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TERMINOLOGY 
 
 
Absorption cross-section is a measurement of an atom or molecule's ability to absorb 
light at a specified wavelength, measured in square cm/particle. 
Albedo is a measure of reflectivity of a surface or body. It is the ratio of electromagnetic 
radiation reflected to the amount incident upon it. The fraction, usually expressed as a 
percentage from 0% to 100% 
Dobson units (DU) are the standard way to express ozone amounts in the atmosphere. 
One DU is 2.7 × 1016 ozone molecules per square centimetre, or 2.7 × 1020 m-2. One 
Dobson unit refers to a layer of ozone that would be 10 micrometre thick under standard 
temperature and pressure. 
Equinox - Twice during the year, September 21 and March 21, the length of day and 
night are equal because the tilt of the Earth's axis (in relationship to the sun) is nullified 
and both the Northern and Southern Hemispheres receive equal quantities of sunlight. 
Extinction coefficient is a measure of the rate of the reduction of transmitted light 
through a substance. 
Intensity is a measure of the time-averaged energy flux. (Unit: watt/m²). 
Irradiance is the total radiant flux received on a unit area of a given surface. Also called 
the radiant flux density. 
Optical depth is a measure of transparency, and is defined as the fraction of radiation 
that is scattered between a point and the observer. 
Radiance is a physical quantity used to measure the intensity of a light beam, defined as 
power per unit solid angle per unit projected area. The SI unit of radiance is the watt per 
steradian per square metre (W m-2 sr-1). 
Radiant energy is energy in the form of electromagnetic waves. Radiant energy may be 
calculated by integrating radiant power with respect to time. Radiant energy is usually 
expressed in joules. 
Radiation generally means the transmission of waves from a source into a surrounding 
medium. 
Refractive index of a material is the factor by which electromagnetic radiation is slowed 
down (relative to vacuum) when it travels inside the material. 
Transmittance is the fraction of incident light at a specified wavelength that passes 
through a sample. 
Turbidity is a cloudiness or haziness of the atmosphere caused by individual particles 
that are too small to be seen without magnification. 
Zenith is the point in the sky which appears directly above the observer. More precisely, 
it is the point on the sky with a altitude of +90 Degrees. 



 
ABSTRAK 

 

SINARAN ULTRALEMBAYUNG-B (UV-B) SURIA PADA PERMUKAAN 

BUMI DI PULAU PINANG 

 

Pengukuran fotometrik jalur lebar bagi sinaran ultralembayung-B (UV-B), 

ultralembayung-A (UV-A), global dan berbaur suria telah dibuat di Universiti Sains 

Malaysia (USM) dari tahun 1994 sehingga 2001. Kajian ini menunjukkan bahawa 

variasi besar temporal untuk ukuran sinaran suria adalah disebabkan kesan dominan 

sudut zenit suria dan awan. Bagi semua jenis keadaan langit, min jumlah sinaran harian 

untuk sinaran UV-B, UV-A dan global ialah 1.514 x 104 J m-2, 4.69 x 105 J m-2 dan 

1.80 x 107 J m-2 masing-masing. Pada hari tanpa awan, keamatan sinaran maksimum 

harian bagi UV-B dan global ialah 1.372 W m-2 dan 1.423 kW m-2. Ukuran sinaran UV-

B berkesan telah ditukarkan kepada fluks UV eriterma untuk dikaitkan dengan kesan 

keupayaan berbahaya akibat pendedahan UV. Aras tertinggi fluks UV-B adalah antara 

masa 1030 dan 1530 jam waktu tempatan. 

 

Kajian variasi harian untuk sinaran UV-B, UV-A dan global menunjukkan bahawa bagi 

sudut zenit yang sama, sinaran suria selepas tengah hari adalah lebih besar berbanding 

dengan sinaran sebelum tengah hari. Kesan tak simetri ini adalah disebabkan 

penyerakan sinaran suria oleh awan. Kajian mengenai variasi musim untuk sinaran UV-

B, UV-A dan global menunjukkan perubahan berkala dengan sinaran suria maksimum 



pada bulan Mac dan September. Kesan-kesan terhadap aras sinaran UV-B di 

permukaan Bumi juga telah dikaji dengan menggunakan parameter meteorologikal 

yang sedia ada. Satu model matematik untuk menganggarkan aras sinaran UV-B di 

permukaan Bumi juga telah dihasilkan dan dibandingkan dengan dua model terkenal. 

Pencapaian model spektral didapati adalah baik dengan ralat min sebesar 9.9%. Sebagai 

kajian tambahan, suatu model empirik yang ringkas telah dihasilkan dengan 

menggunakan kaedah analisis multivariat. Ralat min bagi model empirik adalah 2.5% 



 
ABSTRACT 

 

SURFACE LEVEL SOLAR ULTRAVIOLET-B RADIATION AT PENANG 

 

Broadband photometric measurements of solar UV-B, UV-A, global and diffuse 

radiation were made at Universiti Sains Malaysia (USM), Penang from 1994 to 2001. 

Results from this study show that the large temporal variations for the measured solar 

radiation is due to the dominant effect of solar zenith angle and clouds. Under all sky 

conditions, the mean daily total radiation values for the UV-B, UV-A and global 

radiation were 1.514 x 104 J m-2, 4.69 x 105 J m-2 and 1.80 x 107 J m-2 respectively. For 

cloudless sky days, the daily maximum UV-B and global irradiance were 1.372 W m-2 

and 1.423 kW m-2. The measured effective UV-B irradiance was converted to the 

erythemal UV flux to relate it to the potential harmful effects due to UV exposure; UV-

B flux level is in the High or Extreme ranges between 1030 and 1530 hours local time. 

 

A study of the diurnal variation of the solar UV-B, UV-A and global radiation show 

that for similar zenith angles, the solar irradiance after solar noon is larger than that 

before solar noon. This assymmetrical effect is attributed to the scattering of solar 

radiation by clouds. Seasonal variation studies show a constant periodicity for the solar 

UV-B, UV-A and global flux with maximums in March and September. Using 

available meteorological parameters and total column ozone data, their effects on the 

surface level solar UV-B radiation was investigated. A mathematical model to estimate 



the surface level solar UV-B radiation was also developed and compared with two 

established model. The spectral model performance is good with a mean error of 9.9%. 

To compliment the spectral model, a simple empirical model was also formulated using 

multivariate analysis. The mean error of the empirical model was 2.5%. 



 

Chapter 1 : Introduction 

 

Almost all the radiative energy entering the earth's atmosphere comes from the sun. 

The incoming solar radiation covers the entire electromagnetic spectrum from gamma 

and X-rays, through ultraviolet, visible, and infrared radiation to microwaves and 

radiowaves. Of the solar energy reaching the earth, 99 percent has a wavelength 

between 150 and 4000 nm, with 9 percent in the ultraviolet (λ < 400 nm), 49 percent in 

the visible (400 < λ < 700 nm) and 42 percent in the infrared (λ > 700 nm) (Houghton, 

1985). As shown in Figure 1.1, of the total incoming solar radiation, 16 percent is 

absorbed by ozone in the stratosphere (stratospheric ozone), tropospheric water vapour 

and aerosols, 3 percent by clouds, and 51 percent by the earth’s surface. The remaining 

30 percent of solar radiation are backscattered by the air (6 percent), reflected by clouds 

(20 percent) and reflected by the earth’s surface (4 percent) (Peixoto and Oort, 1992). 

The shaded areas in Figure 1.2 represent absorption of radiation due to various gases 

when it travels vertically through the atmosphere under clear conditions. 

 

The UV spectra is usually divided into three groups: UV-C (λ < 280 nm), UV-B (280 

nm < λ < 320 nm) and UV-A (320 nm < λ < 400 nm) (Meier et al., 1997). There is 

virtually no solar radiation reaching the earth's surface at wavelengths of less then 295 

nm, as a result of strong absorption by atmospheric ozone and oxygen, whereas at UV 

wavelengths greater than 320 nm (UV-A range), the ozone absorption is small, and 

Rayleigh scattering and line absorption by other constituents are the main extinction 

processes  (Kudish and Evseev, 2000). The UV radiation spectrum at the top of the 

atmosphere and at the surface of earth for 300 Dobson Units of ozone is shown in 



 

Figure 1.3. Any depletion of ozone in the stratosphere will increase the ultraviolet flux 

reaching the biosphere (Pérez et al., 2002). This increase will be completely contained 

within the UV-B (Frederick at el., 2001) range. The inverse relationship between 

decreasing ozone amount and increasing level of UV-B radiation has been well 

established in both theory and measurements (Kerr and McElroy, 1993; Feister and 

Grewe, 1995; Varotsos et al., 1995; Kirchhoff et al., 1997a).  

 

1.1 Attenuation of Surface Level Solar Ultraviolet Radiation 

 

The intensity of solar ultraviolet radiation at ground level is dependent on earth-sun 

geometric factors and on a variety of atmospheric factors. Among the factors that 

contribute to UV-B attenuation are: Earth-Sun distance, solar zenith angle, total column 

ozone concentration, total column aerosol concentration, cloud properties, tropospheric 

constituents (such as nitrogen dioxide and sulphur dioxide), altitude above mean sea 

level and UV surface albedo (WMO, 1994; McKenzie et al., 2001; Lam et al., 2002; 

Palancar and Toselli, 2004). Because of the combined involvement of all these 

parameters in controlling the surface level solar UV radiation, it is difficult to 

determine absolutely the role of each parameter. Stratospheric components which effect 

the ground level UV-B irradiance are molecular scattering, absorption by ozone and 

scattering by aerosols (Pérez et al., 2002). Tropospheric factors include molecular 

scattering, absorption by gaseous pollutants, and scattering by aerosols and clouds 

(Acosta and Evans, 2000; Kaufman et al., 1998). Irradiance reaching the earth’s surface 

at wavelengths greater than 330 nm is dominated by molecular and aerosol scattering, 

with ozone absorption being the major influence at wavelengths below 310 nm (Wang 

and Lenoble, 1994).  



 

1.2 Relevance of Solar Ultraviolet Radiation Measurements 

 

Ozone depletion and the associated increase in solar ultraviolet radiation reaching the 

earth’s surface is a major environmental, medical and scientific issue. A change in UV 

climate can cause adverse effect on the biosphere. On humans, all exposed tissue, 

especially the skin and eyes, can be harmed by ultraviolet radiation (Diffey and Oakley, 

1987; Rosen et al., 1990; Leyden, 1990; Armstrong and Kricker, 1993; Wee et al., 

1997). On terrestrial ecosystems, elevated levels of UV-B are known to inhibit plant 

growth, development and physiological processes (Caldwell et al., 1998; Pinto et al., 

1999). Photodegradation of materials, such as synthetic polymers (plastics and 

elastomers), are mainly due to ultraviolet-B radiation (Halvorson and Kerr, 1994; 

Andrady et al., 1995). These potential effects of enhanced ultraviolet radiation on 

photobiological and photochemical processes could lead to sosioeconomic 

consequences. In assessing this impact, studies on the modification of solar ultraviolet-

B by stratospheric ozone, and geometric and environmental factors are important. This 

will require accurate and sustained monitoring of UV fluxes. 

 

Although solar UV-B irradiance data collection for the higher latitudes have been 

carried out intensively at many locations for many years now (Wardle et al., 1994; Diaz 

et al., 1997; WMO, 1999), however it is not the same for the equatorial/tropical 

regions. At the tropical latitudes, the erythemally-weighted irradiance far exceeds that 

incident at higher latitudes (Frederick and Erlick, 1994). At the Antarctic latitudes, 

even during the occurance of the ozone hole, direct transmission of UV radiation of 

wavelength higher than 290 nm remains lower than at the tropics (Davies, 1993; Ilyas 

et al., 1999). 



 

To understand the relationship between factors that influence ground level ultraviolet 

radiation, reliable data of good quality is required. Development of a sound ultraviolet 

climatology will provide the user community (environmentalists, medical scientists, 

ecologists, meteorologists, policy makers) much needed information to enable them to 

study the effects, understand responses of living systems and to develop strategies, 

evaluate possible ultraviolet trends and for forecasting purposes. Therefore, it is 

essential to obtain spatial and temporal changes of UV radiation. Data that is of known 

quality will be an important tool in predictive capabilities, verification of modeled 

estimations and improve our understanding of atmospheric processes, especially in the 

equatorial region. To this effect, a reliable calibration of the instrument is required to 

compare results from different observation sites. This will then help the international 

scientific community to form a global ultraviolet climatology picture. 

 

One of the important byproduct of solar ultraviolet measurement and research will be to 

create public awareness to the risks of overexposure to solar ultraviolet radiation. 

According to WMO (1994), the erythemal UV irradiance in the low latitudes are more 

than twice the values measured in the high latitudes. The possible detrimental health 

effects of exposure or overexposure to solar ultraviolet radiation is well documented 

(UNEP, 1989, 1994 and 1998; WHO, 1994). Measures have to be taken to educate the 

public to change their behavior in the amount of time exposed to sunlight. This can be 

done in the form of a UV Index (detailed discussions are in Chapter 5). Solar UV data 

has also been increasingly used to study air pollution (Galindo et al., 1995). 

 

 

 



 

1.3 UV Measurements 

 

The discovery of the ozone hole over Antarctica in 1985 (Farman et al., 1985) and 

subsequent reports that confirm the depletion of the stratospheric ozone (WMO, 1989; 

WMO, 1992) brought world-wide concern of the possible impacts of increased surface 

level ultraviolet radiation. Since then many establishments and countries have initiated 

programmes to monitor surface level ultraviolet radiation (Weatherhead and 

Webb,1997). Various types of instruments are been used for this purpose - broadband, 

narrowband or spectral. These instruments are stationed on ground or mounted on 

aircraft or satelite (Meerkoetter et al., 1997; Lubin et al., 1998). Extensive research on 

the physics of solar ultraviolet radiation and their variations due to natural and 

anthropogenic causes have also been carried out (Forster, 1995; Bodeker and 

McKenzie, 1996; Kirchhoff et al., 2001). Two world bodies, World Health 

Organization (WHO) and United Nations Environment Programme (UNEP) have been 

actively involved in solar ultraviolet study activities. 

 

In the United States, there are four main agencies monitoring UV-B radiation, namely 

the United States Department of Agriculture (USDA) (Gibson, 1994), the Environment 

Protection Agency (EPA) (Barnard and Cupitt, 1994), the National Science Foundation 

(NSF) (Booth et al., 1994) and the National Oceanic and Atmospheric Administration 

(NOAA). Environment Canada (EC) measures spectral ultraviolet irradiance at twelve 

locations in Canada (Wardle et al., 1994). In Europe, most countries have initiated 

programmes to monitor solar ultraviolet radiation since the seventies and eighties. The 

Nordic countries have established a working group for ozone and UV research in 1988 

(NOG). Other European countries do have their own monitoring systems (Webb, 1992; 



 

Wester, 1992; Borkowski, 1994; Matthes, 1994; Leszczynski et al., 1994). The 

Australian Radiation Laboratory (ARL) has been involved in the measurement of solar 

ultraviolet radiation since the early 1980's (Gies et al., 1994). In the late 1980's, a New 

Zealand-wide network of filter instruments (International Light Inc.) was established 

(McKenzie et al., 1993). This ultraviolet radiation programme was initiated by the 

National Institute of Water and Atmospheric Research (NIWA). In South America, 

there exists a network for monitoring the solar ultraviolet-B radiation. The network 

stations are located at Punta Arenas (Chile) (Kirchhoff et al., 1997a), La Paz (Bolivia) 

(Andrade et al., 1997) and Natal (Brazil) (Kirchhoff et al., 1997b). In the polar regions, 

the National Science Foundation of America has installed a network for UV-B 

measurements in 1988. Presently it includes three stations in Antarctica (South Pole, 

McMurdo and Palmer), one at Ushuaia (Argentina) and one in Alaska (Barrow) (Diaz 

et al., 1997). 

 

Many countries in Asia have also started monitoring of solar ultraviolet radiation. Japan 

Meteorological Agency (JMA) started routine observations of solar spectral ultraviolet 

irradiance at Tsukuba since 1 January 1990 and at Sapporo, Kagoshima and Naha since 

1 January 1991 (Ito et al., 1994). China have been conducting UV-B measurements at 

Mt. Waliguan (36.387o N, 100.898o E) since 1991 (Song et al., 1994). UV-B 

measurements in India were initiated around 1980 at the National Physical Laboratory 

(NPL), New Delhi and the Centre for Earth Sciences Studies (CESS) (Subbaraya, 

1994). The magnitude of erythemal UV radiation levels measured at some of these sites 

are tabulated in Table 4.4. It is obvious that surface level UV radiation decrease with 

latitude. However, for similar latitudes, UV radiation levels increase with altitude. 

 



 

In Malaysia, the Malaysian Meteorological Services (MMS) have been monitoring 

solar UV radiation since 1995 using a Brewer spectrometer. However, no papers have 

been published by MMS on this subject matter. At Universiti Sains Malaysia 

measurements of ground level solar ultraviolet radiation have been undertaken since 

1978 (Ilyas and Appandi, 1979; Ilyas and Barton, 1983; Ilyas et al., 1988; Ilyas, 1992; 

Ilyas, 1993). In these previous studies, it was found that the global UV radiation is very 

high and that cloud cover is the dominant factor affecting the surface level radiation. 

But the lack of supporting in situ measurements of other meteorological parameters 

limited the discussions. The data could not be compared with other sites because 

calibration procedures were not discussed extensively in the reports produced. There 

were no measurements of surface level UV-B and diffuse solar radiation in the previous 

studies. However this study is the first comprehensive and integrated study over a time 

period of solar UV-B radiation in Malaysia. 

 

1.4 Research Objectives 

 

The objectives of this research are: 

(a) to produce good quality data of surface level solar ultraviolet-B radiation at 

Penang under well controlled parameters, and monitor solar ultraviolet-A, total 

global and total scattered radiation to provide reference information on solar 

radiation climatology, 

(b) to determine bench marks for solar UV-B and total global radiation at Penang so 

that it can be used for trend and/or impact studies in the future and in the design 

of solar energy applications, 

(c) to analyse the data obtained to interprete diurnal and seasonal variations, 



 

(d) to investigate the effects of ozone and other relevant meteorological parameters 

on the surface level UV-B radiation levels in an equatorial environment, and 

(e)  to develop a mathematical model to estimate surface level solar UV-B irradiance 

for the equatorial /tropical regions using the Penang data as a case study. 

 

1.5 Thesis Overview 

 

This thesis consists of six chapters. A brief description of the literature survey on solar 

ultraviolet radiation is presented in Chapter 1. The research materials and methodology 

used is presented in Chapter 2. Besides detailed descriptions on installation, 

maintenance, and data retrieval and storage procedures, the various steps taken to 

calibrate the instruments have also been explained. Chapter 3 consists of results and 

discussions on global and scattered radiation, and UV-A radiation. An empirical model 

for the global solar radiation have also been developed. 

 

Chapter 4 details the data analysis procedures, UV-B radiation observational results and 

the effect of some major UV-B attenuating factors on the surface level UV-B radiation 

are discussed. For practical consideration, the basic UV-B irradiance has also been 

related to erythemal UV-B dosage for some discussions. In Chapter 5, a mathematical 

model is developed to estimate the surface level UV-B radiation at Penang. Chapter 6 

concludes this thesis with a summary of the findings followed by recommendations for 

future research in this challenging field. 



Chapter 2 : Experimental 

 

A series of photometers have been used for studying the solar ultraviolet and total 

radiation. In this chapter, the details of various techniques available and the types of 

instruments used to measure the various solar radiation component fluxes reaching the 

surface level are discussed. Their principle of operation and optical characterization, 

installation, maintenance and data retrieval procedures used, together with method of 

calibration and sources of errors are briefly presented. 

 

2.1 Introduction 

 

The two main spectral bands of solar radiation received at the earth's surface are the 

short-wave  ultraviolet (UV) and visible radiation. These radiation components are 

received both directly from the sun and from scattering in the clouds and atmosphere. 

Of particular interest is the UV portion of the solar radiation because of its negative 

effects on humans, terrestrial and aquatic ecosystems, and air quality (see section 1.2). 

The direct and diffuse irradiance from the upward hemisphere is measured using a 

pyranometer. 

 

Generally, the accuracy of solar radiation measuring instruments depend on: 

(i) instrument's sensitivity, stability, linearity, spectral response and response time; 

(ii) change in response due to variation in ambient temperature, effect of auxiliary 

equipment, the directional response of the sensor on the elevation (cosine effect), 



(iii) azimuth of the sun (azimuth effect) and the effect of inclination of the pyranometer 

(Iqbal, 1983). 

 

The main problems in obtaining reliable solar radiation climatology measurements 

include (Iqbal, 1983): 

♦ ambiguities in detector construction which fairly represents the sensitivity of 

different biological and chemical targets, 

♦ difficulties of maintaining accurate field instrument calibrations over a period of 

many years, and 

♦ the absence of a baseline, long-term historical solar radiation record. 

 

Solar radiation measuring instrument detectors can be classified as calorimetric, 

thermomechanical, thermoelectric, or photoelectric (Iqbal, 1983). 

♦ In the calorimetric instrument, the radiant energy is incident on a high-conducting 

metal with a nonselective black paint of high absorptance. The radiant energy is 

converted into heat that can be measured by a variety of means. 

♦ In the instruments based on the thermomechanical principle, the radiant flux is 

measured through bending of a bimetallic strip. 

♦ A thermoelectric device consists of two dissimilar metallic wires with their ends 

connected. An electromagnetic force (e.m.f.) is developed when the two junctions 

are at different temperatures. 

♦ In the photoelectric sensors, a semiconductor p-n junction is used. When radiation 

at an energy level capable of ionizing the atoms is incident on the p-n junction, an 

electrical current arises from the continuous movement of excess electrons and 



holes. This kind of detectors are lower in cost but have faster response times for 

instantaneous measurements. 

 

Ground-based instruments measuring solar radiation components can be divided into 

three types (WMO, 1999): 

(i) Broadband instruments 

 -  the spectral response of these instruments matches that of a particular action 

spectrum. The main attractive feature of these instruments are its low cost and 

rapidity of measurements. Broadband meters provide an important source of 

information over wide geographic areas and over long time periods. 

(ii) Multi-channel medium-spectral-resolution instruments 

 -  the main advantage of these filter instruments are their ability to make nearly 

simultaneous measurements at many wavelengths. Therefore, they can be very 

useful for separating cloud and aerosol effects from ozone effects. 

(iii) high-resolution spectrometers 

 - there are two types, namely filter and grating instruments. Their increased cost 

and maintenance is offset by the wealth of spectral detail available and their 

ability to independently determine ozone and aerosol amounts, and to estimate 

the extraterrestrial UV flux. 

 

However in recent years, the role of satellites in measurements of surface level solar 

radiation, especially UV climatology is gaining wide acceptance. Frederick and Lubin 

(1988) have demonstrated that satellite measurements of atmospheric ozone and cloud 

reflectance may be used in conjunction with radiative transfer theory to compute the 



budget of UV radiation in the Earth-atmosphere system. But such application will still 

need surface level data for validation. 

 

2.2 Types of Radiation Instruments Used 

 

In the present study, basically three different types of instruments were used for 

obtaining the solar radiation data. They are UVB-1 Pyranometer, Eppley UV 

Photometer and the CM 11 Pyranometer. The instrumentation utilized to measure the 

various solar radiation components in this study measures the radiation incident on a 

plane horizontal surface. 

 

2.2.1 Solar UV-B Radiation 

 

The solar UV-B radiation was measured using a Model UVB-1 Ultraviolet 

Pyranometer (Figure 2.1a) (the manufacturers are Yankee Environmental System, Inc.). 

The UVB-1 Pyranometer measures the power per unit area of UV-B radiation received 

by a horizontal surface from the entire hemisphere of the sky (global solar UV-B 

irradiance). It is a broadband UV-B detector with a spectral response range of 280 to 

330 nm. The cosine response of the instrument is ±5% for 0 - 60 degree solar zenith 

angle, and a response time of 0.1 second. It's sensitivity is 1.97 Volt/(Watt/m2) of 

effective UV-B irradiance. 

 

 

 



(a) Principle of Operation 

The operation principle of the instrument is shown in Figure 2.2 (Dichter et al., 1993). 

The measurement technique employed in the instrument utilizes colored glass filters 

and a UV-B sensitive phosphor to block all of the sun's visible light and convert the 

UV-B light into visible (green) light. The resulting green light is in turn measured by a 

solid state detector (photodiode). A two-stage amplifier circuit then converts the 

photodiode output current into a useable output voltage span (0-5 Vdc). The 

performance of the detector and phosphor are temperature dependent. They are 

therefore equipped with an internal temperature control system to maintain them at a 

fixed temperature. The instrument had been calibrated in the factory. 

 

(b) Model UVB-1 Characterization 

The instrument have been characterized using the calibration theory proposed by 

Grainger, Basher and McKenzie (1993). Comparisons of the spectral response of the 

instrument with the Parrish and CIE erythemal action spectra is shown in Figure 2.3. It 

can be seen that the spectral response is very similar to the International Commission of 

Illumination (CIE) human erythemal action spectra (Dichter et al., 1993). 

 

(c) Instrument Calibration Constant 

A plot of UVB-1 instrument readings against the concurrently measured integrated 

spectral data is shown in Figure 2.4. The gradient of the linear regression line fitted to 

the points gives the calibration constant, K which has the value 1.968 ± 0.011 V W-1 

m2. After correction for the 5% uncertainty of the spectral irradiance measurement, the 

best value for K is 1.97 ± 0.16 V W-1 m2. 



To convert the instrument output signal (in volts) to the irradiance of interest (total UV-

B or erythemal, in W m-2), the signal voltage is multiplied by a conversion factor 

provided by the manufacturer (Yankee Environmental Systems, 1991). The conversion 

factor is just the ratio of the energy measured by a detector with an ideal cosine and 

spectral response to the energy measured by the UVB-1 instrument. The conversion 

factors, which are relative to the value at solar zenith angle of 30o, are tabulated in 

Table 2.1 (The calibration angle to force the cosine error to be zero is 30o). The relative 

correction factor as a function of the solar zenith angle for the different types of 

irradiance is shown in Figure 2.5. 

 

2.2.2 Solar UV-A Radiation 

 

The solar UV-A radiation was measured using a TUVR Eppley ultraviolet photometer 

(serial number : 28289) (Figure 2.1b). The spectral range of this instrument is 295-385 

nm. This photometer is widely used to monitor solar ultraviolet irradiance and has been 

extensively described (Drummond and Wade, 1969; Coulson, 1975). These authors 

have found that the instrument response is centered between 340 nm and 370 nm, and 

that ranges of 380-390 nm and 390-400 nm contribute only minor amounts to the total 

radiometer output, while significantly contributing to UV-A irradiance. 

 

(a) Principle of Operation 

The main component of the photometer are a Weston selenium barrier-layer 

photoelectric cell with a sealed-in quartz window, a bandpass filter and a Teflon 

diffuser disc. The bandpass filter serves to restrict the wavelength response of the 



photocell, which is 295 - 385 nm. The Teflon disc fulfills two different functions: (i) it 

reduces the light intensity incident on the photocell, prolonging its stability; (ii) it 

improves the instrument response towards the cosines law that introduces errors lower 

than 2 per cent for solar altitudes higher than 10o. 

 

(b) Model TUVR Characterization 

The instrument was factory calibrated in its completely assembled form by comparison 

with an Eppley standard. The calibration constant is 191 μV per W m-2. Linearity test 

on the photometer shows that the incident radiation varies linearly with the photometer 

output to better than ±2% over a range of 90o - 10o solar elevation. The spectral 

response of the photometer was determined in the factory using narrow bandpass filters 

and a non-wavelength selective detector (Figure 2.6). Temperature dependence testing 

has shown that the instrument exhibits a temperature coefficient of -0.2% per degree 

Celcius with 25 oC as reference point between -20 to +40 oC (The Eppley Laboratory, 

Inc.). In these conditions Mehos et al. (1991) and Riordan et al. (1990) have 

established that errors associated with the experimental data are less than 15 per cent, 

which is not in accordance with the expectation of the manufacturer (5%). 

 

2.2.3 Global Solar Radiation 

 

The pyranometer CM 11 was used to measure the total global radiation (Figure 2.1c). 

This instrument measures the solar irradiance from the direct solar radiation and from 

the diffuse radiation incident on a plane surface from the hemisphere above. It has a 

spectral response with 95% points over 335-2200 nm and 50% points over the 



wavelength range 305-2800 nm. The instrument sensitivity is between 4 and 6 μV per 

W m-2, with a response time of between 4 s (63% response) and 24 s (99% response). 

The cosine response of the instrument is maximum ±1% deviation from ideal at 60o 

sun's zenith angle, and maximum ±3% from ideal at 80o sun's zenith angle. 

 

(a) Construction and Physical Principles 

The pyranometer has a sensor with 100 thermocouples imprinted on it to form a 

thermopile. When the pyranometer is illuminated, the radiant energy is absorbed by the 

sensor and the generated heat then flows radially through a thermal resistance to the 

heatsink (the pyranometer body). The temperature difference across the thermal 

resistance of the disk is converted into a voltage. The spectral range of the pyranometer 

is limited by the transmission of the glass domes. 

 

(b) Characterization 

The sensitivity value of the pyranometer was determined in the manufacturer’s 

laboratory by comparison against a standard pyranometer at an ambient temperature of 

20 oC. It is dependent on the temperature, level of irradiance, vector of incidence, 

directional response, spectral selectivity and zero offset (Kipp & Zonen Instruction 

Manual, 1991). However, being classified as a secondary standard instrument by the 

World Meteorological Organization (WMO), the maximum errors in the hourly 

radiation totals is 3%, and for the daily total it is 2%. The sensitivity variation of the 

pyranometer with irradiance is shown in Appendix A (Figure 1). The temperature 

dependence of the sensitivity is an individual function. For a given CM 11 the curve is 

somewhere in the shaded region of Appendix A (Figure 2). 



 

2.2.4 Diffuse Global Radiation 

 

A CM 11 pyranometer mounted with a shadow ring stand (CM 121) was used to 

measure the downward diffused solar radiation received on a horizontal surface from 

the forward front hemisphere. The purpose of the shadow ring is to block the direct 

radiation of the sun throughout the day without the need for readjustment. Operating 

instructions and a list of the correction factors for uniform sky conditions and a view 

angle of 10.6o is given in the Kipp & Zonen Instruction Manual for Pyranometer with 

Shadow Ring. 

 

2.3 Instrument Activation 

 

The solar radiation measuring instruments were mounted on a raised platform on the 

tower block (Figure 2.7) at the Astronomy and Atmospheric Science Research Unit 

Building at Universiti Sains Malaysia Main Campus, Penang (5.34o N, 100.30o E, 

altitude: 50 m above sea level). The platform is free of shadow causing obstructions at 

all time and is 20m above the ground and 5 m above the building's roof. A summary of 

the instruments used and their startup and calibration schedule is shown in Table 2-2. 

Efforts to measure solar radiation and other related meteorological parameters at Pantai 

Acheh (a small rural town on the west of Penang Island) was initiated in January 1997. 

Unfortunately, due to logistics and frequent electrical supply breakdown problems, the 

exercise was terminated towards the end of 1997. Data obtained during the 

measurement period was little and irregular with frequent breaks in the series. Thus, the 



data obtained is not used in the analysis. Another factor which prompted the 

discontinuation was the disclosure by the former Director of the Malaysian 

Meteorological Services, Dr. Lim Joo Tick that the Pantai Acheh site can not be 

classified as a clean air environment due to its proximity and fast transport of pollution 

(antropogenic trace gases and other aerosol particles) from the Georgetown city and its 

surrounding industrial hubs towards the site. 

 

(a) Laboratory Checkout 

Before the photometers were installed on the radiation platform tower, they were 

checked in the laboratory. In the absence of UV-B radiation indoors, the UVB-1 

instrument reads zero. Next, light from an incandescent lamp (Philips, 60 W frosted) 

was incident on the sensor to verify that it is not sensitive to visible light. The 

instrument was then brought outdoors to be exposed to direct sunlight. The instrument 

showed a reading which was then compared to calculated values using the UV-CALC 

software package (UV-CALC Instruction Manual, 1991). A similar check was also 

carried out for the Eppley ultraviolet photometer (UV-A). 

 

(b) Field Installation 

The radiation photometer mounting bench is made of wood laminated with aluminium 

sheets and mounted on top of the metal platform block. The separation of each of the 

photometer is more than one meter. The instruments were connected to a datalogger 

placed in a laboratory at the Unit's building using pre-wired waterproof connecters and 

shielded electrical cables. The length of each cable is 35 meters and the impedance 

level is within acceptable limit. 



 

(c) Data Logging System 

The YESDAS-1 data logger (Yankee Environmental Systems, Inc.) was used for data 

acquisition and logging. This data logger can collect, store and display data from six 

different sensors. The sensor signal cables are connected to the YESDAS-1 hardware 

box placed in the laboratory. The datalogger is then connected to a personal computer's 

(PC) serial port using a four conductor cable. 

 

The datalogging operations and data retrieval is controlled by the Datalogger Support 

Program (DSP-1) which resides and runs on the PC. To begin collecting data, the 

required data acquisition parameters (sensor sampling time, data recording interval and 

calibration constants) are keyed in. The YESDAS-1 system then autonomously collects 

and stores data. The sensor data is retrieved fortnightly or monthly and stored in ASCII 

files on the PC hard disk for data processing. 

 

2.4 Instrument Maintenance and Data Acquisition 

 

To obtain quality data, the following routine procedures for maintenance was 

undertaken. 

(i) The photometer sensor domes were cleaned on a regular basis to prevent soiling. 

A soft cotton cloth cleansed with etanol was used to wipe the domes. 

(ii) The pyranometer's correctness of level is maintained by ensuring that the bubble 

of the spirit level is within the ring. 

(iii) The humidity indicators on the instruments are checked for discolouration. 



(iv) The connectors and associated cables are firmly secured to minimize spurious 

response during inclement weather. They are also inspected regularly for physical 

damages or general deteriorations. 

 

The setup used for the YESDAS-1 data logger is shown in Figure 2.8. Using the 

operating software (provided by the manufacturer) the instruments readings are 

sampled every 60 seconds, their signals digitized and placed in temporary storage in the 

datalogger. At the end of every 30 minutes, the sampled instrument readings are 

averaged and converted to usable units. This data is then stored in the datalogger 

memory. Data acquisition commences automatically each day at 0600 hours (slightly 

before sunrise) and ends at 2000 hours (slightly after sunset) local time. 

 

The stored data is generally retrieved fortnightly or monthly by the user using the DSP-

1 software program available with the system. The DSP-1 program is used to write the 

binary format data from the logger to a disk file. The binary format data files are then 

converted to ASCII data files using the Program Utilities function so that it can be 

imported into spreadsheet and graphic programmes easily for further data analysis and 

usage. 

 

 

 

2.5 Calibration and Stability of the Photometers 

 

(i) UV-B Radiation 



Data acquisition for UV-B was started in April 1994. Calibration of the UVB-1 

instrument was done at half-yearly intervals on clear days using a reference unit (Serial 

Number: 930405). The days chosen were such that the solar declination was similar. At 

the time of installation, the difference between the instrument and the reference unit 

was 1.8%. Photometric stability of the instrument for the first two years was very good. 

The difference between the measurement unit and the reference unit came up to only 

2.1% at the end of 1994 (Table 2.3a). This difference increased slightly to 3.8% at the 

end of 1995. Thereafter, degradation quickened. The following procedure was then 

used to correct the measured readings. 

(a) The data for the reference unit was normalized to the measurement unit using 

the formula: 

 Normalized reference data   =   Reference data  x  (10.746/10.943)   (2.1) 

(b) The calibration factor, k was computed by determining the ratio of the 

normalized reference unit data to that of the measurement unit data. 

(c) A correction formula was derived using the computed calibration factors 

(Figure 2.9). Least squares was used to fit the data points to a second order 

polynomial from day 376 onwards (Draper and Smith, 1981) and the following 

expression was obtained: 

f(x) =  b(0) + b(1)x + b(2)x2        (2.2) 

where, 

b(0) = 1.2363258503 

b(1) = -1.2146400569 x 10-3 

b(2) = 1.9566490432 x 10-6 



The excellent closeness of fit can be seen from the coefficient of determination 

(r2 = 0.994). 

(d) The measured irradiance (Im) was then corrected for instrument degradation 

using the correction formula derived in (c): 

 I  =  k Im          (2.3) 

where k is the calibration factor, and I is the degradation corrected UV-B 

irradiance. 

 

To ascertain the stability of the reference unit, comparison of measurements were done 

for similar solar declination angles. The differences were always less than 2%. This 

implies that the reference unit was stable throughout the calibration period. 

 

For the purpose of practical consideration, the basic UV-B irradiance data is then 

related to erythemal UV-B dosage for the McKinlay-Diffey (1987) spectrum. This 

would allow us to evaluate the degree of danger to human health due to UV-B radiation 

as well as comparisons with measurements made at other locations which are generally 

presented in erythemal dosages (refer to section 4.3). 

 

A direct inter-conversion has been established between the UV-B irradiance and 

erythemal dosage with the help of calibration information given by the manufacturer as 

follows: 

Effective UV-B irradiance = 0.5076 W m-2  x  signal in volts    (2.4) 

Erythemal dosage = 0.141 W m-2  x  signal in volts    (2.5) 

Hence for the same signal, 



 

0.27778
0.5076
0.141

irradianceUVBEffective
dosageErythemal

==  (2.6)

 

For zenith angles smaller than 65o, the accuracy of the calibration factor is within 4% 

(refer to Instruction Manual). Bodhaine et al. (1998) have shown that the calibration of 

the instrument depends strongly on total ozone for smaller solar zenith angles (sza) (< 

65o) and also a strong sza dependence at larger sza's. According to the manufacturer, 

the Model UVB-1 pyranometer was subjected to three types of absolute calibration, 

details of which are given in the Instruction Manual. The absolute calibration was done 

at the factory for total ozone values of about 322 Dobson Units (DU). The mean daily 

total ozone for 1994 as measured by the Total Ozone Mapping Spectrometer (TOMS) 

on the satellite Meteor-3 is 256 DU for Petaling Jaya (Malaysia) (3.10o N, 101.65o E), 

which is close enough to Penang. Measurements by Bodhaine et al. (1997) at Mauna 

Loa (Hawaii) with a Yankee UVB-1 broadband pyranometer (similar to the unit used in 

present study) suggest that the calibration as provided by the manufacturer was within 

about 3% of spectroradiometer measurements for effective UV-B irradiance. Errors as 

high as 10% can occur if the effects of total ozone are not taken into account in the 

calibration of the instrument (Bodhaine et al., 1998). Using the calibration factors 

worked out by Bodhaine et al. (1998) for various values of solar zenith angles and total 

column ozone (data used is from TOMS), it was found that the error due to changes in 

total ozone at Penang was less than 3%. This error is expected to remain small 

throughout the year due to the small seasonal variability in total ozone at low latitudes. 

The  spectral error of the instrument will change with the solar zenith angle. This is due 



to the change of the UV portion of the solar spectrum with zenith angle at the earth's 

surface. However, this error is not expected to be more than 2% for effective UV-B 

irradiance and 4% for erythemal irradiance (Dichter et al., 1993). 

 

(ii) UV-A Radiation 

The Eppley UV photometers used in this research has been factory calibrated using an 

NBS standard tungsten-iodine calibration lamp. Further information on the method 

used can be found in a paper by Ångstrom and Drummond (1962). Since the 

Calibration Report for the TUVR Eppley UV photometer with Serial Number 28671 

(reference unit) was not available, the same sensitivity value as the TUVR Eppley UV 

photometer with Serial Number 28289 was applied. The output of the UV-A instrument 

is in millivolts, with calibration of 0.191 mV equal to 1 W m-2. Using a plot of the half-

hourly irradiance during similar solar declination (September 1994 and March 1999) 

the sensitivity of the Reference UV-A unit over the 1994-1999 period was found to be 

stable (Figure 2.10). 

 

Although the measurement unit's sensitivity degradation was rapid between 1994-1999, 

however the instrument's sensitivity became quite stable after that period. The stability 

problem of the measurement unit could be due to the opaque quartz diffusing disc 

whose function is to increase the stability of the instrument with exposure time. Due to 

insufficient intermediate sensitivity checks during this period of rapid degradation, the 

measurement unit was recalibrated in March 1999 (Table 2.3b). A new series of 

measurement was commenced to obtain quality data. During the second series of 

measurements, stability checks against the reference unit were carried out on a 


	COVER
	page-ii
	page-iii
	LIST OF TABLES
	LIST OF FIGURES
	NOMENCLATURE
	Terminology
	ABSTRAK
	ABSTRACT
	Chapter1
	Chapter2



