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A 

       Para penyelidik sentiasa mencari cara-cara penambahbaikan kaedah antara muka 

antara domain Analog dan Digital. Tidak dapat dinafikan bahawa terdapat perkembangan 

di dalam pembangunan teknik-teknik penukaran AD/DA untuk pelbagai aplikasi. Namun 

begitu, masih terdapat ruang pembaikan di dalam bidang ini. Modul-modul AD dan DA 

sekarang memerlukan ruang permukaan yang besar, menggunakan banyak tenaga, 

mengakibatkan kelengahan transmisi dan ada kalanya mengakibatkan kehilangan data. 

Terdapat banyak masalah di dalam hampir semua teknik konvensional, sedangkan teknik-

teknik yang lebih inovatif untuk AD/DA belum lagi dibangunkan. Projek ini difokuskan 

kepada kaedah unik yang tidak mengambilkira keperluan penukaran AD/DA dalam 

pemprosesan logik berturutan, atau MCU dengan penggunaan port pemulaan Input 

bukan-Schmitt yang dipasang secara terus di dalam litar gegelung tertutup dan mengawal 

peranti analog. Asas untuk logik FLTZ bergantung kepada hayunan tidak stabil daripada 

output digital iaitu input yang mengesan nilai-nilai (1) dan (0) di tahap voltan ambang. Satu 

lagi konsep FLTZ yang boleh diambilkira ialah apabila PWM dalaman digunakan pada 

mod latarbelakang dan dikawal oleh FLTZ hasil daripada pengesanan input. FLTZ asalnya 

diuji dan dibangunkan menggunakan pengawal mikro jenis PIC. Hasilnya membawa 

kepada pengenalan FLTZ di dalam peranti Switch Mode Power Supply (SMPS) dengan 

penggunaan MCU dalam litar gegelung tertutup. FLTZ boleh mengurangkan blok, 

penggunaan tenaga, kehilangan data, kehilangan kuasa, kos, saiz cip dan kelengahan 

transmisi di dalam MCU bukan hanya dengan mengambilkira penukaran AD/DA 

konvensional, tetapi juga sebagai voltan rujukan purata. Oleh kerana FLTZ mempengaruhi 

kod program, di samping ia bergantung kelajuan peranti (frekuensi jam), ia dapat 

menghasilkan banyak penyelesaian untuk pelbagai aplikasi seperti VCO untuk pengawal 

sistem komunikasi dan pengawal kelajuan automatik untuk kereta. 

Logik Zon Ambang Bebas Takat (FLTZ) untuk Litar Gabungan Suapbalik 
Analog - Digital 

ABSTRAK
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ABSTRACT 

       Researchers have always look for ways to improve the interfacing method between 

the Analog and Digital domain. Undeniably, the last few decades have witnessed the 

development AD/DA conversion techniques for various applications. Nevertheless, there 

still exist rooms for further progress and development of this important area. Current AD 

and DA modules occupy space (surface), consume power, cause transmission delay and 

sometimes introduce data loss as well. The conventional techniques for AD/DA 

conversions have yet to be improved specially due to transmission delay and data loss by 

the cause of sampling. In this project, the focus is on a unique method that ignores the 

need of conventional AD/DA converters in a sequential logic processor or MCU by making 

use of non-Schmitt Input initialized port(s) which is(are) directly attached in a closed-loop 

circuit to read from and control analog device(s). The basic of Free Level Threshold Zone 

(FLTZ) Logic relies on the unstable generated oscillation of a digital output where the 

program-referred non-Schmitt input, is detecting (0) and (1) values at the stage of 

threshold voltage. Another concept of FLTZ may be considered when an internal Pulse 

Width Modulation (PWM) is initialized on the background mode and controlled by FLTZ 

due to the input detections. FLTZ initially tested and developed using PlC™ 

microcontrollers. The outcome successes lead to an introduction of FLTZ in Switch Mode 

Power Supply (SMPS) device by direct use of an MCU in a closed-loop circuitry. FLTZ 

technique addresses the way of minimizing the blocks in an Analog-Digital architecture 

over 20%, as well as power consumption (>10%), data loss, power loss (>10%), cost, chip 

size over 10% and transmission delay in MCU architecture not only by ignoring 

conventional AD/DA converters, but also providing a reference voltage. As the effect of 

FLTZ is related to the driving program codes, thus dependent to the speed of the device 

(clock frequency), FLTZ creates effective solutions for various kinds of applications such 

as VCO for communication system, and automotive speed cruise. 

Free Level Threshold Zone (FLTZ) Logic For mixed Analog – Digital 
closed loop circuitry 

ABSTRACT
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Chapter 1 

Introduction 
 

1.1   Overview  

        The Free Level Threshold Zone (FLTZ) is an approach to minimize a mix 

analog and digital design by splitting away A to D and D to A blocks in a closed-

loop circuitry. While an analog variation in time can be analyzed and controlled 

continuously by complicated mathematical calculations, a digital processing 

addresses to the logic numerical analysis, algebra and probability environment. 

An analog value in Logic mode is more accessible to be analyzed. It can be 

processed back to an analog value again after digital to analog conversion. An 

example of a filtering concept is imaged in figure 1.1: 

 

. 

 

 

Figure 1.1    Block diagram of basic Digital filtering system 

 

      In this thesis, an efficient practical approach is presented for a closed loop 

MCU controlled concept where AD and DA blocks can reliably be eliminated. 

The efficiency increases by the resolution, detecting the value on the non-

Schmitt input pin, where the Clock frequency is specifying the resolution 

respectively. Further more, a practical HID ballast solution is presented in the 
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thesis. FLTZ has also provided a wide range of control and diagnosis 

accessibility in a developed Switch Mode Power Supply (SMPS) circuit while a 

simple reliable circuitry is concerned. 

 

1.2  Research  objectives 

            The main objective for this thesis is to represent an innovative control 

technique for splitting away the Analog-Digital conversion blocks based on 

closed loop design, resulting simplification of circuitry, faster data processing 

and cheaper system development beside less power consumption and loss. 

While the sub-objectives are: 

1- To introduce FLTZ as reference voltage for voltage regulators  

2- To draw a comparison between FLTZ and Fuzzy logics to bear an 

improved practical integrated technique in the field of electronic control 

systems.  

3- To design and develop a reliable and accurate Switch Mode Power 

Supply (SMPS) for constant power control for HID lamps by using the 

FLTZ logic (figure 1.2). 

      

Figure 1.2    The practical SMPS block diagram for FLTZ 

MCU 

Output To (+V) FLTZ level    
  shifters  

MOSFET 
gate driver 
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4- To introduce FLTZ as a solution for the VCO applications that can be in 

gear with PLL, FM tuning system.  

 

1.3    Thesis overview  

 This thesis is organized in six chapters as follows: 

 A brief introduction is given in Chapter 1, whilst Chapter 2 presents the 

literature describing the theory behind Analog / Digital conversion methods and 

existing conventional techniques which are currently in use. Chapter 3 

represents a brief introduction of the novel technique of FLTZ in closed loop 

circuitry, ending with a comparison of the FLTZ and Fuzzy logics as multi-

valued logics. 

        In Chapter 4, experimental setup and implementation of two practical 

applications has been drawn. HID ballast as a successful product which is 

designed and developed using FLTZ technique for High Intensive Discharge 

lamps (HID lamps) in 2006 has been given in detail and a Voltage Controlled 

Oscillation circuit (VCO) is also discussed. Chapter 5 is offering the results and 

discussion of the thesis and finally Chapter 6 concludes the work of this 

research. This chapter also outlines the benefits of FLTZ and some suggestion 

for future research. 
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Chapter 2 

Literature review 
 

2.1     Introduction  

          Analog to digital converters are the fundamental building blocks in highly 

integrated mixed-signal integrated circuits. Introducing digital methods and 

circuitry in practical systems is primarily a question of the associated costs. 

Special consideration must be given to the additional cost of the AD converters 

[1]. An Analog to Digital Converter (ADC) is an electronic circuit that measures 

an analog signal such as a voltage that is proportional to a continuous physical 

quantity, such as temperature, pressure, or speed and converts it to a digital 

representation of the signal. It compares the analog input signal to a known 

reference signal and then produces a digital representation of the analog input. 

The output of an ADC is a digital binary code, which can represent only a 

bounded number of values. Thus an ADC inherently introduces a quantization 

error, which is information that is lost. The more digital codes that the ADC can 

resolve the more resolution it has and the less information lost due to the 

quantization error. Current digital applications create a need for high resolution 

and high speed analog to digital converters. Modern analog to digital converters 

are divided into two different categories, Nyquist rate ADCs [2] [3], and over 

sampled ADCs. Nyquist-rate ADCs produce a series of output codes in which 

each code corresponds directly with one sample of the analog input signal. To 

avoid aliasing of frequency spectra, the input signal bandwidth must be limited 

to half the sampling frequency as implied by the Nyquist criterion [4]. Over-

sampled ADCs sample an analog input at a much higher rate than the Nyquist 

rate of the input signal and, obtain the desired output code by filtering out 
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quantization noise that is outside of the signal bandwidth. Flash, successive 

approximation, and pipeline ADCs are two types of Nyquist-rate ADCs [5]. 

Sigma-delta method is in over sampled ADC category. Each ADC structure has 

its own advantage and disadvantage as discussed in the following sections.  

2.2     Flash Analog-to-Digital Converter  

          Flash analog to digital converters, also known as parallel ADCs, are 

made by cascading high speed comparators as shown on Figure 2.1.  

 
 

 

Figure 2.1    Typical Flash analog to digital converter[6] 
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Flash ADCs are ideal for applications requiring very large bandwidth; 

however, they typically consume more power than other ADC architectures and 

are generally limited to 8-10 bits resolution [7]. As shown in Figure 2.1, a typical 

N-bit flash ADC employs 2
N 
− 1 comparators, with 2

N 
matched resistors to 

provide a reference voltage for each comparator [6]. Each comparator 

represents 1 LSB and produces a (1) when its analog input voltage is higher 

than the reference voltage which is applied to it; otherwise, the comparator 

output is (0). If the analog input is between VX4 and VX5, comparators X1 through 

X4 produce (1)s and the remaining comparators produce (0)s, the point where 

the code changes from ones to zeros is the point where the input signal 

becomes smaller than the respective comparator reference voltage levels. This 

output pattern is frequently called ‘a thermometer code’ since the height of the 

(1)s rises and falls with the input voltages.  

These comparators are typically a cascade of wideband low gain stages, 

they are low gain comparators. The input offset of each comparator is smaller 

than a LSB of the ADC, otherwise, the comparator’s offset could falsely passes 

through the comparator, resulting in ‘bubbles’ in the thermometer code [8]. A 

regenerative latch at each comparator output stores the result. The latch has 

positive feedback, so that the end state is forced to either a (1) or a (0). The 

result is subsequently converted to a binary output by an encoder. The principal 

advantage of the flash architecture is high throughput rate. The conversion of 

each sample takes only one single clock period. Many issues limit the utility of 

this approach for resolution above 8 bits, the exponential growth of the input 

capacitance, the power dissipation and the area are useless. Furthermore the 

offset of the comparators, the feed through of the analog input to the resistor 
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ladder, the slew-dependent comparator delay and bubbles in the thermometer 

code degrade the static and dynamic performance substantially [8] [9]. 

 

2.3      Successive-Approximation-Register ADC  

Successive approximation register (SAR) ADCs are suitable for 

medium to high resolution applications [10]. SAR ADCs provide up to 5 mega 

sample per second with resolutions from 8 to 16 bits. This combination 

makes them ideal for a wide variety of applications, such as portable 

instruments, pen digitizers, and industrial controls [11]. This conversion 

process basically consists of starting with the most significant bit (MSB) and 

successively trying a (1) in each bit of a DA decoder. If the DA output is 

larger, the (1) is removed from that bit as the process continues and a (1) is 

tried in the next most significant bit [12]. The SAR ADC basically implements 

a binary search algorithm; the basic architecture is quite simple as shown in 

Figure 2.2. The analog input voltage Vin is held on a sample/hold, to 

implement the searching algorithm, the N-bit register is first set to mid scale, 

this forces the DAC output VDAC to be Vref /2, where Vref is the reference 

voltage provided to the ADC. A comparison is then performed to determine 

Vin, if is less than or greater than VDAC . If Vin is greater than VDAC , the 

comparator output is a logic ‘high’ or (1) and the MSB of the N-bit register 

remains at (1). Conversely, if Vin is less than VDAC , the comparator output is a 

logic (low) and the MSB of the register is cleared to logic (0).   
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Figure 2.2   Successive approximation register (SAR) ADC 

The SAR control logic then moves to the next bit down, forces that bit 

high, and does another comparison. The sequence continues all the way down 

to the LSB. Once this is done, the conversion is complete, and the N−bit digital 

word is available in the register.  

      

Figure 2.3   An example of a 4-bit conversion. 
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Figure 2.3 shows an example of a 4-bit conversion. The y-axis 

represents the DAC output voltage. In the example, the first comparison shows 

that Vin <VDAC . Thus, bit 3 is set to (0). The DAC is then set to 0100 and the 

second comparison is performed. Since Vin >VDAC, bit 2 remains at (1). The DAC 

is then set to 0110, and the third comparison is performed.  

Bit 1 is set to (0), and the DAC is then set to 0101 for the final comparison. 

Finally, bit 0 remains at (1) because Vin >VDAC . Notice that four comparison 

periods are required for a 4-bit ADC. Generally speaking, an N−bit SAR ADC 

will require N comparison periods and will not be ready for the next conversion 

until the current one is completed. One other feature of SAR ADCs is that 

power dissipation scales with the sample rate, unlike flash or pipeline ADCs, 

which usually have constant power dissipation versus sample rate [10]. This 

makes the SAR ADC’s especially useful in low-power applications or 

applications where the data acquisition is not continuous [13].  

2.4      Sigma-Delta Analog to Digital Converter  

Sigma-Delta ADCs are popular for high-resolution audio rate applications 

such as mobile telephones, digital audio, and ADSL Communication. 20-bit 

ADCs and known without the need for any trimming [14]. A sigma-delta ADC 

combines a modulator with a high rate decimating filter. It can be high 

resolution by using a high over sampling ratio, but recently some high 

bandwidth sigma-delta type converters have reached a bandwidth of 1MHz to 

2MHz with 12 to 16 bits of resolution. These are usually very high order sigma-

delta modulators incorporating a multi-bit ADC and multi-bit feedback DAC, and 

the main applications of these sigma-delta converters are in ADSL [15] [16].  
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The structure of the basic sigma-delta converter is shown in Figure 2.4.  

 

 

 

 

The modulator consists of an integrator and a comparator, with a 1-bit 

DAC in a feedback loop, the internal DAC is simply a switch that connects the 

comparator input to a positive or negative reference voltage the modulator 

produces an output that consists of a stream of digital (1)s and (0)s, where the 

percentage of (1)s varies in direct proportion to the analog input. The digital 

decimator that follows performs both digital filtering and down sampling of the 

1-bit input data stream. The sigma-delta ADC also includes a clock unit that 

provides proper timing for the modulator and digital decimator [17]. A significant 

problem with the sigma-delta converter, resulting directly from its nonlinear  

nature and feedback, is the presence of tone components in the output in 

response to DC inputs, or even small amplitude sinusoidal inputs. Clearly, 

these tones are highly undesirable in audio and speech applications, for this 

reason, higher than second order modulators are used to lower down some of 

the idle tone problems. In general, for an N order modulator every doubling of 

the over sampling ratio provides an additional 6N +3dB of SNR. Higher order 

 

Figure 2.4: The Sigma-Delta Over Sampling ADC Architecture[15] 
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modulation can also be achieved by cascading several lower order stages. This 

avoids problems with stability, while maintaining the advantages with respect to 

SNR and limit cycles. Fourth order modulators of two cascaded second-order 

stages are common. There are also architectures which employ multi-bit 

quantizers. For example, in a second order modulator, each additional bit in the 

quantizer will result in a SNR improvement of about 6dB. 

 

2.5      Pipeline Analog-to-Digital Converter  

         The pipeline analog to digital converter has become the most popular 

ADC architecture for sampling rates from a few MSPS up to 100 MSPS, with 

resolutions from 8 bits to 16 bits. These kinds of resolutions and sampling rates 

cover a wide range of applications, including CCD imaging, ultrasonic 

biomedical imaging, digital receiver, digital video for high density TV, ADSL, 

cable modem, and fast Ethernet. Lower-sampling-rate applications are still the 

domain of the SAR and sigma-delta ADCs. The highest sampling rates are still 

obtained using flash ADCs. However, various forms of the pipeline ADCs have 

so far developed greatly in speed, resolution, dynamic performance [18] [19] 

[20].  

Figure 2.5 shows a block diagram of a 12-bit pipeline ADC. The analog input Vin 

is first sampled and held by a sample and hold circuit, while the flash ADC in 

stage one quantizes it to 3 bits. The 3 bit output is then fed to a 3 bit DAC, and 

the analog output is subtracted from the input. This residue is then multiplied up 

by  a  gain factor and  fed  to the next stage. This gained-up residue continues 

through the pipeline, providing 3 bits per stage until it reaches the 4 bit flash                      
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OUT(12:1)� 

ADC which resolves the last 4 LSBs. Because the bits from each stage are 

determined at different points in time, all the bits corresponding to the same 

sample are time-aligned with shift registers before being fed to the digital-error-

correction logic. Note that as soon as a certain stage finishes processing a 

sample, determining the bits and passing the residue to the next stage, it can 

start processing the next sample due to the sample-and-hold embedded within 

each stage. This pipelining action accounts for the high throughput [21].  

In a SAR ADC, the bits are decided by a single high speed, high 

accuracy comparator bit by bit, from the MSB down to the LSB, by comparing 

Figure 2.5   Pipeline ADC Architecture[19]  
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the analog input with a DAC, whose output is updated by previously decided 

bits and successively approximates the analog input. This serial nature of SAR 

limits its operating speed to no more than a few MSPS, and still slower for very 

high resolutions. A pipeline ADC, however, employs a parallel structure in 

which each stage works on one to a few bits concurrently. Although there is 

only one comparator in a SAR, this comparator has to be fast and as accurate 

as the ADC itself. In contrast, none of the comparators inside a pipeline ADC 

needs this kind of accuracy. However, a pipeline ADC generally takes up 

significantly more device area than a SAR of equivalent resolution. Fast flash 

ADCs exist with sampling rates as high as 1.5 GSPS, but it is much harder to 

find a 12-bit flash. This is simply because in a flash ADC, the number of 

comparators is 256 for an 8 bit converter and the number goes up by a factor of 

2 for every extra bit of resolution. At the same time each comparator has to be 

twice as accurate. In a pipeline ADC, however, to a first order the complexity 

only increases linearly with the resolution, not exponentially. At sampling rates 

obtainable by both a pipeline and a flash, a pipeline ADC tends to have lower 

power consumption than a flash [22]. So the pipeline ADC is the architecture of 

choice for sampling rates from a few MSPS up to 100 MSPS. Figure 2.6 

illustrates the bandwidth and sampling rate of the ADCs. An ADC with a 12-bit-

resolution does not necessarily have 12 bit accuracy, because the converter 

sometimes exhibits lower performance than expected due to non linear 

parameters. ADC characteristics are helpful to select the appropriate ADC 

architecture. 
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Figure 2.6    Basic ADC Comparison with Resolution and Bandwidth 

 

Each component in a system will have associated errors, so the goal of 

the converter specification is to keep the total error below a certain value. Often 

the ADC is the key component in the signal path, so care is required to select a 

suitable device. The accuracy of the ADC is dependent on several key 

specifications, which include deferential non linearity errors (DNL), integral non 

linearity errors (INL), offset and gain errors, and the accuracy of the voltage 

reference, temperature effects. If 0.1% or 10 bits of accuracy (1/2
10

) is needed, 

then it makes sense to choose a converter with greater resolution than this. If a 

12 bit converter is selected, it may be assumed to be adequate, but without 

reviewing the specifications, there is no guarantee of 12 bit performance. For 

example, a 12 bit ADC with 4 LSBs of integral non linearity error gives only 10 

bits of accuracy at best (assuming the offset and gain errors have been 

calibrated). ADC performance can be defined in two different ways, static 
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performance and dynamic performance. Dynamic performance is especially 

important for telecommunication systems [23] [24].  

2.5.1   Differential Non Linearity (DNL)  

The Differential Non Linearity (DNL) error is defined as the difference 

between an actual step width and the ideal value of 1 Least Significant Bit 

(LSB). For an ideal ADC, the differential non linearity coincides with 0 LSB, and 

the transition values are spaced exactly 1 LSB apart. A DNL error specification 

of less than or equal to 1 LSB guarantees a monotonic transfer function with no 

missing codes. An ADC’s monotonicity is guaranteed when its digital output 

increases or remains constant, thereby avoiding sign changes in the slope of 

the transfer curve. DNL error is defined as follows,  

 

                         ( )
⎥
⎦

⎤
⎢
⎣

⎡
−

−
= + 11

LSB

DD

V
VVDNL ,   where   0 <D< 2

N 
− 1                                (2.1) 

 
 

Where VD is the value of the digital output, VLSB is value of the least 

significant bit and D represents the digit. 

With a DNL error less than 1 LSB, the device is guaranteed to have no 

missing code as shown in Figure 2.7(a), and with a DNL value -1, the device 

has missing codes as shown in the Figure 2.7(b).         
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Figure 2.7  Symbol (a) DNL error: no missing codes (b) missing codes 

 

2.5.2   Integral Non Linearity (INL)  

INL is defined as the integral of the DNL errors, so good INL guarantees 

good DNL. INL error is described as the deviation, in LSB or percent of full-

scale range, of an actual transfer function from a straight line. An INL error of 

±2 LSB in a 12 bit ADC means the maximum non linearity error may be off by 

(a) 

(b) 
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2/4096 or 0.05%. The INL error magnitude then depends directly on the 

position chosen for this straight line. Two common methods “best straight-line 

INL” and “end-point INL” are popular to measure the INL errors as shown in 

Figure 2.8.  

Best straight-line INL provides information about the offset and gain error 

plus the position of the transfer function. It can be determined from the least 

mean square (LMS) method, and this line is the closest approximation to the 

ADC’s actual transfer function.   

 
 

 

Figure 2.8  Best straight- Line and End-point Fit [25] 

 

The exact position of the line is not clearly defined, but this approach yields the 

best repeatability [25], and it serves as a true representation of linearity. End-

point INL passes the straight line through end points of the converter’s transfer 

function, thereby defining a precise position for the line. Thus, the straight line 

for an N-bit ADC is defined by its zero and its full scale outputs or its full scale 

negative and full scale positive outputs.  
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The best straight-line approach is generally preferred, because it 

produces better results. The INL specification is measured after both static 

offset and gain errors have been nullified, and can be described as follows  

 

          ( )
⎥
⎦

⎤
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−

−
= D

V
VVINL
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−

= N
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VVV                                            (2.3) 

 

VD is the analog value represented by the digital output code D, N is the 

ADC’s resolution, VZero is the minimum analog input corresponding to an all-

zero output code, and VLSB is the ideal spacing for two adjacent output codes.  

2.5.3   Sources of Errors in Pipeline Analog-to-Digital Converters  

There are three major error sources in a pipeline ADC. The first one is 

the gain error which is introduced by finite opamp gain. This can be removed by 

adjusting the gain of the opamp. The second error is the offset voltage of the 

opamp. This error requires some special techniques to remove. The last error is 

from capacitor mismatch and this can be cancelled by digital calibration 

techniques [25].  

The gain error: mx, is defined as the full-scale error: y, minus the offset 

error: b, (mx = y – b) . Full-scale error is measured at the last ADC transition on 

the transfer-function curve and compared against the ideal ADC transfer 

function. Gain error is easily corrected with a linear function y = (m1/m2) (x), 

where m1 is the slope of the ideal transfer function and m2 is the slope of the 
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measured transfer function as shown in Figure 2.9. In order to remove the 

offset error the x and y axes of the transfer function are shifted so that the 

negative full-scale point aligns with the zero point of a system. This technique 

removes the offset error. The gain error is removed by rotating the transfer 

function about the ‘new’ zero point. The gain-error specification may or may not 

include errors contributed by the ADC’s voltage reference.   

 

 

Figure 2.9: Offset, Gain, and Full-Scale Errors [25] 

In the electrical specifications, it is important to check for the gain error if 

is tested, and to determine whether it is performed with an internal or external 

reference. Typically, the gain error is much worse when an on-chip reference is 

used [26]. Figure 2.10 shows the effect of finite opamp gain error. Because of 

finite opamp gain, there is an error voltage at the input of opamp. From 

Equation (2.6), the error term (A0β) makes the slope of the residue plot less 
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than two or more than two, so the residue voltage may be less than or greater 

than the full range of the converter.  
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Figure 2.10  Residue Plot of a 1.5 bit Pipeline Stage with Finite Gain   

                    Error [26] 
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As shown in Figure 2.11, the offset of opamp introduces a constant error, 

or a shift, at the output of pipeline stage.  

 
 
 

 

Figure 2.11  Residue Plot of a 1.5 bit Pipeline Stage with Operational Amplifier  

                    Offset [26] 

 

From Equation (2.7), this error voltage is represented by Equation (2.8) 
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 To reduce the offset error, the input transistors are often kept quite big, 

which usually takes a large area. If a 1.5 bit stage is used in the pipeline, this 

error will be corrected by the later stages. The major cause of gain and offset 

error is capacitor mismatch, so matched capacitors or precision capacitor ratios 

have been used extensively for many years. There are several mismatch error 

sources in MOS capacitors. The major error source consists of long range, 

gradient related system errors, which are strongly correlated for all capacitors 

on the same chip. These can be kept to a minimum by using unit capacitor 

layout techniques with a common centroid geometry [27][19].  

 

 

Figure 2.12  Residue Plot of 1.5 bit Pipeline Stage with Capacitor Mismatch [26] 

 

Figure 2.12 shows the effect of capacitor mismatch. Because of process 

variations, capacitor mismatches always exist. Capacitor mismatch changes the 
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slope of the residue plot to a value different than two. 
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2.6      Dynamic Performance  

Dynamic performance includes dynamic linearity, noise and distortion. 

The following measures are used to characterize the dynamic performance of 

an ADC. Signal-to-Noise Ratio (SNR) is the ratio of the signal power to the total 

noise power at the output of ADC with full-scale sinusoidal input. It can be 

calculated by Equation (2.10), with an N-point FFT of a signal [28].  

 
        SNR(dB)= Signal Peak(dB) − Noise Floor(dB) − 10 logN           (2.10)  

 
         SNR(dB)=6.02N +1.76dB                                  (2.11)  

Figure 2.13 shows the related graph.  
 

Signal-to-Noise + Distortion Ratio (SNDR) is the ratio of the signal power 

to the total noise and harmonic power at the output of ADC with full-scale 

sinusoidal input. Dynamic Range (DR) is the range of input signal amplitudes 

within which the desired output can be obtained, that is, it is the input power 

range for which the SNR is greater than 0 dB. Spurious Free Dynamic Range 

(SFDR) is the ratio of the signal power to the largest spurious component within 

a certain frequency band. It is important for telecommunication applications. 

The Effective Number Of Bits (ENOB) is calculated with the following equation: 
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Figure 2.13    Procedure for Computing SNR from an N point FFT [28] 

 

2.7    HID Lamp introduction in automotive industry   

         High Intensive Discharge is a technique for lighting and is based on the 

arc built within two electrodes. Recently, there has been an emerging demand 

to replace the conventional halogen headlamps with the newly introduced 

small-wattage metal halide HID lamps [43][44]. 

       Compared to the conventional halogen headlamps, HID lamps offer 5 times 

better lumen efficacy as shown in Figure 2.14 and table 2.1, better color 

rendering, better focusing capability, and longer life (5000 hours vs. 1500 

hours). These superior performances soon make them popular in some high-

end cars. However, HID lamps have a specific issue in ballast design. These 

lamps need very complex controller due to their special transient 
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