroke or clinical symptoms such as lipid abnormalities, insulin resistance and obesity 

(Kim et al., 2003; Dincer et al., 2002; Ghei et al., 2002; Li et al., 1997; Campion et al., 

1987). These complications develop depending on both the level and duration of 

hyperuricemia.  
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Primary intervention in patients with symptomatic hyperuricemia or its associated gout 

include patient education, lifestyle changes and pharmacological therapy. Lifestyle 

modifications such as weight reduction, decreased alcohol consumption and dietary 

purine intake may help to decrease blood uric acid. However, many patients will still 

need medication to control their hyperuricemia (Kong et al., 2004; Wright and Pinto, 

2003; Liote, 2003; Wood, 1999). Despite a long history of hyperuricemia and gout, 

there are only a limited number of drugs currently used in clinical practice and they 

belong to two classes, the xanthine oxidase (XO) inhibitors and the uricosuric agents. 

An example of clinically used XO inhibitor is allopurinol, while uricosuric agents include 

probenecid and benzbromarone.  

 

XO inhibitors reduce the blood uric acid level by inhibition of XO enzyme that is 

responsible for the formation of uric acid from purines.  Consequence to the inhibition, 

the blood and urinary concentrations of uric acid are reduced and there is a 

simultaneous increase in the excretion of the more soluble uric acid precursors, 

xanthine and hypoxanthine. Patients who are categorized as overproducers of uric acid 

or those with renal insufficiency are best treated with XO inhibitors (Wright and Pinto, 

2003; Wood, 1999). 

 

Allopurinol was developed in 1956 for use as an adjuvant in chemotherapy, however, it 

was found to possess the ability to lower serum uric acid level (Khoo and Leow, 2000). 

Allopurinol (1) (4-hydroxypyrazolo [3,4-d] pyrimidine) is a potent inhibitor and substrate 

for XO. It is the only clinically available drug belonging to the XO inhibitor group that is 

most widely prescribed for the management of hyperuricemia and gout (Dincer et al., 

2002; Khoo and Leow, 2000). It has been used for the therapy of both primary 

hyperuricemia and gout or secondary hyperuricemia that is due to haematological 

disorders or antineoplastic therapy. A response to allopurinol is seen about two days 

after initiation of therapy and is maximal after about seven to ten days (Wood, 1999).  



 3

Allopurinol itself is metabolized by the XO enzyme, to its active metabolite oxypurinol 

(2). Although the half-life of allopurinol is 1 to 3 hours, its metabolite has a longer half-

life ranging from 18 to 33 hours, thus prolonging the therapeutic effectiveness of 

allopurinol administered as a single dose (Spector, 1977). Common adverse effects 

associated with allopurinol administration include a variety of skin rashes, 

hypersensitivity, gastrointestinal upset, hepatotoxicity, hepatitis and fever.  

Approximately 2 to 10 % of patients, especially the elderly with renal impairment, have 

developed a pruritic erythematous rash, which prevented further administration of 

allopurinol (Fam, 2001; Khoo and Leow, 2000). A more severe and life threatening 

hypersensitivity syndrome in which patients develop toxic epidermal necrolysis, fever, 

hepatitis, eosinophilia and deterioration of renal function has also been reported in 

approximately 0.4 % of patients (Zhu et al., 2004; Dincer et al., 2002; Kong et al., 2002; 

Fam, 2001; Khoo and Leow, 2000; Wood, 1999; Osada et al., 1993). The use of 

allopurinol has also led to the appearance of allopurinol allergic-patients throughout the 

world (Fam, 2001).  
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Recently, febuxostat (3) [2-(3-cyano-4-isobutoxyphenyl)-4-methylthiazole-5-carboxylic 

acid], a selective inhibitor of XO was developed in Japan. Febuxostat may become an 

alternative effective drug to allopurinol for use in the treatment of hyperuricemia and 

gout (Takano et al., 2005; Komoriya et al., 1993; Osada et al., 1993). Clinical trials on 

the efficacy and tolerability of febuxostat in normal subjects and patients with 

hyperuricemia or gout, have found that the drug significantly reduced the serum uric 

acid level in a dose-dependent manner at a lower dose than allopurinol (Bruce, 2006; 
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Becker et al., 2005a; Becker et al., 2005b). It was generally well tolerated; the most 

common adverse effects were liver function abnormalities, diarrhea, headache, 

nausea, vomiting, abdominal pain, arthralgias and musculoskeletal symptoms (Bruce, 

2006; Pohar and Murphy, 2006).  

In contrast to the XO inhibitors, drugs belonging to the uricosuric group reduce the 

blood uric acid level by increasing its excretion. This agent competes with uric acid for 

the transport sites at the proximal tubules. Patients who are categorized as 

underexcretors of uric acid are the best candidates for uricosuric therapy (Perez-Ruiz 

et al., 1998).  Uricosuric drugs may also be used in patients who are intolerant of 

allopurinol but they are relatively ineffective in patients with poor renal function. The 

greatest potential risk of therapy with uricosuric drugs is the deposition of uric acid in 

the collecting tubules (Wright and Pinto, 2003; Wood, 1999).  
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Probenecid (4) [p-(dipropylsulfamoyl) benzoic acid] was initially developed in search for 

a drug to sustain blood level of penicillin by interfering with its renal excretion. In 

addition, it also inhibits the reabsorption of uric acid at the proximal tubule, thereby 

causing an increase in uric acid excretion. However, probenecid has a so-called 

“paradoxical effect”, whereby at therapeutic doses, it increases uric acid excretion while 

at much lower doses it decreases uric acid excretion (Dan and Koga, 1990; Frankfurt 

and Weinman, 1977).   

 

Another uricosuric agent, benzbromarone (5) [3-(3,5-dibromo-4-hydroxybenzoyl)-2 

ethylbenzofuran] also causes an increase in excretion of uric acid. However, the 
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paradoxical effect observed with probenecid is absent with benzbromarone. XO 

inhibition by benzbromarone was shown in some animal studies; however it does not 

inhibit XO in humans (Heel et al., 1977). Benzbromarone is conjugated in the liver and 

excreted to the bile. Although it is effective in patients with renal insufficiency, it 

possesses a risk of severe hepatotoxicity (Dincer et al., 2002; Fam, 2001; Perez-Ruiz 

et al., 1998).  

 

Besides the two classes of drugs, other pharmacological agents may also be used for 

the treatment of hyperuricemia and gout. Losartan and fenofibrate, in addition to their 

principal pharmacological activities, have blood uric acid lowering effect. Both of them 

diminish uric acid reabsorption at the proximal tubule and increase its excretion 

(Vazquez-Mellado et al., 2004). 

 

Generally in most patients, allopurinol or any of the uricosuric drugs will allow the 

achievement and maintenance of normouricemia. However in patients with co-

morbidities such as renal insufficiency, renal calculi, transplantation or allopurinol 

allergy, treatment options are narrow and could complicate the management of 

symptomatic hyperuricemia or gout (Kim et al., 2003). Thus, a continuous development 

of novel antihyperuricemic drugs would be of great interest. 
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1.2 Literature review 

 

1.2.1 Biochemistry and physiology of uric acid  

Uric acid (2,6,8-trioxypurine) is a weak organic acid, due to the ionisable hydrogen at 

position 3 with an ionization constant of 5.75. This physicochemical property is an 

important determinant of the concentration and form of uric acid in the circulation or 

tissues. At pH 7.4 such as in blood or synovial fluids, about 98 % of uric acid is ionized 

as monosodium urate whereas at lower pH such in the urine, it exists mostly in free 

form (Ruilope and Garcia-puig, 2001).  
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1.2.1.1    Biosynthesis and regulation of uric acid formation 

The pool of uric acid in human is a balance between endogenous or exogenous 

sources of uric acid and degradation or elimination of uric acid. The exogenous 

sources for uric acid are the purine and purine precursors in the diets. Two 

endogenous sources contributing to the miscible pool of uric acid, firstly is the tissue 

catabolism via the breakdown of nucleic acids and nucleotides, and secondly is the de 

novo purine biosynthetic pathway (Newcombe, 1975).   

 

The pathways for biosynthesis of purines and formation of uric acid are shown in 

Figure 1.1.  5-Phosphoribosyl-1-pyrophosphate (PRPP) is the starting compound for 

purine biosynthesis, which can also react with the preformed purine bases to form 

purine ribonucleotides directly by the so-called “salvage pathways” (Newcombe, 1975). 



 7

The first purine formed is inosinic acid that will be converted to free purine bases by 

hypoxanthine-guanine phosphoribosyltransferase (HGPRT). Part of the bases is 

reutilized through the salvage reaction with PPRP, and the remainders is degraded to 

free bases xanthine and hypoxanthine. Xanthine oxidoreductase (XOR) enzymes, 

convert both of these bases to uric acid (Seegmiller, 1976). They are known as the 

rate-limiting enzymes in purine catabolism. 

 
5-Phosphoribosyl-1-pyrophosphate (PRPP)  +  Glutamine

5-Phosphoribosyl-1-amine

Formyl glycinamide ribonucleotide

Inosinic Acid

Inosine

Hypoxanthine

Xanthine

Uric acid (UA)

Guanylic acid

Guanine

Adenosine

Adenylic acid

Adenine

Guanosine

Glycine
Formate

   HGPRT

PRPP
PRPP

Feedback inhibition Feedback inhibition

 

Figure 1.1 Pathways for biosynthesis of purines and the formation of uric acid 
(Seegmiller, 1976).  
 

Xanthine oxidase (XO; EC 1.1.3.22) and xanthine dehydrogenase (XD; EC 1.1.1.204) 

are both members of the molybdenum hydroxylase flavoprotein family and often 

referred to as XOR (Pritsos, 2000). Structurally, XOR is a homodimer of 150-kDa 

subunits, with a N-terminal domain containing two iron-sulphur centres (Fe/S I and 

Fe/S II), a middle domain containing flavin adenine dinucleotide (FAD) site and a C-

terminal domain containing a molybdenum cofactor and substrate binding site. 

Conversion of XD into XO form can be achieved by a variety of treatment, such as 

storage at -20 °C, adding proteolytic enzymes, organic solvents or thiol reagents  and 

preincubation under anaerobic conditions (Delle-Corte and Stripe, 1972).  
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In mammals, the liver and intestine have the highest XOR activity (Pritsos, 2000; 

Krenitsky et al., 1986). The primary structure, catalytic properties and cofactor 

requirements of XOR are highly conserved with a 90 % homology among rat, mouse 

and human XOR enzymes (Pritsos, 2000).  The XOR enzymes catalyze the oxidation 

of hypoxanthine to xanthine and xanthine to uric acid.  However, their mechanisms of 

action are different in that the XD reduces NAD+ (nicotinamide adenine dinucleotide) by 

a direct two-electron reduction whereas XO reduces molecular oxygen by a single 

electron. During the process, the substrates hypoxanthine and xanthine bind to the 

molybdenum site, and the electron acceptors NAD+ and O2 interact with the FAD 

cofactor (Pritsos, 2000; Fujimoto et al., 2000, Mondal et al., 2000).  

 

1.2.1.2    Degradation of uric acid 

Uric acid is formed mainly in the liver and only a small percentage (less than 5%) is 

bound to plasma proteins. Significant differences exist among the animals in the 

degradation of uric acid, whereby the lower forms of animal life possess a full 

complement of enzymes necessary for degrading uric acid completely into allantoin (7), 

allantoic acid (8) and urea (9) as shown in Figure 1.2 (Hitchings, 1978).   
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8 allantoic acid 

9 urea  
 
Figure 1.2       Enzymatic degradation of uric acid (Hitchings, 1978). 

 

Most mammals possess the enzyme, uricase that catalyzes the degradation of uric 

acid to a more soluble allantoin (Ghei et al., 2002; Ruilope and Garcia-Puig, 2001). 
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Only in man and great apes, uric acid remains as the end product of purine catabolism. 

Thus,  humans have relatively higher level of blood uric acid (Wu et al., 1992). 

 

1.2.1.3    Uric acid disposal 

The kidney and gut are the main routes for the disposal of uric acid.  Approximately   

70 % of the uric acid is eliminated via the kidney while the remaining 30 % via the 

billiary and gastrointestinal system, where it undergoes degradation to allantoin by 

colonic bacteria. In individuals with renal insufficiency, the gastrointestinal track may be 

the major route of uric acid disposal. Mammals can be divided into two groups based 

on the net bidirectional transport of uric acid in the renal.  Net reabsorption occurs in 

humans and other species such as cebus monkey, rats, mice and dogs whereas net 

secretion occurs in pigs and rabbits (Yamada et al., 1999a; Roch-Ramel and Peters, 

1978).  

 

The renal mechanisms involved in the handling of uric acid are complex. Proximal 

convulated tubules are the main sites of transtubular uric acid transport in humans as 

well as most animals. Renal handling of uric acid is considered to involve a four 

compartment model. Firstly, blood uric acid undergoes glomerular filtration followed by 

the second step, pre-secretory reabsorption at the first segment (S1) of the proximal 

tubule. The capacity of reabsorption at initial proximal tubule is large, where more than 

95 % of the filtered uric acid will be reabsorbed, even in the presence of hyperuricemia 

(Liote 2003, Roch-Ramel and Peters, 1978). The third step involves uric acid secretion 

at the second segment (S2) followed by the fourth step,  post-secretory reabsorption at 

the last segment (S3) of the proximal tubule (Itagaki et al., 2005; Ghei et al., 2002; 

Yamada et al., 1999b; Steele, 1999).  Based on the model, it has been reported that 

benzbromarone inhibits post-secretory reabsorption, while probenecid mainly inhibits 

post-secretory and partly inhibits pre-secretory reabsorption (Yamada et al., 1999b; 

Dan et al., 1990; Levinson and Sorenson, 1980; Heel et al., 1977). 
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Following glomerulus filtration, uric acid enters the proximal tubule in its anionic form 

and due to its hydrophilic nature it hardly permeates the proximal tubular cells. At brush 

border membrane (BBM) of the proximal tubular cells, uric acid is transported by two 

distinct mechanisms, an anion exchanger and a voltage-dependent mechanism. Anion 

exchangers allow bidirectional transport and have been suggested to play a major role 

in uric acid reabsorption (Itagaki et al., 2005; Enomoto et al., 2002; Roch-Ramel and 

Guisan, 1999; Roch-Ramel et al., 1994; Guggino et al., 1983). The anion exchangers 

accept multiple monovalent organic anion, aliphatic or aromatic as well as chloride, 

bicarbonate and hydroxyl ions (Guggino et al., 1983; Kahn et al., 1983). Some of the 

endogenous compounds and drugs that may interfere with tubular transport of uric acid 

are listed in Table 1.1 (Roch-Ramel and Guisan, 1999). 

 
 
Table 1.1: Substances that alter the renal tubular handling of uric acid (Roch-Ramel 

and Guisan, 1999) 
 
Substances that decrease uric acid 

excretion 

 

Substances that increase uric acid 

excretion 

Lactate 

Acetoacetate 

β-Hydoxybutyrate 

Nicotinate 

Pyrazinamide/pyrazinoate 

Probenecid 

Sulfinpyrazone 

Benzbromarone 

Losartan (antihypertensive drug) 

Tienilic acid (diuretic) 

 
 
Potential-sensitive transport system plays an important role in the efflux of organic 

anions including uric acid across BBM in rats, because the intracellular compartment 

has a more negative electrical potential than that of the luminal fluid in the proximal 

tubules (Itagaki et al., 2005; Roch-Ramel et al., 1994). Extracellular fluid volume (ECF) 

is another factor that influences the excretion of uric acid.  Expansion of ECF will 

reduce the tubular reabsorption of uric acid. However the changes in the urine flow or 

pH have no effect in the excretion of uric acid (Steele, 1999). 
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1.2.2   Hyperuricemia 

Hyperuricemia is defined as blood uric acid level of more than 7 mg/dl (420 μmol/L) in 

men or more than 6 mg/dl (360 μmol/L) in women (Vazquez-Mellado et al., 2004; Kim 

et al., 2003; Ruilope and Garcia-Puig, 2001). Ruilope and Garcia-Puig (2001) defined a 

blood uric acid level of more than 9 mg/dL as a severely hyperuricemic condition. 

Hyperuricemia results from overproduction or underexcretion of uric acid. About 80 to 

90 % of the patients with hyperuricemia or gout are underexcretors of uric acid 

(Vazquez-Mellado et al., 2004).  

 
Table 1.2: Classification of hyperuricemia 
 

1)   Increased formation of uric acid  
Inherited enzyme defects Hyperactivity of PRPP synthetase 

Decreased activity or deficiency of HGPRT 

Disease states leading to purine 
overproduction 

Myeloproliferative disorders 
Malignancies 
Hemolytic anaemia 

Increased catabolism or decreased 
synthesis of adenosine triphosphate 

Alcohol consumption 
Tissue hypoxia  
Excessive muscular exercise 

Associated with drugs or dietary habits Cytotoxic agents 
Fructose  
Excessive purine intake 

 
2)   Decreased renal clearance of uric acid  

Inherited defects of tubular function  - 

Disease states leading to reduced uric 
acid clearance 
 

Renal insufficiency 
Dehydration 
Acidosis (tissue hypoxia) 
Hyperparathyroidism 
Hypothyroidism 

Associated with drugs  Diuretics (thiazide and loop)   
Ethanol 
Pyrazinamide 
Salicylates  
Cyclosporin 

 

Genetic factors could be the major contributor to the high prevalence of hyperuricemia 

in some ethnic groups (Vazquez-Mellado et al., 2004). Other factors which may 
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influence the blood uric acid concentration are age, sex, body weight, body surface 

area, body mass and socioeconomic status of an individual (Garcia-Puig et al., 1986). 

Hyperuricemia can be classified as primary or secondary based on the underlying 

causative factors. Table 1.2 summarizes the pathophysiologic classification of 

hyperuricemic disorders and their respective underlying causes (Kim et al., 2003; 

Ruilope and Garcia-puig, 2001; Nakanishi et al., 1999; Li et al., 1997). 

 
 

1.2.2.1 Experimental hyperuricemia in rodents  

The presence of the enzyme uricase, is responsible for the lower plasma uric acid 

concentration observed in rodents. For example, the plasma uric acid concentration of 

normal rats ranges from 0.4 to 1.5 mg/dl  (20 to 90 μg/ml) (Roch-Ramel and Peters, 

1978).  Thus, to make the rodents more similar to man for studying hyperuricemia, the 

activity of uricase has to be reduced or eliminated. Experimentally, uricase activity in 

the liver can be suppressed either by uricase inhibitors, destroying a large part of the 

liver or by reducing the blood flow through the liver. By far, the most common method 

employed is by using uricase inhibitors such as salts of oxonic acid or analogs of 

xanthine and hypoxanthine such as 2,8-diazahypoxanthine, 2-azahypoxanthine,         

8-azaxanthine and 8-azahypoxanthine (Newburger et al., 1979; Roch-Ramel and 

Peters, 1978; Iwata et al., 1973). Recently, transgenic hyperuricemic mice have been 

developed by removal of the uricase gene (Wu et al., 1994; Bradely and Caskey, 

1984).  

 

Potassium oxonate  is commonly used for induction of hyperuricemia in experimental 

animals, given either as injections or added to the diet.  It has potent inhibitory effect on 

uricase enzyme but has comparatively insignificant effect on XO or on the transport of 

uric acid along the nephron (Mazzali et al., 2002; De Rougement et al., 1976; Iwata    

et al., 1972; Johnson et al., 1969; Fridovich, 1965).  Potassium oxonate given as a 

single injection or as an injection followed by intravenous infusion causes 
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hyperuricemia that peaks at 1.5 to 2 hours and lasts for at least 5 hours (Kang et al., 

2002; Yonetani and Iwaki, 1983; Roch-Ramel and Peters, 1978). However, potassium 

oxonate is apparently metabolized or excreted rapidly, thus frequent injections are 

required to sustain uricase inhibitory activity. When potassium oxonate was given in the 

diet, blood uric acid level peaked at two weeks in the rats, then gradually decreased 

over the following 4 weeks, which may reflect enhanced extrarenal excretion and 

depressed production of uric acid (Kang et al., 2002).  

 

Most studies on animal hyperuricemia have employed simultaneous feeding of 

potassium oxonate (2 - 5 %) with other agents such as uric acid (1 - 3 %) or fructose to 

produce a higher and sustained level of plasma uric acid (Nakagawa et al., 2003; Habu 

et al., 2003; Mazzali et al., 2001; Newburger et al., 1979; Roch-Ramel and Peters, 

1978; Starvic et al., 1976; Johnson et al., 1969). Fructose intake results in excess 

production of uric acid due to an increased degradation of nucleotides (Fields et al., 

1996; Fox and Kelley, 1972). However, addition of uric acid or fructose alone to the 

normal diet, produced no appreciable effect on plasma uric acid (Johnson et al., 1969). 

 

In oxonate- and uric acid-induced hyperuricemic animals, marked uricosuria was 

observed and the uric acid concentration in the renal tissue was considerably high 

causing intrarenal crystal deposition, interstitial nephritis and obstructive renal disease, 

as well as other impaired renal functions such as sodium, calcium and phosphate 

reabsorption and glomerular filtration (Habu et al., 2003; Kang et al., 2002; Mazzali     

et al., 2002; Brown et al., 1980; Roch-Ramel and Peters, 1978).  
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1.2.3     Role of medicinal plants and natural products in hyperuricemia 

Traditional medicines are used in primary health care by about 75 to 80 % of the world 

population, especially in developing countries. The use of herbal medicine is also 

popular in some developed countries such as Germany, France and United States of 

America. The herbs and herbal extract sales in European Union and United States of 

America are estimated to be over US $ 20 billion and $ 8 billion annually, respectively, 

while the worldwide herbal medicine market is estimated to be $ 30 - 60 billion 

(Kamboj, 2000). Hitherto, medicinal plants have been the source for a number of 

clinically important drugs such as morphine, atropine and digoxin and are excellent 

sources of lead compounds in the search for new drugs.   

 

Diverse medicinal plants and natural products have been investigated as inhibitors of 

XO enzyme.  Natural XO inhibitors from in vitro studies were reported from a variety of 

plants used as traditional herbal medicines such as Coccinia grandis and Vitex 

negundo in India (Umamaheswari et al., 2007), Chrysanthemum sinense and Tetracera 

scandens in Vietnam (Nguyen et al., 2004), Cleodendrum floribundum, Eremophila 

maculata and Stemodia grossa in Australia (Sweeney et al., 2001), Cinnamomum 

cassia, Chrysanthemum indicum and Lycopus europaeus in China (Kong et al., 

2000a), Larix laricina in North America (Owen and Johns, 1999), Hyptis obtusiflora and 

Hyptis lantanaefolia in Panama (Gonzalez et al., 1995) and Hexachlamys edulis and 

Eugenia punicifolia in Paraguay (Theduloz et al., 1988).  In general, the methanol 

extracts were found to be more active than the methanol-water or water extracts 

(Nguyen et al., 2004; Kong et al., 2000a). Chemical constituents from the flavonoids, 

polyphenols, tannins, xanthones, coumarins, β-carbolines and hydroxychalcones 

groups have been found to be potent inhibitors of XO (Owen and Johns, 1999; 

Gonzalez et al., 1995; Hatano et al., 1990; Hayashi et al., 1988; Noro et al., 1983).  
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Despite these findings, only a few of the natural products were evaluated for their 

antihyperuricemic activity in vivo using hyperuricemic animal models. Kong et al. 

(2004) reported that the extracts of a herbal mixture, Ermiao wan, containing 

phellodendri cortex and atractylodis rhizome, showed potent hypouricemic effect both 

in hyperuricemic and normal mice, whereas Zhu et al. (2004), showed that orally 

administered Biota orientalis extract reduced serum uric acid level of hyperuricemic 

mice. Similarly, Zhao et al. (2006) found that cassia oil extracted from Cinnamomum 

cassia reduced serum and hepatic uric acid level of hyperuricemic mice in a time- and 

dose-dependent manner partly by the inhibition of XO.  

 

Scopoletin (10) isolated from Erycibe obtusifolia (Ding et al., 2005), aesculin (11) from 

Fraxinus rhynchophylla (Kong et al., 2002), quercetin (12) and rutin (13) from Biota 

orientalis (Zhu et al., 2004) exhibited a potent antihyperuricemic effect after 

administration in hyperuricemic mice or rats.  The effect of quercetin  and rutin  was 

mediated by inhibition of XO activity whereas, the effect of scopoletin was by both 

inhibition of XO activity and uricosuric pathway. 
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The search for new antihyperuricemic agents from medicinal plants and natural 

products is ongoing. Presently, the largest underexplored rainforest for the discovery of 

new drugs lies in tropical and subtropical regions of the world (Nguyen et al., 2004). 

Malaysia being in this region is well known for its diverse nature and forest. Malaysians 

also use traditional and herbal remedies as an alternative choice for the prevention and 

treatment of diseases including gout and rheumatism. However, the validity of these 

claims has not been scientifically proven and therefore, is of interest to evaluate the 

antihyperuricemic effect of local Malaysian plants. 

 
 

1.2.4  Phyllanthus niruri L. 

 
1.2.4.1   Botanical aspects and geographical distributions 

Kingdom : Plantae 

Division : Magnoliophyta 

Class  : Magnoliopsida 

Order  : Euphorbiales 

Family  : Euphorbiaceae 

Genus  : Phyllanthus 

Species : niruri   

 
Figure 1.3 Phyllanthus niruri L.; (A) whole plant (B) aerial part (C) leaves.  

A

B 

C 
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Phyllanthus niruri L., known locally as “dukong anak”, is found in most tropical and 

subtropical regions, commonly in fields, grasslands and forests. It is a small herb that 

grows up to 60 cm in height and can easily be differentiated from shrub species such 

as P. pulcher or P. reticulatus. The plant is quite herbaceous unlike P. urinaria,            

P. simplex or P. maderaspantesis which are woody at base (Unader et al., 1995; 

Calixto et al., 1998; Ridley, 1967).  Its leaves are small and appear oblong with very 

short or absent petiole. The flowers are numerous, white to greenish in colour and 

minute, grouping at the axillary with a pedicel longer than P. urinaria. The fruit is a 

smooth surface and glabose capsule, in contrast to P. urinaria that has a echinate or 

warty capsule (Bee, 1964; Wiart, 2002).  

 

1.2.4.2    Chemical constituents of Phyllanthus niruri L. 

P. niruri has been the subject of much phytochemical studies since the mid 1960s. 

Different classes of organic compounds with various medical interest have been 

reported, the major being the lignans, tannins, polyphenols, alkaloids, flavonoids, 

terpenoids and steroids (Calixto et al., 1998). The following chemical constituents have 

been isolated from P. niruri.  

 
Lignans 

Lignans isolated from P. niruri mostly belongs to two groups, the 1,4-diarylbutane and 

1-aryltetralin though neolignans and lignans with other skeleton were also reported 

from this plant. The following lignans have been isolated from P. niruri: 

      
 
  1,4-diarylbutane skeleton    1-aryltetralin skeleton 
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 Diarylbutane lignans 

Phyllanthin (14) (Row and Srinivasalu, 1964), niranthin (15) (Anjaneyulu et al., 1973), 

seco-isolariciresinol trimethyl ether (16), hydroxyniranthin (17) (Satyanarayana et al., 

1988), nirphyllin (18) (Singh et al., 1989a), 2,3-desmethoxy seco-isolintetralin (19),     

2,3-desmethoxy seco-isolintetralin diacetate (20), linnanthin (21), demethylenedioxy-

niranthin (22) (Satyanarayana and Venkateswarlu, 1991).  
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14  phyllanthin     R1 = R2 = CH3 R3 = R4 = H   R5 = R6 = CH3 

15  niranthin     R1 + R2 = CH2 R3 = CH3  R4 = H  R5 = R6= CH3 

16  seco-isolariciresinol trimethyl ether R1 = R2 = CH3  R3 = R4 = R5 = H   R6 = CH3 

17  hydroxyniranthin    R1 + R2 = CH2 R3 = CH3 R4 = OH R5 = R6= CH3 

19  2,3-desmethoxyseco-isolintetralin R1 + R2 = CH2   R3 = R4 = R5 = R6 = H 

20  2,3-desmethoxyseco-isolintetralin diacetate R1 + R2 = CH2R3 = R4 = H R5 =R6 = COCH3 

21  linnanthin     R1 = R2 = R3 = CH3   R4 = H   R5 = R6 = CH3 

22  demethylenedioxyniranthin  R1 = R2 = H  R3 = CH3   R4 = H   R5 = R6 = CH3 

 

 

 Aryltetralin lignans 

Hypophyllanthin (23) (Row and Srinivasulu, 1964), nirtetralin (24), phyltetralin (25) 

(Anjaneyulu et al., 1973), lintetralin (26) (Ward et al., 1979), isolintetralin (27) (Huang et 

al., 1992), neonirtetralin (28) (Wei et al., 2002). 
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18  nirphyllin     23  hypophyllanthin 

  

 

R1O

R2O

OR4

OR5

2

1

3
4

5
6 7

8
9

1'

2'

3'

4'

5'

6'

8'
9'

7'
OCH3

OCH3

R3

 
 

24  nirtetralin  R1+ R2 = CH2  R3 = OCH3  R4 = R5 = CH3 

25  phyltetralin  R1 = R2 = CH3  R3 = H  R4 = R5 = CH3 

26  lintetralin  R1 = R2 = CH3  R3 = H  R4 + R5 = CH2 

27  isolintetralin R1 + R2 = CH2  R3 = H  R4 = R5 = CH3 

28  neonirtetralin R1+ R2 = CH2  R3 = OCH3  R4 = R5 = CH3 

 

 
 Other lignans 

Seco-4-hydroxylintetralin (29), dibenzylbutyrolactone (30) (Satyanarayana et al., 1988), 

hinokinin (31) (Huang et al., 1992). 

 

 Neolignan 

Phyllnirurin (32) (Singh et al., 1989a). 
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29  seco-4-hydroxylintetralin                            30  dibenzylbutyrolactone  
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31  hinokinin                   32  phylnirurin 

 
 
 

 

Coumarins, tannins and related polyphenols 

The following coumarins, tannins and polyphenols have been isolated from P. niruri: 

gallic acid (33), ellagic acid (34), brevifolin carboxylic acid (35), ethyl brevifolin 

carboxylate (36) (Shmizu et al., 1989), methyl brevifolin carboxylate (37)  (Iizuka et al., 

2006), geraniin (38) (Ueno et al., 1988), corilagin (39) (Shmizu et al., 1989), 

phyllanthusiin D (40) (Foo and Wong, 1992), amariin (41), amariinic acid (42), 

elaeocarpusin (43), geraniinic acid B (44), repandusinic acid (45), amarulone (46), 

furosin (47) (Foo, 1995), 1,6-digalloyl glucopyranoside (48) (Foo, 1993), catechin (49), 

epicatechin (50), gallocatechin (51), epigallocatechin (52), epicatechin 3-O-gallate (53), 

epigallocatechin 3-O-gallate (54) (Ishimaru et al., 1992).  
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         33   gallic acid   34   ellagic acid   

 

    

           R 

              35  brevifolin carboxylic acid      COOH 

             36  ethyl brevifolin carboxylate   COOCH2CH3 

             37  methyl brevifolin carboxylate COOCH3 
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 38   geraniin      39   corilagin   
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 40  phyllanthusiin D       41   amariin 
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42   amariinic acid     43   elaeocarpusin 
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44   geraniinic acid     45   repandusinic acid 
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46   amarulone                       47   furosin 
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48  1,6-digalloyl glucopyranoside 
        R1  R2 R3 
   49 catechin   OH (β)  OH H 

   50 epicatechin   OH (α)  OH H 

   51  gallocatechin   OH (β)  OH OH 

   52 epigallocatechin  OH (α)  OH OH 

   53 epicatechin 3-O-gallate O-gallate (α) OH H 

   54 epigallocatechin 3-O-gallate  O- gallate(α) OH OH 
 
 
Flavonoids 

Flavonoids reported from P. niruri plant belongs to the flavonols and flavanone 

subclasses and their respective glycosides. The following flavonoids have been 

isolated from P. niruri: quercetin (12), rutin (13), astragalin (55), quercitrin (56), 

isoquercitrin (57) (Nara et al., 1977), kaempferol-4’-rhamnopyranoside (58), eridictyol-

7-rhamno pyranoside (59) (Chauhan et al., 1977), fisetin-4’-O-glucoside (60) (Gupta 

and Ahmed, 1984), quercetin-3-O-glucopyranoside (61) (Foo, 1993), kaempferol-3-O-

rutinoside (62) (Qian-Cutrone et al., 1996). 
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55 astragalin R1 = OH  R2 = glucose     R3 = H  

56 quercitrin R1 = OH  R2 = rhamnose R3 = OH   

57 isoquercetin R1 = OH  R2 = glucose     R3 = OH  
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