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PROSEDUR STATISTIK TEGUH  BAGI PENGUJIAN KESAMAAN 
PARAMETER KECENDERUNGAN MEMUSAT UNTUK 

 TABURAN TERPENCONG 
 

ABSTRAK 

 

Kajian ini menyelidik kesan ralat Jenis I dan kuasa keatas dua jenis kaedah teguh. 

Kaedah pertama dikenali sebagai statistik S1 yang julung kalinya diselidik oleh Babu et 

al. (1999).  Kaedah ini menggunakan median sebagai sukatan kecenderungan memusat.  

Satu ciri menarik statistik S1 ialah data terpencong yang dikaji tidak memerlukan 

pemangkasan (trimming).  Kaedah kedua yang dicadangkan oleh Othman et al. (2004)  

dikenali sebagai statistik MOM-H.  Berbeza dengan statistik S1,  MOM-H akan 

memangkas (trim) sebarang nilai yang ekstrim dan tidak seperti min trim, statistik ini 

secara empirik akan menentukan jumlah pangkasan yang diperlukan dan dengan itu 

mengelakkan pangkasan yang tidak perlu.  Sukatan kecenderungan memusat untuk 

statistik ini ialah penganggar-M satu-langkah terubahsuai   seperti   yang dicadangkan 

oleh Wilcox dan Keselman (2003). Dalam kajian ini, kami telah mengubahsuai kedua-

dua kaedah statistik tersebut dengan menggabungkan beberapa penganggar skala teguh 

ke dalam statistik itu.  Kami mengenalpasti 4 penganggar skala teguh yang memiliki titik 

kegagalan yang tertinggi dan fungsi pengaruh yang terbatas seperti  yang ditetapkan oleh 

Rouesseuw dan Croux (1993) iaitu MADn, Qn, Sn, dan Tn.  Keempat-empat penganggar 

skala ini berfungsi secara berbeza dalam setiap kaedah yang dikaji.  Untuk statistik S1, 

penganggar tersebut menggantikan penganggar skala yang asal bagi membentuk prosedur 

S1 terubahsuai dan untuk statistik MOM-H, penganggar skala ini telah diguna sebagai 

kriteria pemangkasan (trimming criterion) yang berfungsi menentukan nilai-nilai sampel 



 

 xiii

untuk MOM. Untuk mengenalpasti keteguhan setiap prosedur, beberapa pembolehubah 

telah dimanipulasi untuk mewujudkan keadaan yang mampu mengutarakan kekuatan dan 

kelemahan semua ujian yang dibentuk bagi menentukan kesamaan pengukur 

kecenderungan memusat. Kesemua pembolehubah ini merangkumi jenis taburan, 

bilangan kumpulan, sampel bersaiz sama atau sebaliknya, kehomogenan varians dan sifat 

pasangan saiz sampel dan varians kumpulan.  Kajian ini adalah berdasarkan data simulasi 

dan disebabkan taburan pensampelan statistik S1 dan MOM-H sukar dirungkai, kami telah 

menggunakan kaedah bootstrap bagi menguji hipotesis kesamaan parameter 

kecenderungan memusat.  Prosedur terubahsuai ini secara lazim menjana kadar Ralat 

jenis I yang baik dan kadar kuasa yang sederhana. Gabungan skala penganggar Tn atau 

MADn  dengan kedua-dua kaedah statistik  menghasilkan prosedur teguh yang berpotensi 

dan mampu menangani  masalah pengujian kesamaan sukatan kecenderungan memusat 

terutamanya bagi taburan terpencong 

Katakunci : Statistik teguh, ralat Jenis I, kuasa, bootstrap, taburan terpencong, titik 
kegagalan 
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ROBUST STATISTICAL PROCEDURES FOR TESTING THE 
 EQUALITY OF CENTRAL TENDENCY PARAMETERS  

UNDER SKEWED DISTRIBUTIONS 
 

ABSTRACT 

 
This study examined the effect of Type I error and power on two types of robust 

methods.  The first method is known as the S1 statistic, which was first studied by 

Babu et al. (1999).  This statistic uses median as the central tendency measure.  An 

interesting characteristic of the S1 statistic is that the data needs no trimming when 

skewed.  The second method, proposed by Othman et al. (2004) is known as the 

MOM-H statistic.  In contrast to the S1 method, the MOM-H statistic will trim any 

extreme values, and unlike trimmed means, this statistic empirically determines the 

amount of trimming needed thus avoiding unnecessary trimming.  The central 

tendency measure for this statistic is the modified one-step M-estimator (MOM) 

proposed by Wilcox and Keselman (2003).  In this study, we modified the two 

statistical methods by incorporating some of the more robust scale estimators to these 

statistics.  We identified four robust scale estimators with highest breakdown point 

and bounded influence functions as ascertained by Rouesseuw and Croux (1993) i.e. 

MADn, Qn, Sn, and Tn.  These scale estimators functioned differently in each of the 

two statistical methods.  For the S1 statistic, the estimators replaced the default scale 

estimator to form modified S1 procedures, and for the MOM-H statistic, these scale 

estimators were used as the trimming criterion used to determine the sample values 

for modified one-step M-estimator (MOM).  To identify the sturdiness or robustness 

of each procedure, some variables were manipulated to create conditions which are 

known to highlight the strengths and weaknesses of tests designed to determine the 

central tendency measures equality. These variables encompassed the types of 
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distributions, number of groups, equal or unequal sample sizes, variance 

homogeneity, and nature of pairings of sample sizes and group variances.  This study 

was based on simulated data and since the sampling distributions of the S1 and MOM-

H statistics were intractable, we used the bootstrap method for testing the hypotheses 

of the equality of central tendency measures.  The modified procedures, generally, 

generated good Type I error control and moderate power rates.  The combinations of 

either Tn or MADn scale estimators with the two statistical methods produced 

promising robust procedures that are capable of addressing the problem of testing the 

equality of central tendency measures especially for skewed distributions. 

 

Keywords:  Robust statistics, Type I error, power, bootstrap, skewed distributions, 

breakdown point 
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CHAPTER 1 
  INTRODUCTION 

 
 
1.1 Introduction 
 
 

In recent years, numerous methods for locating treatment effects or testing the 

equality of central tendency (location) parameters by simultaneously controlling the Type 

I error and the power to detect treatment effects are being studied.   Progress has been 

made in terms of finding better methods for controlling the Type I error and the power of 

the test that detects treatment effects in one-way independent group designs (Babu et al., 

1999; Othman et al., 2004; Wilcox and Keselman, 2003).   Through a combination of 

impressive theoretical developments, more flexible statistical methods, and faster 

computers, serious practical problems that seemed insurmountable only a few years ago 

can now be addressed.   These developments are important to applied researchers because 

they greatly enhance the ability to discover true differences between groups while 

maximizing the chance of detecting a genuine positive effect. 

 

The parametric approach in testing the equality of the central tendency parameters 

continued to play a prominent role because of its capacity to comprehensively describe 

information contained in a data.  However, the good performance and valid application of 

the procedures require strict adherence to certain assumptions, which do not always 

operate as predicatively as assumed in the real world.  Some of the most common 

statistical procedures are extremely sensitive to these minor deviations from assumptions 

such as in the case of normality of distributions and homogeneity of variances.  As an 

example, when computing confidence intervals and testing hypothesis about means, the 
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methods are based on the assumption that observations are randomly sampled from 

normal distributions.  Another instance is when comparing independent groups; where 

the methods are also assume that groups have a common variance.  Currently, these 

methods form the backbone of most applied research that involves statistical 

methodology.  It is therefore desirable to construct methods of inference that do not 

depend on distributional and homoscedasticity (equal variances) assumptions for their 

validity.  

 

Consequently, nonparametric statistics emerged as a field of research and some of 

its methods become widely popular in applications. The basic principle was to make as 

few assumptions about the data as possible and still get the answer to a specific question.  

However, nonparametric procedures are more appropriate for data based on weak 

measurement scales.  Besides, procedures in the nonparametric are less powerful than the 

parametric and therefore, require a larger sample size to reject a false hypothesis.  In 

practice, it often happens that we need to robustly estimate central tendency and/or scale 

from small sample.  The sample size n is often constrained by the cost of an observation.  

In many experimental settings (e.g. in chemistry) one will typically repeat each 

measurement only a few times.  Even a small sample may contain aberrant values due to 

technical problems or measurement inaccuracies for example, and since the sample is 

small, getting rid off the aberrant values is very much avoidable.   
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1.2  Robust Statistics 

In view of all the aforementioned violations, an estimator that is stable and 

insensitive to all these violations is needed.  In other words, the estimator has to be 

robust.  In 1960’s,  Huber (1964) and  Hampel (1968) developed the theory of robustness 

that paved the way for finding practical solutions in statistics.  The theory of robustness 

developed was basically centered on parametric models.  That is whilst their methods 

recognized that the parametric model might not be the “true” model, but nevertheless 

made inferences about its parameters with robust and efficient methods.  Robustness 

signifies insensitivity to small deviations from the assumptions (Huber, 1981).   

 

Robust statistics combine the virtues of both, the parametric and the 

nonparametric approach.   In nonparametric inference, few assumptions are made 

regarding the distribution from which the observations are drawn.  In contrast, the 

approach in robust inference is different wherein there is a working assumption about the 

form of the distribution, but we are not entirely convinced that the assumption is true.  

Robustness theories can be viewed as stability theories of statistical inference.  What is 

desired is an inference procedure, which in some sense does almost as well as possible if 

the assumption is true, but does not perform much worse within a range of alternatives to 

the assumption.  The theories of robustness consider neighborhoods of parametric models 

and thus belong to parametric statistics.  A robust procedure usually adopts what might 

be called an “applied parametric viewpoint”, which according to Huber (1981) uses a 

parametric model.  This model is hopefully a good approximation to the true underlying 
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situation, but we cannot and do not assume that it is exactly correct.   Frequently in 

discussions of robustness, the assumed distribution (probability density function) is 

normal, therefore, the type of robustness of interest is “robustness to non-normality”.   

 

As mentioned by Wilcox and Keselman (2003) small departures from normality 

can substantially lower the power when comparing the means of two or more groups.   

Let us look at the example of analysis of variance (ANOVA), and the drawbacks of this 

method when assumptions are not met.  ANOVA is one of the most commonly used 

statistical methods for locating treatment effects in one-way independent group design.  

Generally, violating the assumptions associated with standard ANOVA method can 

seriously hamper the ability to detect true differences. Non-normality and 

heteroscedasticity are the two usual assumption violations detected in ANOVA.    In 

particular, when these problems occur at the same time, rates of Type I error are usually 

inflated, thus resulting in spurious rejections of the null hypotheses.   They can also 

substantially reduce the power of a test, resulting in treatment effects going undetected.  

Reduction in the power to detect differences between groups occurs because the usual 

population standard deviation (σ ) is very sensitive to outliers and will be greatly 

influenced by their presence.  Consequently, the standard error of the mean ( n2σ ) can 

become seriously inflated when the underlying distribution has heavy tails (Wilcox and 

Keselman, 2002).  Therefore, the standard error of the F statistics is larger than it should 

be and power accordingly will be depressed.  In order to achieve a good test, one needs to 

be able to control Type I error and power of test.  In other words, neither should power be 

lost nor Type I error be inflated.    
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In their efforts to control the Type I error and power rate, investigators looked 

into numerous robust methods since these methods generally are insensitive to 

assumptions about the overall nature of the data (e.g. Babu et al., 1999; Keselman et al., 

2004b; Kulinskaya, 2003; Luh and Guo, 1999; Othman et al., 2004).  Any small 

deviations from the model assumptions should only slightly impair the performance, for 

example, the level of a test should be close to the nominal value calculated at the model, 

and larger deviations from the model should not cause catastrophe.  Robust measures of 

central tendency such as trimmed means, medians or M-estimators (refer to Huber, 1981; 

Staudte and Sheather, 1990; Wilcox, 1997) have been considered as alternatives for the 

usual least squares estimator, i.e., the usual least squares means, in most research recently 

(e.g. Keselman et al., 2004b;  Luh and Guo, 1999; Wilcox et al., 1998;  Wilcox and 

Keselman, 2002). These measures of central tendency had been shown to have better 

control over Type I error and power to detect treatment effects (see e.g. Lix and 

Keselman, 1998; Othman et al., 2004; Wilcox, 1997; Yuen, 1974).  Yuen (1974) found 

these benefits in the two-group case of trimmed means and Lix and Keselman (1998) 

demonstrated similar results in the more than two-group problem.  Other investigators, 

e.g. Babu, et al. (1999) used median as the central tendency measure when dealing with 

skewed distribution and Wilcox and Keselman (2003) introduced a modified one-step M-

estimator (MOM) as the central tendency measure when testing for treatment effects. 

 

One might ask whether robust procedures are needed at all.  What about using the 

two step approach; 1) clean the data by using some outlier rejection rule, and 2) use 
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classical method to test the remainder of the data.  Will this suffice?   Unfortunately, the 

process is not as simple as that.  Huber (1981, p4) explained the reasons: 

“…a. It is rarely possible to separate two steps cleanly; for 

instance, in multi parameter regression problems outliers 

are difficult to recognize unless we have reliable, robust 

estimates for the parameters. 

 

b. Even if the original batch of observations consists of 

normal observations interspersed with some gross errors, 

the cleaned data will not be normal (there will be 

statistical errors of  both kinds, false rejections and false 

retentions), and the situation is even worse when the 

original batch was derived from a genuine non-normal 

distribution, instead of from a gross-error framework.  

Therefore the classical normal theory is not applicable to 

cleaned samples, and the actual performance of such a 

two step procedure may be more difficult to work out than 

that of a straight robust procedure. 

 

c. It is an empirical fact that the best rejection procedures 

do not quite reach the performance of the best robust 

procedures.  The latter apparently are superior because 
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they can make a smooth transition between full 

acceptance and full rejection of an observation…” 

 

To illustrate the usefulness of a robust method, consider the following example.   

In many glass samples, the concentration of a given compound SiO2 needed to be 

estimated.  For this purpose, 4 to 5 measurements were taken from each sample.  The 

usual concentration estimate is then the average of these 4 to 5 measurements.  However, 

this estimate can be way off due to the presence of extreme values.  For example, in one 

sample, the measured concentrations of SiO2 were 68.52, 68.23, 67.42, 68.94, and 68.34 

(in units of weight percent).  The usual average of these five values is 68.29, whereas 

their median is 68.34.   If the first measurement were wrongly recorded as 18.52 the 

average would become 58.29 (compared to 68.29), i.e. the average is strongly attracted 

by the extreme value.  On the other hand, the median becomes 68.23 (compared to 

68.34), indicating that the value is not much affected.  This usefulness of a robust method 

will be much more appreciated if the measurement process is computerized (i.e. the 

measurement instrument sends the data directly to the computer, which process it without 

human intervention).  

 

Among the latest procedures in robust statistics are S1 (Babu et al., 1999) and 

MOM-H (Othman et al., 2004).   These two procedures will be the main focus of this 

study, which will look at the problem of comparing central tendency measures for J 

groups with 

    JH θθθ === ...: 210 ,  
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 where jθ  is the central tendency parameter corresponding to distribution 

: 1, 2, . . . , .jF j J=    

 

1.3   S1 Statistic 

Babu et al. (1999) proposed a more flexible statistical method dealing with 

asymmetric distributions and heteroscedastic settings.    Known as the S1 statistic, this 

method is one of the latest procedures in assessing the effects of a treatment variable 

across groups.   S1 uses median as the central tendency measure and  is still the most 

widely known robust estimator of central tendency especially for skewed distribution.  

Characterized by the highest breakdown point (0.5), this estimator can withstand large 

proportions of very bad observations without breaking down completely.   In a finite 

sample, the breakdown point of an estimator is the smallest proportion of the 

observations that must be replaced by arbitrary values in order to force the estimator to 

produce values arbitrarily far from the parameter values that generated the original data 

(Donoho and Huber, 1983).   The finite sample breakdown point of an estimator is a 

measure of its resistance to contamination.  The classical estimator and test of central 

tendency measures based on an ideal parametric model are often distorted by a few 

extreme values in the data set because they have lower breakdown points (see Huber, 

1981).  For example, if the ith observation among the observations X1, … , Xn approach 

infinity, the sample mean gravitates to infinity as well.  This means that the sample 

breakdown point of the sample mean is only 1/n.  The breakdown point of the population 

mean, μ , is 0, which is 1/n as n approaches infinity.   The median has a breakdown point 
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of 50% (which is the highest possible), because the estimate remains bounded when 

fewer than 50% of the data points are replaced by arbitrary numbers.   

 

When using the S1 statistic, one can work with the original data without having to 

transform or trim the data to achieve symmetry.  Simple transformations may fail to deal 

effectively with extreme values and heavy tailed distributions. Moreover, an ill-

considered transformation can do more harm than good in terms of results 

interpretability.  Even the popular strategy of taking logarithms of all the observations 

does not necessarily reduce problems due to the existence of extreme values (Wilcox, 

1997).    

 

1.4   MOM-H Statistic 

One more strategy when dealing with extreme values is trimming.  There are two 

approaches of trimming: (1) trimming a predetermined amount and then computing θ̂ ,  

(2) empirically determine the amount of trimming, trim, and then computing θ̂ .  

Trimming needs to be done carefully to avoid the loss of information during the process.   

For example when sampling from a light tailed distribution, it might be desirable to trim 

very few observations, or if sampling is from a normal distribution, trimming might not 

be needed at all.  For a right skewed distribution, a natural reaction is to trim more 

observations from the right versus the left tail of the empirical distribution.  In essence, 

this is what the modified one-step M-estimator  (MOM) does. 
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When using trimmed means, the strategy for reducing the effects of the tails of a 

distribution is by simply removing them based on the predetermined amount.  By using 

this method of trimming, even observations from a normal distribution will be trimmed 

according to the predetermined amount such as 10% or 20% on both tails, whereas 

observations from a normal distribution need no trimming at all.   Furthermore, the 

trimmed mean has a breakdown point just as much as the percentage of trimmings and 

this indicates that trimmed mean is not so robust, and cannot withstand large proportions 

of extreme values.   

 

Wilcox and Keselman (2003) introduced the latest version of the M-estimator 

known as modified one-step M-estimator or MOM.  The MOM estimator is calculated 

using data left from empirically determined trimming, and this estimator competes well 

with methods based on trimmed means in terms of both power and control over the 

probability of a Type I error.   Like the sample median, the sample MOM estimator is a 

robust central tendency estimator that possesses highest breakdown point.  Othman et al. 

(2004) used MOM as the central tendency measure in their work on the H statistic.  

Denoted as MOM-H, this statistic was shown to have the ability to control the Type I 

error at a nominal level in testing the equality of central tendency measures. 

 

1.5   Scale Estimators  

Based on Hall and Sheather’s (1988) work on sample medians, Othman et al. 

(2004) noted that the standard errors of the sample medians in the S1 statistic can be 

replaced by asymptotic variances.    However their findings showed that the method does 
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not result in better Type I error control.   Syed Yahaya et al. (2004a, 2004b) identified 

four scale estimators, namely Qn, Sn, Tn and the popular robust scale estimator, MADn, 

with highest breakdown point and bounded influence function that were capable of 

maintaining the robustness of the S1 statistic.  Using these scale estimators to substitute 

the standard errors of the sample medians, ω̂ , in the S1 statistics, they observed that the 

combination of S1 with these scale estimators produced good Type I error.  The first three 

aforementioned scale estimators were introduced by Rousseeuw and Croux (1993) and 

each of them possess simple and explicit formula that guarantees uniqueness.  In fact, the 

combination of the S1 method with scale estimator Tn as examined by Syed Yahaya et 

al.(2004a, 2004b) showed it to be a very promising procedure in robust statistics.    

 

Considering the good performance in controlling Type I error rates, these four 

scale estimators were selected for use on the S1 statistic under a more skewed distribution 

in this study.  These highly robust scale estimators; Qn, Sn, Tn and MADn were also 

incorporated in the MOM-H procedure for the same purpose, i.e. to test the equality of 

central tendency measures.  However, instead of being the scale estimators for the 

statistic, these scale estimators are used as the criterion for choosing sample values 

(trimming criterion) for MOM. 

 

The combinations of the two robust test statistics with the highly robust scale 

estimators generated certain new procedures known as the modified S1 and MOM-H.  

These modified procedures were then examined for their Type I error and power rates.   

With these modifications, new robust statistical procedures that can hopefully address the 
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issues of non-normality and variance heterogeneity when dealing with comparisons of 

central tendency measures are expected to be generated.  Similar to results obtained in 

previous research on these two statistics, we have no doubt that this study will produce 

results that are as good if not better in terms of Type I error and power rates. 

 

There is no perfect method in statistics and the same applies to robust methods.  

However, they offer a substantial improvement over standard techniques which have to 

comply with rigid assumptions.  Besides, these methods (robust) can improve the 

performance of a test in terms of Type I error and power.  For instance when comparing 

two or more groups, the significant differences reported in applied journals in all actuality 

may reflect a true difference, but many non-significant differences would have been 

significant if only the investigator had used a robust method. 

 

1.6 Objective of the Study 

 The goal of this study is to search for alternative methods in testing for the 

equality of central tendency measures by simultaneously controlling Type I error and 

improving power rates in the one-way independent group design under skewed 

distributions.  In achieving this goal, the following objectives need to be accomplished,  

(a) To modify two of the latest methods in robust statistics i.e. S1 and MOM-H by 

integrating some of the most robust scale estimators to these methods. 

(b) To evaluate the modified methods using simulation data. 

(c) To compare the modified with the original methods in terms of Type I error and 

power rates. 
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(d) To determine the best methods. 

  

1.7 Significance of the Study 

This study will contribute towards knowledge development in experimental 

design methodology especially in the experimental sciences.  Statisticians are aware that 

experimental design methodology depends on assumptions of normality and treatment 

groups having equal variances.  However, in the real world, data are not always normally 

distributed.  The benefit of this research is that with these new alternative methods, 

researchers (in various fields, especially the experimental sciences) will not be 

constrained with all the assumptions such as normality and homogeneity of variances.  

They can instead work with the original data without having to worry about the shape of 

the distributions. 

 

1.8 Organization of the Thesis 

In this current chapter, we have reviewed the importance of robust methods and 

briefly introduced the latest methods in robust estimation, namely the S1 and MOM-H 

statistics.   The detail of these methods and the suggested scale estimators, and their 

underlying theories will be reviewed in Chapter 2.   The definitions of some important 

terminologies such as Type I error, power of a test, breakdown point, influence function 

and percentile bootstrap will also be explained in Chapter 2 which would also review 

some of the past and contemporary research on robust statistics.   Chapter 3 describes 

how the empirical investigation was conducted.  The discussion in this chapter 

encompasses the selection of the conditions being investigated, followed by data 
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generation, with focus on the transformation of skewed distributions from the standard 

normal.  There is a section on power analysis that focuses on the pattern of separation of 

the central tendency measures in the setting of the alternative hypotheses.   The results 

from the analyses of Type I error and power are presented in Chapter 4.  Finally, we end 

the thesis with conclusion and suggestions for further studies in Chapter 5. 
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CHAPTER 2 
LITERATURE SURVEY 

 
 
2.1 Introduction 
 

In testing central tendency (location) measures for two or more groups, the 

classical methods such as the Student’s two-sample t-test and the ANOVA are among the 

most commonly used statistical methods in the one-way independent group design.  

However,  these methods are adversely affected by non-normality, particularly when 

variances are heterogenous and group sizes are unequal (Lix and Keselman, 1998).  

Violating the assumptions associated with these methods will cause the Type I error and 

power rates to be disrupted.  The Type I error rates will be inflated from the nominal 

value and power rates can be substantially reduced from the theoretical value.  These 

liberal values of Type I error rates will subsequently result in spurious rejections of the 

null hypotheses while low power rates will result in differences going undetected.   Even 

though it is well established that the conventional ANOVA for comparing means is not 

robust if the homogeneity assumption does not hold (Wilcox et al., 1986), the F-test in 

ANOVA, for example, is often employed in statistical practice even when the data 

suggest that population variances are unequal (Kulinskaya et al., 2003).  It is also well 

known that a slight departure from normality has a great effect on power for the methods 

mentioned (Sawilowsky and Blair, 1992; Wilcox, 1995).  The sensitivity of t-test towards 

the violation of normality was illustrated by Wilcox (1995) on contaminated normal 

distribution where 10 percent of the observations came from a normal population having 

variance 10, rather than 1.  When switching from standard normal to contaminated 

normal, the power is reduced from 0.975 to 0.28!   However, consequences of the effects 
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of these violations for test statistics are hard to gauge, and are thus important issues that 

need further investigation.   

 

In the effort to overcome the sensitivity of these procedures to the violations of 

the assumptions, researchers in this area have sought to find alternative methods.   

Cochran (1937) suggested weighting the terms in the sum of squares explained by the 

respective inverses of the sample variances, and he provided a chi-square test for equal 

means based on a transformation of the F-test for ANOVA.  However in this case, the 

design has to be balanced.  For unbalanced design, James (1951) and Welch (1951) had 

suggested weighting the terms in the sum of squares explained by estimates of the 

inverses of the variances of the respective sample means.  This weighted sum of squares 

has an approximate chi-square distribution under the null hypotheses of equal population 

means for large sample sizes.  Even if the problem of unequal variances could be 

overcome, the assumption of normality will always be associated with ANOVA.  Even 

though ANOVA is known to be robust to small deviations from normality, to what extent 

can this method hold is unknown as there is no exact measurement of the violation or 

deviation from normality that we can base on, unless the sample size is big enough to 

guarantee the normality of sample means.   This problem is common in the experimental 

sciences where measurements are typically repeated only a few times thus yielding small 

sample sizes, which of course will violate the normality assumption.  Any violations, be 

it the non-normality or heterocedasticity, will always have some impact on the result of 

the ANOVA as well as the t-test.   
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In order to achieve a good test of a statistical hypothesis, Type I error rates need 

to be control at the nominal level while power rates need to be simultaneously inflated.  

As alternatives to the ANOVA or t-test, one can seek methods from the less powerful 

nonparametric statistics but these less powerful methods need large sample sizes to 

increase power.  Centering on parametric models, but not entirely convinced that the 

assumption is true, robust statistical methods will give ways of finding practical solutions 

in statistics.  With high speed computers, it is now possible to apply robust statistical 

methods that were heretofore impractical to use.  

 

Robust statistical methods offer useful and viable alternatives to traditional 

analytic methods, often yielding greater statistical power and increased sensitivity.  These 

methods were also proven to be able to control the Type I error rates at the nominal level 

(Keselman et al., 2002a; 2004b; Othman et al., 2004; Syed Yahaya et al., 2004a; 2004b; 

Wilcox et al., 2001; Wilcox et al., 1988). 

 

Luh and Gou (1999) agreed that approximate tests are well known alternatives for 

dealing with the problem of  heteroscedasticity.  Nevertheless they noted that although 

these tests are known to be the most valid tests under various conditions of 

heteroscedasticity investigated (Wilcox, 1989), they could not simultaneously handle the 

problem of non-normality.   They cited the case of the Welch test (Welch, 1951) and the 

James second-order test (James, 1951) which were though the most valid tests under 

various conditions of heterogeneity investigated were nevertheless affected by non-

normality conditions (Keselman et al., 1995).   
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Babu et al. (1999) proposed the S1 method that can handle the problems of non-

normality and heteroscedasticity simultaneously in an adaptive test setting.  This method 

needs no trimming or transforming and will be selected when the data are skewed.     

 

Another way of dealing with skewed data is by trimming the tail of the 

distribution.  Working with actual data, Wilcox et al. (2000) found that power can be 

greatly increased by comparing trimmed means versus means and control over the 

probability of a Type I error can be better.  However, there are practical concerns 

regarding trimmed means.  The utmost concern is that by assumption, the amount of 

trimming is fixed prior to analyzing the data.  The next concern is that trimming is 

typically assumed to be symmetric.  Given these concerns, the question is how can we 

determine the best percentage of trimmings especially when the distribution is skewed? 

 

In dealing with the problem of predetermined amount of trimming, Wilcox et al. 

(2002) suggested modified one-step M-estimator (MOM) which addresses the problems 

with trimmed means.  For example, if sampling is from a light-tailed distribution or 

normal distribution, it might be desirable to trim very few observations or perform no 

trimming at all.  If the distribution is skewed, a natural reaction is to trim more 

observations from the skewed side of the empirical distribution.  This central tendency 

estimator, like trimmed mean, can be applied to test statistics to investigate the equality 

of central tendency measures across treatment groups (Keselman et al., 2002; Othman et 

al., 2004).  By using a statistic mentioned by Schrader and Hettsmansperger (1980), 
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examined by He et al. (1990) and discussed by Wilcox (1997), Othman et al. (2004)  

proposed a method known as MOM-H which uses MOM as the central tendency measure.   

 

In searching for the alternative approach in testing central tendency measures in 

the one-way independent group design, we suggested two robust procedures which were 

proposed by Babu et al. (1999) and Othman et al. (2004), i.e. the S1 by itself, not in the 

adaptive and MOM-H respectively and combined these statistics with some selected 

robust scale estimators.  Based on the proposed robust scale estimators by Rousseeuw 

and Croux (1991, 1993),  three scale estimators which have the highest breakdown point 

and bounded influence function were selected.   Two of the scale estimators,  Sn and Qn,  

were proposed in 1991, and the third scale estimator, Tn was proposed in 1993.  Apart 

from these scale estimators, we were also interested in MADn, based on its good robust 

properties and for being one of the most popular robust scale estimators.  The integration 

of these scale estimators with S1 generated good control of Type I error when tested on a 

moderately skewed distribution (Syed Yahaya et al., 2004a; 2004b).   

 

Before going in depth into the discussion on the two statistics and the selected 

scale estimators, the following sections will be defining some of the terminologies and  

the literature survey that were being used frequently through out this thesis.   

 

2.2 Type I Error 

The aim of this study is to look at the effect of Type I error and power of test when 

the problems of non-normality and heteroscedasticity occur.   Type I error, α , is defined 
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as the probability of rejecting a true null hypothesis.  Since it refers to the rate of rejecting 

a “true” null hypothesis, therefore, it should be of a relatively small value.   The null 

hypothesis for testing the equality of central tendency measures is given as 

          jH θθθ === ...: 210 ,        

where iθ  is the central tendency parameter for Fi:  i = 1, 2, …, j, and Fi is the distribution 

for group  i.  

 

Type I error rate is easy to access, because it involves calculating the proportion 

or percentage of significant statistical test (e.g. t’s and F’s) when the underlying 

population means are the same.  When assumptions are met, the proportion of 

significance should come close to the set significance level. 

  

 In the context of hypothesis testing, the aspect of robustness is the ability of a 

procedure to control the Type I error rate of a test close to the nominal value 

(significance level), i.e. α , and  stable over a range of distributions even with some 

deviations from its assumptions and Tiku et al. (1986) referred to this as “robustness of 

validity”.   Robust statisticians are looking for test procedures which are able to control 

the Type I error rates at the nominal value.   By convention, a procedure can be 

considered robust if its Type I error is in between ααα 5.1ˆ5.0 ≤≤ .  For the nominal 

level 05.0=α  the Type I error rate should be in between 0.025 and 0.075.  Empirical 

Type I errors rates above 0.075 are considered liberal and those below 0.025 are 

considered conservative.   However, Guo and Luh (2000) considered a test to be robust if 
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its empirical Type I error rate does not exceed 0.075 for the 5% level of significance 

used. 

 

Type I error control is affected by the extreme conditions of non-normality and 

variance heterogeneity.  In their investigation on the robustness of Student’s t-test, 

Sawilowsky and Blair (1992) found that distributions with the extreme degree of 

skewness (e.g. 1γ = 1.64) affected the Type I error control of the independent sample t 

statistic.  Apart from these two problems, rates of Type I error can also be subjected to 

the unbalanced design, and even the pairings of unbalanced sample sizes with the 

unbalanced group variances.   It is well known that the combination of larger variance 

with smaller sample size will disrupt the Type I error (Spector, 1993). 

 

2.3 Power of a Statistical Test 

The power of a statistical test is the probability of correctly rejecting a false null 

hypothesis, that is the probability that the test will conclude that the phenomenon exists 

(Cohen, 1988).   Power is defined as β−1 , where β  is the Type II error probability.  

Type II error is the probability of failing to reject the null hypothesis when it needs to be 

rejected in favor of the alternate hypothesis.   If the power of an experiment is low, then 

there is a good chance that the experiment will be inconclusive.  Hence it is  important to 

consider power in the design of experiments.   However, in most of the work on 

robustness of tests, the level of the test (robustness of validity) was accorded prominence 

while power analysis, which is also known as “robustness of efficiency” in the robustness 

aspect, continued to be ignored until recently.  As recent as 1997, a methodological study 
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has found that the power of statistical tests were not taken into account by researchers 

and that they continued to run a high risk of Type II error (Clark-Carter, 1997).  Cohen 

(1988) has suggested that the neglect of power analysis exemplifies the slow movement 

of methodological advance.  Neglect of power not only decreases the recognition of 

interesting effects (Type II error), but it also has a negative effect on the ability of 

researchers to establish statistical consensus through replication.  Ottenbacher (1996, 

p274) points out that, 

 “…The apparently paradoxical conclusion is that the more often we are 

well guided by theory and prior observation, but conduct a low power 

study, the more we decrease the probability of replication… The 

responsible investigator must be concerned with statistical power.  A 

concern with power, however, cannot end with its calculation.  Because 

the ability to detect treatments must be optimized, the responsible scientist 

must also be concerned with factors that determine effect size…” 

 

Most studies on power deal with the calculation of power for parametric statistics 

where normal theory assumptions are required, for example, the t-test and F-tests.  The 

calculations of power for robust statistics or nonstandard nonparametric statistics are not 

addressed at a practical level.  For example, the most sought after tome on power by 

Cohen (1988) concentrates mainly on ANOVA and regression models and some standard 

nonparametric tests such as the chi-square test.  What is not addressed is how violations 

of normality assumptions affect power estimates.   Our study on power focused on the 

violations of normality assumptions by assuming that the factors affecting power are kept 
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constant except for the effect size.  The power of a statistical test depends upon three 

parameters:  i) the significance criterion,  ii) the sample size, and  iii) the effect size 

(Cohen, 1988). 

 

The significance criterion 

The significance criterion represents the standard of proof that the phenomenon 

exists, or the risk of mistakenly rejecting the null hypothesis.  Denoted byα , it is known 

as the Type I error rate.   The more conservative the significance level, the lower the 

power.   Thus, using the .01 level will result in lower power than using the .05 level.     

 

The directionality of the significance criterion also gives some impact to the 

power of a statistical test (Cohen, 1988).  When no direction is specified, the resulting 

test will have less power than the test with the same α  value which is directional, as long 

as the effect is in the expected direction.   

 

The sample size 

The reliability of sample result is always dependent upon the size of the sample.  

All things being equal, the larger the sample size,  the greater the reliability or precision 

of the results, thus the greater the probability of detecting a non-null state of affairs, that 

is, the phenomenon under test can manifest itself more clearly against the background of 

variability.  By increasing the sample size, the statistical power will increase. 
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The effect size 

Cohen (1988) defined “effect size” as the degree to which the phenomenon is 

present in the population, or the degree to which the null hypothesis is false in relation to 

the alternate hypothesis.  The null hypothesis always means that the effect size is zero.   

Specifically, in using the t-test for two independent groups, effect size is simply the 

difference between the two averages divided by the standard deviation i.e. the 

standardized mean difference.  In the F-test for two or more population means, the “effect 

size” is the standard deviation of standardized means.  Effect size measures provide a 

standardized index of how much impact treatments actually have on the dependent 

variable.  Conventionally, the measures of effect size can be categorized into small, 

medium, and large effects depending on the on the area of research.  The values are 

arbitrary, but the conventional definitions of effect size by Cohen (1988) are given in 

Table 2.1: 

 

Table 2.1:  Conventional effect size values by Cohen (1988) 

                 # of Groups 
Effect size 

 
2 Groups 

 
≥   2 Groups  

Small 0.20 0.10 

Medium 0.50 0.25 

Large 0.80 0.40 

       

Several other factors such as variance and population distribution can affect 

power.   Increasing the variance will lower the power of a statistical test.  A homogenous 

population reduces the variance thus increasing power.  With regard to population 

distribution, deviations from the assumption of normality usually lower the power.  The 
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