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PENYERAP HABA SALURAN MIKRO BAGI PENYEJUKAN FLUKS HABA 
TINGGI PERALATAN ELEKTRONIK – ANALISA DENGAN ALIRAN SATU 

DAN DUA FASA 
 

ABSTRAK 
 

Penyerap haba saluran mikro menjadikan sebuah teknologi penyejukan 

berinovatif bagi lesapan berkesan jumlah haba yang besar daripada kawasan yang 

amat kecil dan terhad bagi cip dan litar elektronik mikro fluks haba yang tinggi. Dalam 

kajian ini model unsur terhingga umum telah dibina bagi menganalisa penyerap haba 

saluran mikro yang disejukkan samada aliran satu fasa atau dua fasa. Sebuah unsur 

terhingga 12 nod telah dibina yang mana boleh digunakan bagi menganalisa pelbagai 

konfigurasi penyerap haba saluran mikro iaitu satu lapisan dan lapisan berbilang aliran 

sama arah dan berlawan arah bagi penyerap haba yang disejukkan oleh cecair satu 

fasa atau aliran mendidih dua-fasa. Menumpu biasanya didapati lebih kurang 15 unsur 

terbina per lapisan bagi aliran satu fasa dan dengan lebih kurang 100 unsur bagi aliran 

dua fasa. 

 

 Oleh itu, kaedah ini tidak memerlukan lebih masa komputer berbanding kaedah 

biasa CFD. Kaedah unsur terhingga yang dibina dalam bahasa Matlab boleh 

menghasilkan keputusan dalam 20 saat bagi aliran satu fasa dan dalam satu minit bagi 

dua fasa dengan menggunakan komputer Pentium-4 chipset dan 256 MB RAM. 

Kaedah ini juga boleh mengendalikan kes haba per luas tak seragam dan aliran cecair 

penyejuk yang tak seragam. Tambahan pula kaedah satu dimensi dibina untuk 

menentukan perbezaan tekanan dalam aliran dua fasa dalam penyerap haba. 

Keputusan yang didapati digunakan untuk melatih artificial network (ANN) yang dilatih 

boleh digunakan untuk terus menjangka perbezaan tekanan dalam aliran dua fasa. 

 

 Didapati daripada kajian bahawa sebuah penyerap haba aliran berlawan satu 

lapisan haba memberikan keseragaman suhu lebih baik pada arah aliran dan rintangan 
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haba yang rendah sebanyak 20% bagi konfigurasi ini, berbanding penyerap haba 

aliran sama arah yang sama. Kesemua analisa telah dijalankan dengan kuasa pam 

yang terhad bagi teknologi pam mikro dan mini masa kini. Dengan harapan bagi 

menghasilkan rintangan terma yang rendah bagi penyerap haba, penyerap haba 

saluran mikro dianalisa menggunakan penyejuk bendalir nano dan memberikan 

peratus penurunan dalam rintangan terma. 

 

 Juga didapati bahawa penyerap haba lapisan berbilang memberikan rintangan 

haba rendah yang ketara dan kejatuhan tekanan yang rendah berbanding penyerap 

satu lapisan. Penyerap haba aliran berlawan-arah dua lapisan lebih baik daripada 

penyerap haba aliran sama arah pada kadar aliran yang tinggi dan agihan haba yang 

seragam memberikan sehingga 15% rendah R bagi konfigurasi yang dikaji. Tambahan, 

penyerap haba juga dianalisa bagi perbezaan jenis fluks haba di dasar tak seragam 

dan agihan aliran penyejuk. 

 

 Penyerap haba saluran mikro yang disejukkan oleh aliran mendidih dua fasa, 

memberikan keseragaman suhu yang amat baik dan rintangan terma dan kuasa pam 

yang amat rendah. Aliran mendidih bagi air dan cecair Fluroinert FC-72 dianalisa. 

Didapati bahawa bagi jumlah haba terbebas yang diberi bagi penyerap haba aliran 

dua-fasa menghendaki kuasa pam rendah yang ketara berbanding penyerap haba 

satu-fasa. Aliran dua-fasa yang disejukkan penyerap haba aliran berlawan-arah satu 

lapisan dan aliran dua lapisan yang disejukkan penyerap haba berbilang lapisan juga 

dianalisa. Didapati bahawa aliran berlawan-arah penyerap haba memberikan 

keseragaman suhu yang lebih baik dan lebih daripada 20% lebih rendah rintahan 

haba, berbanding penyerap haba aliran sama arah bagi konfigurasi yang dikaji. Haba 

terbabas bagi 1000 W dengan kuasa pam adalah serendah 35 mW telah dihasilkan 

dengan penyerap haba tersejuk air mendidih dua lapisan. 
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MICROCHANNEL HEAT SINKS FOR COOLING HIGH HEAT FLUX 
ELECTRONIC DEVICES―ANALYSIS WITH SINGLE AND                         

TWO PHASE FLOWS 
 

ABSTRACT 
 
 

Microchannel heat sinks constitute an innovative cooling technology for the 

efficient dissipation of the large amounts of heat from the very small and constrained 

areas of the high heat flux microelectronic chips and circuits. In the present study a 

general finite element model is developed to analyze microchannel heat sinks cooled 

by either single phase or two-phase flow. A 12 noded finite element is developed, 

which can be used to analyze a variety of microchannel heat sink configurations viz. 

single stack and multi-stack parallel and counter flow heat sinks cooled by single phase 

liquid or boiling two-phase flow. Convergence is typically obtained with about 15 

assembled elements per stack for single-phase flow and with about 100 elements for 

two-phase flow. Consequently the method developed involves considerably less 

computational effort compared to conventional CFD methods. A MATLAB programme 

implementing the above FEM model executes within 20 seconds for single phase flow 

cooled heat sink and within one minute for two-phase flow cooled heat sink on a PC 

equipped with Pentium-4 chipset and 256 MB RAM. The present method also has the 

ability to handle cases of non-uniform base heat flux and coolant flow distributions. 

Additionally, a one dimensional finite element model trained artificial neural network is 

developed to determine two-phase flow pressure drop in microchannel heat sinks.  

 

 It is observed from the study that a single stack counter flow heat sink yield 

better stream-wise temperature uniformity and lower thermal resistance of the order of 

20 % for the configurations considered, than a similar parallel flow heat sink. All the 

analyses are done within the pumping power constraints of the present day micro and 

mini pumping technologies. With a view to achieve lower heat sink thermal resistances, 
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microchannel heat sinks are analyzed using nanofluid coolants and the achievable 

percentage reduction in thermal resistance is documented.  

 

 It is further observed that multi-stack heat sinks yield substantially lower thermal 

resistance and lower pressure drop than their single stack counterparts. Double stack 

counter flow heat sinks outperform parallel flow heat sinks at higher flow rates and 

uniform heat distributions providing upto 15% lower R for the configurations 

considered. Further, the heat sinks are also analyzed for different kinds of non-uniform 

base heat flux and coolant flow distributions. 

 

 Microchannel heat sinks cooled by boiling two-phase flow yield excellent 

temperature uniformity and very low thermal resistances and pumping powers. Boiling 

flow of water and Fluroinert liquid FC-72 are considered for analyses. It is observed 

that for a given amount of heat removal two-phase flow heat sinks consume 

considerably less pumping power compared to single-phase cooled heat sinks. Two-

phase flow cooled single stack counter flow heat sinks and two-phase flow cooled 

multi-stack heat sinks are also analyzed. It is observed that counter flow two-phase 

cooled heat sinks yield better temperature uniformity and more than 20% lower thermal 

resistances than the parallel flow heat sinks for the configuration considered. Heat 

dissipations of the order of 1000 W with pumping power as low as 35 mW are 

demonstrated with double stack boiling water cooled heat sinks. 
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CHAPTER 1 
INTRODUCTION 

 
 

1.0 Microchannel Heat Sinks for High Heat Flux Electronics Cooling 

Thermal management has served as a key enabling technology in the 

development of advanced microelectronic systems and has facilitated many of the 

advances in consumer products and modern high-performance computers and 

microelectronic systems.  

 

The severe urge for greater IC speeds, functionality and miniaturization has 

fuelled an extraordinary acceleration in chip power dissipation. Amongst all the issues 

facing chip and computer designers, none is more burning than the soaring levels of 

power flowing through the integrated circuits. Thermal demands are continuously on 

the rise. Increasing process speeds (~1.5 GHz), decreasing product sizes and styling 

requirements cause higher and higher heat loads on the products and consequently 

thermal management is becoming a critical bottleneck to system performance. Also, 

the customer demands of lower prize and greater reliability are forcing rapid market 

changes and accelerated product developments. The National Electronic Technology 

Roadmap, 1997 has affirmed the expectation that the Moore’ law improvements in the 

semiconductor technology will continue into the second decade of the 21st century (Bar-

Cohen, 1999).  Due to these enhancements, the chip level heat fluxes have gone up 

tremendously and heat fluxes are expected to fast exceed 100 W/cm2 (Phillips, 1990a, 

Mudawar, 2001, Ross, 2004).  High heat fluxes of the order of 102-103 W/cm2 are also 

found in opto-electronic equipments, high performance super computers, power 

devices, electric vehicles and advanced military avionics (Mudawar, 2001). A further 

challenging aspect is the non-uniform heat flux distribution in electronics. In a high 

power application such as a server chip the non-uniform heat distribution may lead to 
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peak heat fluxes which are over 5 times the average heat flux over the entire chip 

surface.  

 

The performance of electronic system deteriorates precipitously when the 

temperature of the electronic devices trips beyond a certain threshold limit. The 

temperature also determines the service life of the electronic equipment. Excessively 

high temperature degrades the chemical and structural integrity of various materials 

used in the equipment. Large fluctuations of temperature as well as large spatial 

variations of temperature in the equipment become responsible for malfunctions and 

eventual breakdown of the equipment. The purpose of thermal design is to create and 

maintain throughout the equipment a temperature distribution having limited variations 

around a moderate level. As a consequence, it is thermal management that often 

defines the limits of performance, functionality and reliability of electronic devices. 

Without enhancements in thermal modeling, management and design techniques it is 

unlikely that the full potential of future semiconductor device technology could be fully 

realized in product performance and cost effectiveness.  

     

Conventional methods of cooling such as forced convection air-cooling fail to 

dissipate away the astronomical volumetric heats from the very small surfaces of 

electronic chips and circuits. The International Technology Roadmap for 

Semiconductors, 2003 (http://public.itrs.net) predicts that the junction-ambient thermal 

resistance should be reduced to as low as 0.18 oC/W by the year 2010. Under the 

pressure from these developments, a clear shift from air-cooling technology is needed. 

Microchannel heat sinks (liquid cooled or two-phase flow cooled) are widely regarded 

as being amongst the most effective heat removal techniques from the space 

constrained electronic devices. Apart from providing very high heat transfer 

coefficients, microchannel heat sinks have the added benefit of being very compact in 

size, which enhances their suitability to electronics cooling.  
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The concept of a microchannel heat sink was first introduced by Tuckerman and 

Pease in 1981 (Tuckerman and Pease, 1981). The potential of handling ultra-high heat 

fluxes has subsequently resulted in intensive research into microchannel heat sinks 

(Wu and Little, 1983, Phillips, 1990b, Bowers and Mudawar, 1994a, Bowers and 

Mudawar, 1994b, Kim and Kim, 1999, Vafai, 1999). A typical microchannel heat sink 

consists of a number of parallel channels (usually of rectangular cross section) 

precision cut/chemical etched (Kandlikar and Grande, 2002) directly on the back of the 

electronic chip (Tuckerman and Pease, 1981) or separately in a metal block of silicon 

(Wei, 2004), copper (Qu and Mudawar, 2003b) or aluminum (Zhang et al., 2005). The 

parallel channel dimensions are typically less than 1000 μm (Phillips, 1990b, Qu and 

Mudawar, 2003b). The top of the heat sink is insulated by a cover and is considered 

adiabatic. A liquid coolant such as water is pumped through the microchannels of the 

heat sink so as to extract the heat from the source (electronic chip) on which it is 

mounted. 

 

 The distinctive feature of the microchannel heat sinks is the miniature size of 

the channels and the fins. The hydraulic diameter of these microchannels may vary 

from 10 μm to 1000 μm (Qu and Mudawar, 2003b). The need to have micro sized 

channels arises from the fact that for a fixed temperature difference the heat transfer 

rate is proportional to the product of the overall heat transfer coefficient U and the heat 

transfer area A. The large increase in UA can be achieved by increasing the overall 

heat transfer coefficient U which in turn can be increased by increasing the heat 

transfer coefficient h. For flow through ducts and tubes large increase in h can be 

achieved by having very small hydraulic diameters. For instance, fully developed 

laminar flow of water in a channel of 100 μm hydraulic diameter typically provides a 

heat transfer coefficient of the order 30,000 W/m2 oC (Phillips, 1990a). Such large heat 

transfer coefficients added up with the surface enhancement of the fins would lead to 

very low thermal resistances typically in the range of 0.1 oC/W (Phillips, 1990a). 
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Consequently microchannel heat sinks can dissipate large amounts of heat with 

minimum temperature rise. This makes microchannel heat sinks ideally suited for 

cooling the space constrained electronic devices.  

 

 Traditionally microchannel heat sinks have been studied for single stack, single-

phase flow cooled, parallel flow configurations (Tuckerman and Pease, 1981, Phillips, 

1987, Qu and Mudawar, 2002). A single stack parallel flow heat sink as shown in 

Figure 1.1 has a single layer of parallel channels and the coolant flows in each of the 

channels in the same direction. However, to attain lower thermal resistances and lower 

pressure drops several modifications can be made in the flow and heat sink 

configurations viz. single stack, liquid cooled, counter flow heat sink which has a single 

layer of parallel channels and the coolant is made to flow in opposite directions through 

the adjacent channels (Figure 1.2), parallel flow multi-stack heat sinks which have more 

than one layer of channels stacked one above the other and the coolant flows parallely 

in the same direction through all the channels in all the stacks (Figure 1.3) and counter 

flow multi-stack heat sinks (Figure 1.4) which have more than one layer of channels 

stacked one above the other and the coolant flows in opposite directions for any given 

pair of adjacent stacks. It can be noted from Figures 1.2 and 1.4 that the single stack 

counter flow and multi-stack counter flow heat sinks are operationally different in that 

the coolant flows in opposite directions through adjacent channels of the same stack in 

case of the single stack counter flow heat sink whereas, for a multi-stack counter flow 

heat sink the flow direction is same for the channels of any one given stack but, the 

flow is opposite with respect to any two adjacent stacks.       
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Figure 1.1: Typical single stack parallel flow microchannel heat sink with rectangular 
cross section channels 
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Figure 1.2: Typical single stack counter flow microchannel heat sink with rectangular 
cross section channels 
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Figure 1.3: Typical multi-stack parallel flow microchannel heat sink with rectangular 
cross section channels 
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Figure 1.4: Typical multi-stack counter flow microchannel heat sink with rectangular 
cross section channels 
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 Another attractive option, which is getting considerable attention recently is two-

phase flow (boiling flow) cooling in microchannel heat sinks. Two-phase flow cooling 

have several advantages such as better cooling capability due to higher heat transfer 

coefficients, ability to handle ultra large heat fluxes of the order of 1000 W/cm2 and low 

coolant inventory requirements. Since the interest is recent, the field is very fertile for 

research. Research is mainly concentrated on the basic aspects of flow and heat 

transfer in microchannels. Counterflow, single stack heat sinks and stacked heat sinks 

with two-phase flow are unexplored and the same are simulated in the present work 

and their performance benefits are documented. 

 

 Pressure drop, coolant flow rate and the corresponding pumping powers other 

important aspects that have to be considered while employing microchannel heat sinks 

for cooling applications. Microchannel heat sinks with single-phase flow have often 

been tested and simulated at very high flow rates and pumping powers (Tuckerman 

and Pease, 1981, Phillips, 1981, Chong et al., 2002) and have been shown to yield low 

corresponding thermal resistances. But for a microscale application such large 

pressure drops (of the order of 2.5 bar) and flow rates are not feasible owing to the 

limitations in micro and mini pumping technologies. It is observed from literature that 

micropumps (Olsson, 1998, Zeng et al., 2001, Singhal et al., 2004) yield flow rates of 

the order of 20 ml/min only and maximum pressure drops of the order 2 bar. Slightly 

larger pumps (minipumps) can be used wherever possible. Annular gear pumps (model 

No. 7200, 7205, 7223, Micropumps Inc., USA) can be used for this purpose. These 

pumps measure just 13 mm in diameter and 65 mm in length and can handle flow rates 

from 4.8 ml/min to 288 ml/min with a maximum differential pressure of 80 bar 

(http://www.micropump.com/products/pumps/micro_annular/). However, it can be 

observed that even these pumps can yield maximum flow rates of the order 300 ml/min 

only. Hence in the present work flow rates are restricted to a maximum of 250 ml/min 
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only (and pressure drops within 0.5 bar) although, theoretically liquid cooled 

microchannel heat sinks can perform thermally better at higher flow rates.   

 

 Another aspect of importance is the tool for simulating microchannel heat sinks. 

Traditionally either the Resistance model (Phillips, 1987) or the CFD (Qu and Mudawar, 

2002) are used for the analysis. The resistance model is one dimensional and has 

several shortcomings like inability to handle flow and heat flux non-uniformities. Also, 

the resistance model cannot be used for analyzing two-phase flow cooled 

microchannel heat sinks. CFD methods are iterative and computationally very 

intensive. The present work develops a simple, non-iterative, programmable and 

general FEM method to thermally analyze single stack and multi-stack microchannel 

heat sinks with both single-phase flow and two-phase flows with either parallel flow or 

counter flow arrangements (Hegde et al., 2004, Hegde et al. 2005a, Hegde et al., 

2005b, Hegde et al., 2005c, Hegde et al., 2006a). In addition, a one dimensional FEM 

model is developed to determine two-phase flow pressure drops in microchannel heat 

sinks (Hegde et al., 2006b). The results from the FEM model are used to train artificial 

neural networks (ANN) so as to determine two-phase flow pressure drop directly 

without iterations. Artificial neural networks (ANN) are information processing 

paradigms that are inspired by the way biological nervous systems process information 

(Lau, 1992). An artificial neural network is composed of a large number of highly 

interconnected processing elements called neurons. ANNs have the ability to learn by 

examples and are configured to a specific application. ANN has two modes of 

operation the training mode and the using mode. The ANN is first trained with large 

number of specific inputs and their corresponding outputs. The ANN learns the relation 

between the inputs and outputs and the trained network can subsequently generate 

appropriate outputs for completely new values of the input.  
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1.1 Literature Review 

1.1.1 Microchannel Heat Sink Analysis with Single-Phase Flow 

 Tuckerman and Pease (1981) first demonstrated the use of microchannels for 

cooling integrated circuits. The channels were fabricated on the back of a silicon 

substrate. Using water as the coolant and with microchannel dimensions w = 50 μm 

and H = 300 μm, they were able to dissipate heat flux of 790 W/cm2 for a large 

pressure drop of the order of 2 bar. The substrate-to-coolant temperature rise was 71 

oC and the accompanying thermal resistance was 0.1oC/W. Following the pioneering 

work of Tuckerman and Pease there has been intensive research in the field of 

microchannel heat sinks owing to their ability to handle ultra high heat fluxes.  

 

 The next major contribution to the research on microchannels came from 

Phillips (1987) who experimentally studied microchannel heat sinks for laminar and 

turbulent flows. The heat sink was fabricated using indium phosphide and water was 

used as the coolant. The channel dimensions were typically w = 220 μm, H = 165 μm 

and L = 9.7 mm. Subsequently a thermal resistance network model to numerically 

compute the heat sink thermal resistance was developed. Thermal resistances of the 

order of 0.072 oC-cm2/W were obtained for very large pressure drops of the order of 2.5 

bar. 

 

 Peng and Peterson (1995, 1996) experimentally studied the effect of fluid 

properties and the channel geometry on the convective heat transfer in microchannels. 

The experimental data showed that the heat transfer is influenced by the temperature 

of the liquid, Reynolds number and the channel aspect ratio. They proposed 

correlations to determine Nusselt numbers for laminar and turbulent flow in 

microchannels. 
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 Copeland (1997) numerically analyzed manifold microchannel heat sinks. The 

manifold heat sink has many alternating inlet and outlet manifolds that guide the 

coolant to and from the microchannels and as a result the flow length reduces to a 

small fraction of the total length of the heat sink. It was found that the manifold heat 

sinks lead to considerable reduction in pressure drop as the flow length reduced while, 

channel length shows almost no effect on the thermal resistance. The commercial CFD 

programme Fluent-4.3.1 was used for the analysis. Thermal resistances of the order of 

0.27 oC/W  were achieved. 

 

Webb and Zhang (1998) experimentally investigated heat transfer and friction 

characteristics in rectangular microchannels. They observed that the classical 

correlations were able to predict the single-phase heat transfer coefficient and the 

friction factor for rectangular channels with reasonable accuracy. 

 

Pfund et al. (1998) measured the pressure drop of water flowing along 

rectangular microchannels with hydraulic diameters ranging from 200 to 900 μm. In the 

laminar flow region their data showed good agreement with the conventional theory. 

 

Flockhart and Dhariwal (1998) studied flow of distilled water in trapezoidal 

channels with hydraulic diameters ranging from 50 to 120 μm and concluded that the 

theoretical predictions with correlations could predict the friction factors in the channels 

studied.  

 

 Kim and Kim (1999) have modeled microchannel heat sinks as fluid saturated 

porous medium. The extended Darcy equation proposed by Darcy and Tien (1981) for 

fluid flow and the volume averaged two-equation model (Tien and Kuo, 1987) for heat 

transfer are used. An expression for the total thermal resistance was developed after 

lengthy and tedious simplifications. 
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Vafai and Zhu (1999) introduced the concept of two layered microchannel heat 

sinks (w = 60 μm, H = 100 μm) with counter current arrangement. A three dimensional 

computational model was developed, a normal case of which ran for about 4 hours on 

an R-10000 silicon graphic workstation. It was found that the temperature rise of the 

double stack heat sink is lower compared to the single stack heat sink and at the same 

time the pressure drop is lower than the single stack heat sink.  

 

Harms et al. (1999) studied single-phase flow in deep rectangular 

microchannels (w = 251 μm, H = 1000 μm). Experiments were carried out with distilled 

water. It was found that for laminar flow the correlation by Shah and London (1978) 

accurately predicted the Nusselt number. It was further observed that the microchannel 

system developed for laminar flow outperformed that with turbulent flow, both in terms 

of flow and heat transfer characteristics. 

 

Qu and Mudawar (2001) studied pressure drop and heat transfer characteristics 

in copper heat sinks with rectangular microchannels of size 231 µm x 713 µm both 

experimentally and numerically. Deionized water was used as the coolant. The 

governing continuity, energy and momentum equations were solved using the SIMPLE 

algorithm (Patankar, 1980). It was found that at any longitudinal distance along the 

length of the microchannel the highest temperature is encountered typically at the base 

surface of the microchannel and the bulk liquid constitutes the region of lowest 

temperature. Also, no early transition from laminar to turbulent flow in microchannels 

was observed.   

 

Chong et al. (2002) modelled single layer counter flow and double layer counter 

flow microchannel heat sinks with rectangular channels. The thermal resistance 

network was used for modeling. The results were found to be in fairly good agreement 

with 3-D CFD results obtained from commercial software FLUENT. The microchannel 
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dimensions were subsequently optimized using a multivariable constrained direct 

search method by Box (1965). Optimization results showed that both the single layer 

counter flow and double layer counter flow microchannel heat sinks operating in 

laminar flow outperform those operating with turbulent flow conditions both thermally 

and hydrodynamically. However, very large channel aspect ratios viz. 10 and large 

pressure drops of the order 1.2 bar were considered for optimization. Also, the study 

does not report the temperature distribution and does not consider heat flux and flow 

non-uniformities.    

 

Wei and Joshi (2004) analyzed stacked silicon microchannel heat sinks with 

parallel flow arrangement. The thermal resistance of the heat sink was determined 

using a one dimensional iterative resistance network. The heat sinks were tested for 

simple cases of uniform heat flux and flow distributions with fixed pumping power, flow 

rate and pressure drop. The thermal resistances are normalized to that of the single 

stack heat sink. Temperature distribution in the heat sink is not reported.    

 

Li et al. (2004) carried out numerical simulation of the heat transfer occurring in 

silicon based microchannel heat sinks (w = 57 µm, H = 180 µm) using 3-dimensional 

conjugate heat transfer model. A finite difference numerical code with a Tri-Diagonal 

Matrix Algorithm is used to solve the governing equations. The results indicated that 

the thermophysical properties of the liquid could significantly influence both flow and 

heat transfer in the microchannel heat sink. A correlation is proposed to calculate the 

overall averaged Nusselt number for the heat sink. 

 

Lee et al. (2005) experimentally investigated the thermal behaviour of single-

phase flow through rectangular copper microchannels. The microchannels considered 

ranged in widths from 194 µm to 534 µm with Ar = 5. Water is used as the coolant. 

Numerical simulations were carried out using commercial CFD solver FLUENT so as to 
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predict mainly the flow Nusselt number. The numerical results were in good agreement 

with the experimental results.   

 

Zhang et al. (2004) and Zhang et al. (2005) analyzed single stack aluminum 

microchannel heat sinks (w = 210 µm, Ar = 10) for liquid cooling of flip chip ball grid 

array packages. Experiments were carried out with the heat sinks mounted on two 

different chips with foot prints, 12 mm x 12 mm and 10 mm x 10 mm. A thermal 

resistance network is used to numerically determine the heat sink thermal resistance at 

different coolant flow rates. With water cooling, the calculated thermal resistances 

ranged from 0.44 to 0.32 oC/W for the 12-mm chip case and from 0.59 to 0.44 oC/W for 

the 10-mm chip case. 

 

Methods to evaluate the single-phase laminar flow pressure drop and the heat 

transfer coefficients in rectangular ducts have been well documented by Shah and 

London (1978) and the same have been used successfully by various researchers for 

microchannel heat sinks with little or no modifications (Phillips, 1990a, Qu and 

Mudawar 2003a, Chong et al., 2002, Wei and Joshi, 2004, Zhang et a. 2005). 

 

1.1.2 Use of Nanofluids as Coolants 

Very limited study regarding the use nanofluids as coolants in micro and mini 

channel heat sinks exist in literature. Nguyen et al. (2004) have investigated the usage 

of nanofluids in cooling electronic devices. Water-Al2O3 and ethylene glycol-Al2O3 

nanofluids (with up to 7.5 % nano particle loading) are used in a rectangular slot type 

macro size heat sink measuring 50 x 50 x 10 mm with a 3 x 48 mm fluid cross section. 

With nanofluids as the coolant marked reduction in the junction temperature was 

observed, especially at higher flow rates and higher particle loading percentage. Xuan 

and Roetzel (2000), Xuan and Li (2003), Maiga et al. (2004) all report that the 

inclusions of nanoparticles substantially increase the heat transfer performance of the 
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original base fluid mainly due to the changes in the transport properties of the base 

fluid and due to the dispersion effects of the nanoparticles in the coolant. However, 

since the nanoparticles are ultra-fine (<100 nm) and the percentage loading is very 

less, there is very little difference in the friction characteristics of the nanofluid in 

comparison to the base fluid. Xuan and Roetzel (2000) and subsequently Xuan and Li 

(2003) have developed correlations based on their experiments to compute the heat 

transfer coefficient of nanofluid flow in horizontal tubes. 

 

1.1.3 Microchannel Heat Sink Analysis with Two-Phase Flow 

Flow boiling is extensively studied especially in small tubes (of diameter 3 mm 

and more). However, interests in two-phase flow studies in microchannel heat sinks are 

rather new and have erupted mainly due to their prospective applications in high flux 

electronics cooling. Microchannel heat sink studies with two-phase flow are mainly 

experimental in nature and focus on the basic studies of flow type, determination of 

heat transfer characteristics etc. Simulation studies with respect to two-phase flow 

cooled microchannel heat sink performance analyses are very limited. 

  

Bergles and Dormer (1969) were amongst the first to perform studies of flow 

boiling in small tubes with less than 3 mm diameter. They primarily investigated 

pressure drop associated with flow boiling of water in horizontal tubes of length to 

diameter ratio 24-195 and diameters 1.57-5.03 mm. The liquid velocity was varied from 

1.51 to18.2 m/s. The inlet temperature was varied from 10 to 62.7 oC and the wall heat 

fluxes were varied from 0 to 1733.6 W/cm2. Their results indicated that for a given inlet 

velocity and temperature, pressure drop rapidly increases once boiling is well 

established.  

 

Kandlikar (1990) developed a general correlation for saturated two-phase flow 

boiling heat transfer inside horizontal and vertical tubes based on a total of 5246 data 
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points from 24 experimental investigations for about 10 fluids. The proposed correlation 

gives a 15.9 % mean deviation for all the data for water. Although the Kandlikar 

correlation was originally developed for macro-sized tubes Kandlikar and Steinke 

(2002), and Kandlikar and Balasubramanian (2003) have slightly modified the 

correlation so as to be used for two-phase flow through microchannels. 

 

Wambsganss et al. (1993) have investigated flow boiling of refrigerant R113 in 

a small circular tube. Their results showed that the flow boiling heat transfer coefficient 

is a strong function of the applied heat flux (i.e., htp increases with increasing q keeping 

all other parameters fixed) and is only weakly dependent on G. They concluded that 

nucleate boiling is the dominant mode of heat transfer over the range of qualities (0–

0.9) tested. 

 

Bowers and Mudawar (1994a, 1994b, 1994c,) performed an experimental study 

of boiling flow for R-113 flowing through multiport circular channels with hydraulic 

diameters 2.54 mm and 0.510 mm. This study demonstrated that boiling in narrow 

channels is an effective method of achieving high heat fluxes, coupled with low flow 

rates and pressure drops. The homogeneous model (Wallis, 1969, Collier, 1981) was 

employed to predict the pressure drop in the channel within a deviation of ±30% 

 

Tran et al. (1996) have performed nucleate boiling heat transfer studies using a 

horizontal, rectangular channel with Dh = 2.40 mm. They concluded that nucleate 

boiling was the dominant heat transfer mechanism and for low vapor qualities (x < 0.3), 

htp was found to decrease with increasing vapor quality. The proposed an empirical 

correlation where htp is a function of the boiling number, Weber number and the liquid to 

vapor density ratio. 
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Zhang et al. (2002) have conducted flow-boiling experiments for water through 

single-channel and multi-channel test devices. The channel hydraulic diameter is less 

than 100 μm. Koo et al. (2001) and Zhang et al. (2002) wrote the heat balance 

equations for the heat sink and used the finite volume method (Patankar, 1980) to 

solve the equations. The Kandlikar correlation (Kandlikar, 1990) is used to determine 

the two-phase flow boiling heat transfer coefficient. The pressure drop was modelled 

assuming homogenous flow. The two-phase friction coefficient is obtained from an 

external correlation (Stanley, et al., 1997). It is observed that the simulation results are 

in fair agreement with the experimental results.  

 

Qu and Mudawar (2003 a, 2003 b) have experimentally studied flow boiling of 

water in rectangular microchannels of size 231 x 713 µm. Qu and Mudawar (2003 a) 

studied different empirical correlations for two-phase flow heat transfer coefficient in 

microchannels and reported that none predict the htp appropriately. Qu and Mudawar 

(2003 b) studied different empirical correlations to predict two-phase flow pressure 

drops in rectangular microchannels. Only the correlation by Mishima and Hibiki (1996) 

was found to yield acceptable pressure drops (~13% margin of error). Subsequently 

the provided a new correlation for two-phase flow pressure drops in microchannels 

(Table 1.1). 

 

Kandlikar and Balasubramanian (2003) and Kandlikar (2004) have compiled 

new data on flow boiling in microchannels that cover the all-liquid flow Reynolds 

number between 50-500. The original Kandlikar correlation is slightly modified so as to 

predict the flow boiling heat transfer in microchannels. The validity of the correlation is 

well established by comparing the predictions from the modified correlation with the 

experimental results of different researchers. It is also indicated that the flow boiling is 

chiefly nucleate boiling dominant in the low Reynolds number range as encountered in 

microchannels.  
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  Steinke and Kandlikar (2004) have conducted experimental investigation for 

flow boiling of water in six parallel, horizontal microchannels with a hydraulic diameter 

of 207 mm. A comparison of the experimental results with the nucleate boiling 

dominant regime of the Kandlikar flow boiling correlation (Kandlikar, 2004) showed 

good agreement. They also showed that the modified Kandlikar correlation (Kandlikar, 

2004) predicts the right trend of decreasing htf with increasing vapor quality for two-

phase flow through microchannels. Also, it is shown that the Shah and London 

correlation (1978) can accurately predict the single-phase pressure drop in rectangular 

microchannels.  

 

Wen and Kening (2004) experimentally investigated two-phase pressure drop 

during flow boiling of water in a channel with cross section 2 mm by 1mm. The 

experimental results were compared with four different correlations. Their results 

indicated that the pressure drops predicted using the Lockhart-Martinelli correlation 

(Collier, 1980) for two-phase friction multiplier with the modified empirical constant C 

obtained from Mishima et al. (1996) fits the data with reasonable accuracy while, the 

correlations by Chisholm (Collier, 1980) and Tran (2000) considerably overpredict the 

data. 

 

Mishima and Hibiki (1996), Lee and Lee (2001), Qu and Mudawar (2003b) have 

all experimentally studied two-phase flow in mini mini/micro channels and have 

provided correlations to predict two-phase flow pressure drop. All the above- 

mentioned researchers basically use the Lockhart-Martinelli correlation (Collier, 1980) 

with modified values of the empirical constant C to estimate the two-phase friction 

multiplier and hence the two-phase pressures drop. The correlations for the empirical 

constant C as given by Mishima and Hibiki (1995), Lee and Lee (2001), Qu and 

Mudawar (2003) are given in Table 1.1.  
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Table 1.1: Correlations given by different researchers for the empirical constant C   

Reference Work Correlation for the empirical constant C 

Lockhart-

Martinelli 

(Collier, 1980) 

Study of air-liquid mixtures in 

large diameter channels 

(macrochannels)  

C = 5 for laminar flow 

Mishima and 

Hibiki (1996) 

Study of Air-water flow through 

capillary tubes in the range of 1 

to 4 mm.  

( )hD.eC
3103190121 ×−−=  

 

 

Lee and Lee 

(2001) 

 

Study of Air-water flow through 

horizontal rectangular channels 

of fixed width 20 mm. The height 

of the channel varied from 

0.4mm to 4 mm 

Lo
sra ReAC ψλ=  

The dimensionless parameters λ , ψ and the 

constants a, r and s can be obtained from 

Lee and Lee (2001). ReLo is the liquid only 

Reynolds number. 

 

Qu and 

Mudawar 

(2003) 

 

Study of flow boiling of water 

through a heat sink containing 

21 parallel microchannels of size 

231 x 713 µm. 

( )( )06130004180121
3103190 .G.eC hD. +−= ×−

 

where, G is the coolant mass flux. 
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1.2 Objectives of the Present Work 

From the literature review it is clear that there is a need to develop a simple, 

practical and non-iterative but accurate approach to analyze microchannel heat sinks 

both in single and two-phase flows. Cases of non-uniform base heating and non-

uniform flow distribution amongst the microchannel heat sink stacks need to be studied 

in greater depth.  

 

Performance analyses of single stack counter flow and multi-stack counter flow 

microchannel heat sinks need to be carried out and their performances need to be 

compared with their parallel flow counterparts. Performance analyses of multi-stack 

microchannel heat sinks cooled by two-phase flow need to be done. Also, most of the 

work for two-phase flow in microchannels are experimental in nature and mostly deal 

with the fundamental aspects of flow and heat transfer such as the determination of 

two-phase flow heat transfer coefficient, flow regimes and flow characteristics. Very few 

work actually deal with the performance analysis of microchannel heat sinks with two-

phase flow. To the best of the author’s knowledge there are no works that deal with the 

performance analysis of two-phase flow cooled single stack counter flow microchannel 

heat sinks, two-phase flow cooled parallel flow multi-stack heat sinks and two-phase 

flow cooled counter flow multi-stack heat sinks. Also, there exists a need to develop a 

methodology to determine the two-phase flow pressure drop and flow characteristics in 

microchannels using the fundamental equations (of mass and momentum 

conservation) and without using external correlations for the same.    

 

The objectives of the present work are: 

a. To develop a simple, practical and programmable method to analyze both parallel 

flow and counter flow microchannel heat sinks 
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b. To analyze the performance of single stack counter flow heat sinks and compare 

the same with that of single stack parallel flow heat sinks for both single-phase flow 

and two-phase flows 

c. To analyze the performance benefits of using nanofluids in microchannel heat sinks 

d. To analyze the performances of parallel flow and counter flow liquid cooled Multi-

stack heat sinks. 

e. To determine the performance benefits of employing boiling flow (two-phase flow) 

cooled microchannel heat sinks.  

f. To study the improvements in the thermal and hydraulic performance of the two-

phase flow cooled microchannel heat sinks by employing counter current 

arrangements and stacked heat sink configurations. 

g. To develop a methodology to determine the two-phase flow pressure drop in 

microchannels using the fundamental equations (of mass and momentum 

conservation) and without using external correlations for the same.    

 

1.3 Overview of the Present Work and Organization of the Thesis 

Microchannel heat sinks with rectangular cross section channels are analyzed. 

The finite element method is used to analyze microchannel heat sinks. A general 12 

noded finite element is developed to analyze the thermal performance of microchannel 

heat sinks with both single-phase and two-phase flows. Different channel 

configurations, flow arrangements and channel stacking are analyzed with a quest to 

evolve lower thermal resistances and lower pumping power. The same 12 noded 

element can be used for the analysis of all the above-mentioned cases. Water is 

considered as the coolant for single-phase analysis (because of its excellent thermal 

properties). Performance enhancement that is achieved by using nanofluid coolants is 

also studied. For the two-phase flow analysis fluroinert liquid FC-72 is considered apart 

from water, because of it lower boiling temperature (at a given pressure). A one 

dimensional iterative finite element model is subsequently developed to determine the 
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two-phase flow pressure drop in the microchannels. The results from the one 

dimensional model are trained into artificial neural networks so as to obtain the two-

phase flow pressure drops directly without iterations.   

 

Chapter 2 introduces the 12 noded finite element used for the microchannel 

discretization. The governing heat balance equations are written and the complete 

finite element formulation for the analysis of the heat sink using the 12 noded element 

is performed. 

 

Chapter 3 develops a one dimensional FEM model to determine the two-phase 

flow pressure drop in the microchannels without the use of external correlations. Apart 

from the pressure drop determination the model can also analyze and determine other 

two-phase flow characteristics like the two-phase friction multiplier and the void 

fraction. Further, the results obtained from the FEM model are used to train Artificial 

Neural Networks (ANN) so as to determine the results for different channel dimensions 

and flow conditions without iterations. 

 

 Chapters 4 and 5 deal with the analysis of microchannel heat sinks cooled by 

single-phase liquid flow.  

 

Chapter 4 analyzes single-phase liquid cooled single-stack microchannel heat 

sinks. Counter flow heat sinks are studied with a quest to obtain better temperature 

uniformity and lower thermal resistances (than the parallel flow heat sinks). In this 

chapter both single stack water cooled parallel flow and counter flow heat sinks are 

analyzed and their thermal performance compared. Depending upon the available 

micro and mini pumping technologies both low and higher coolant flow rates are 

considered. It is shown that the counter flow heat sink yields better thermal 

performance both in terms of lower thermal resistance and better temperature 
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uniformity along the heat sink. Parametric studies are performed to analyze the effects 

of channel dimensions, heat flux, flow rate, material of heat sink construction and non-

uniform heat flux distributions. Finally performance enhancement that can be achieved 

using nanofluid coolants is studied. 

 

 Chapter 5 discusses the effect of stacking on the thermal and hydraulic 

performance of the microchannel heat sinks. Parallel and counter flow stacked heat 

sinks are analyzed and compared and the effects of non-uniformities in the base heat 

flux and coolant flow distribution are studied.  

 

 Chapters 6 and 7 deal with the analysis of single component two-phase flow 

cooled microchannel heat sinks. 

 

Chapter 6 discusses the analysis of single stack microchannel heat sinks with 

boiling flow of water and FC-72. It is shown that under similar operating conditions a 

two-phase flow cooled heat sink yields substantially lower thermal resistance and 

excellent temperature uniformity compared to a similar single-phase liquid cooled heat 

sink.  It is also shown that counter flow heat sinks with two-phase flow yield 

comparatively lower thermal resistance and better temperature uniformity than the 

parallel flow heat sinks. Parametric studies are performed to study the effects of heat 

dissipation rates, coolant inlet temperature, coolant inlet pressure and flow rate. 

Trained artificial neural network is used to determine the two-phase flow pressure drop 

in the microchannels. It is further shown that lower microchannel base temperatures 

can be obtained by employing boiling flow of FC-72 as the coolant. 

 

 Chapter 7 studies the performance of parallel flow and counter flow stacked 

heat sinks with two-phase flow. It is observed that stacked heat sinks cooled by two-

phase flow yield lower thermal resistances and lower pressure drops compared to their 
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single-stack counterparts. The performance benefits in terms of thermal resistance and 

pressure drop are reported.  

 

 Chapter 8 presents the conclusions of the present work and discusses the 

scope for future work. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 24

CHAPTER 2 
 FINITE ELEMENT MODEL FOR THERMAL ANALYSIS OF MICROCHANNEL 

HEAT SINKS 
 

2.0 Introduction  

Microchannel heat sinks with rectangular cross section channels are analyzed. 

Taking advantage of the symmetry a single pair of adjacent channels of the heat sink is 

considered for analysis. A twelve noded, repetitive finite element representing a pair of 

adjacent microchannels is used for the finite element modeling. A typical element used 

for the discretization of parallel flow heat sink is shown in Figure 2.1. Nodes 5 and 6 of 

the element represent the coolant flow in the left channel while the nodes 9 and 10 

represent the coolant flow in the adjacent right channel. Nodes 2-3-7-8 represent the 

dividing wall between two channels while, nodes 1-2-3-4 and 2-11-12-3 represent the 

left and right bottom walls respectively. The element as a whole is actually an assembly 

of four noded bilinear rectangular elements and two noded linear elements. The 

microchannel bottom and dividing walls are constituted by the bilinear rectangular 

elements while, the coolants are discretized by two noded linear elements, the two fluid 

nodes being located at the inlet and the outlet of the overall cell. The base of the 

microchannel receives heat from the source and the heat is transferred to the coolant 

by convection directly from the base and indirectly through the dividing wall. The entire 

element is repeatable in the sense that suitable number of elements can be assembled 

in the length-wise and lateral directions to constitute a complete microchannel heat 

sink. Similar element with the coolant flow directions in the adjacent channels being 

opposite to one another (Figure 2.2) is used for the discretization of the single layer 

counter flow heat sinks. The elements can be assembled in the stream-wise direction 

i.e. along the flow direction or length of the channel so as to represent a complete 

microchannel. The assemblies of elements for different kinds of heat sink 

configurations are shown in figures 4.1, 4.2 and 5.1 and 5.2 respectively. 
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