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DIAGNOSA MENGGUNAKAN KAEDAH BAYESIAN NETWORKS UNTUK 
MENGUPAYAKAN BAIKPULIH KE ATAS PERMASALAHAN PROSES 

PEMBUATAN 
 

ABSTRAK 
 
 

Di dalam proses perkilangan, juruteknik selalunya melakukan pembaikpulihan 

mesin-mesin pembuatan menggunakan piawaian Panduan Pembaikpulihan yang sedia 

ada. Apabila mesin-mesin pembuatan menjadi lebih canggih dan kerosakan mesin-

mesin yang berkaitan menjadi bertambah sukar untuk dianalisa dan diselesaikan, 

pengalaman juruteknik menjadi bertambah penting bagi menggantikan piawaian 

Panduan Pembaikpulihan di dalam membaikpulih kegagalan dan kerosakan mesin-

mesin yang kompleks dan serious. Penyelidikan ini bertujuan mendefinisi dan 

mengaplikasikan satu kaedah algorithma untuk menterjemahkan data pembaikpulihan 

mesin-mesin pembuatan kepada rantaian langkah-langkah pembaikpulihan yang 

piawai. Algorithma ini membantu menentukan setiap langkah-langkah pembaikpulihan 

yang dihasilkan mempunyai maklumat kebarangkalian dan rantaian untuk diproses 

oleh NeticaTM, satu perisian Bayesian Networks. Perisian ini akan memberikan 

cadangan rantaian langkah-langkah pembaikpulihan berdasarkan maklumat yang 

diberikan. Perbandingan dibuat di antara parameter yang umum seperti Waktu Rosak 

(Downtime), Purata Waktu Untuk Baiki (MTTR) dan Peratusan Kekesanan (Percentage 

Effectiveness) dengan kes-kes pembaikpulihan yang terdahulu yang menggunakan 

piawaian Panduan Pembaikpulihan yang sedia ada untuk meninjau keberkesanan 

teknik tersebut. Keputusan menunjukkan piawaian Panduan Pembaikpulihan yang 

dihasilkan oleh NeticaTM memberikan peningkatan dari segi Purata Waktu Untuk Baiki 

sebanyak 12.67% untuk Bin 18, 32.43% untuk Bin 9, 34.93% untuk Bin 21; 

peningkatan dari segi Waktu Rosak sebanyak 21.89% untuk Bin 18, 39.10% untuk Bin 

9, 35.42% untuk Bin 21; peningkatan dari segi Peratusan Kekesanan tidak berubah 

untuk Bin 18, 26.67% untuk Bin 9, 28.24% untuk Bin 21, berbanding dengan piawaian 

Panduan Pembaikpulihan yang sedia ada. Satu trend/turutan yang dilihat meningkat di 



 viii

kalangan parameter-parameter tersebut menunjukkan potensi cadangan rantaian 

langkah-langkah pembaikpulihan sebagai Panduan yang praktikal untuk kegunaan 

juruteknik. 
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DIAGNOSIS USING BAYESIAN NETWORKS TO ENABLE VALUE-ADDED 
TROUBLESHOOTING TO MANUFACTURING PROCESS PROBLEM 

 
ABSTRACT 

 
 

In current manufacturing process, technicians normally perform equipment 

troubleshooting using standard Troubleshooting Guides. As equipment gets more 

sophisticated and associated failures become more difficult to analyze and to solve, 

experience becomes a better substitute than existing Troubleshooting Guides in 

troubleshooting complex failures. This research explores the definition and application 

of an algorithm to translate historical maintenance repair data to generate sequence of 

standardized equipment troubleshooting steps. The algorithm help determine each 

troubleshooting steps probability and sequence information to be processed by 

NeticaTM, a Bayesian Networks modeling software. The software produces 

recommended sequence of troubleshooting steps based on the given information. 

Comparison is made between common parameters i.e. Downtime, MTTR, and 

Percentage Effectiveness data with repair cases using existing Troubleshooting 

Guides. Results show that NeticaTM-generated troubleshooting steps represent an 

MTTR improvement over existing Troubleshooting Guide steps of 12.67% for Bin 18, 

32.43% for Bin 9, 34.93% for Bin 21, respectively; Downtime improvement of 21.89% 

for Bin 18, 39.10% for Bin 9, of 35.42% for Bin 21, respectively; % Effectiveness 

improvement of zero change for Bin 18, of 26.67% for Bin 9, of 28.24% for Bin 21, 

respectively over the troubleshooting steps using existing Troubleshooting Guide. In 

summary, an improving trend seen across these parameters seen across the failure 

subgroups shows potential for usage as practical troubleshooting steps for use by 

maintenance technicians. 
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CHAPTER 1 
INTRODUCTION 

 
 
1.0 Introduction 
 

In Introduction, a brief discussion touches on key motivating factors for this 

research on developing methods and algorithms for resolving equipment failures using 

Bayesian Networks model. To begin with, there are rising trends in industries, which 

demonstrate the importance of making informed decision-making by having highly 

structured data infrastructure and the method to process and utilize the data in the data 

repository. This transition to structured data infrastructure begins with the 

transformation of corporate information from paper in its various forms into digital 

format. The new digital platform enables companies to start engaging promising 

business models over traditional ones (Schneier 1994). Significant enhancements in 

technology have profoundly changed virtually every type of business, and the way 

people do business. In other words, improvement in computers and communication 

technologies brings up new businesses opportunities (Brynjolfsson and Kahin, 2000). 

 

By installing sophisticated communications and technology systems to provide 

value-added businesses information, a company increases its ability to make better 

and more informed business decisions. As time changed, and computer networks 

become widely used, standalone computers or workstations started to connect in form 

of networks and the digital data inside those computers shared among employees in 

the enterprise. Eventually, the digital data traffic started to increase, not just within the 

confines of the company, but also outside the company to its customers and suppliers 

through the Internet or World Wide Web as a method to disseminate information. 

 

Due to increasing connectivity between computers and the information 

infrastructure, previously untapped information for businesses now becomes readily 
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available (Pesko 1999, p.11). As this information is critical to get job done and to 

enable businesses to seize new opportunities, it creates demand for appliances with 

specialized access to information—hence the name “information appliance” (Want, and 

Borriello, 2000, p.24). This poses new challenges and opportunities to businesses. 

 

These challenges include low cost and technology advantage that are important 

to enable companies to successfully compete with and force other players out of the 

market (Masatsugu 2000, p.178). Slywotzky (1999, p.94) noted that computer industry 

is an excellent example where companies i.e. Compaq reinvented new models to 

achieve cost and technology leadership to drive giants i.e. IBM out of PC markets. To 

maintain competitiveness, technology and cost are key factors to today’s companies. 

 

Miltenburg (2005) cited a case study on Rolls-Royce which used to be the most 

advanced engineering company in the world but eventually lost its cost and technology 

leadership. Companies realize the need to promote data exchange for efficient 

decision-making to drive down cost and introduce new technologies. In turn, effective 

data flow across their supply chains will ensure that business information 

communicated effectively and timely to the correct audience.  

 

Organizations without well-defined data infrastructure (Werner and Hermansson 

2002, p.131) will find it difficult to maintain and control their own processes, resources 

and inventory in rapidly changing technology industries. As Bentlage et al. (2001, 

p.215) stated, t is not possible to share data between processes, customers and 

suppliers, merge data for analysis, and scrutinize the data for improvements.  

 

The process to enable making informed decisions starts with Data Collection 

Process, where data originating from a certain process is collected. The flow continues 

with Data Analysis Process where the collected data is processed and analyzed for 
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patterns or trends. The analyzed data is used as a base for making decisions under 

Decision-making Process as demonstrated by Foy (1996, p.25). 

 

Making good decisions is a necessity in maintenance business as well to 

enable better troubleshooting decisions and higher-performing equipment. Luxhoj et al. 

(1997, p.437) pointed out that changing manufacturing requirements today makes it 

imperative for maintenance management to contribute to cost and service 

improvements to the organization. 

 

With this in mind, Luxhoj et al. (1997, p.437) and Tu and Yeung (1997, p.453) 

reviewed two major maintenance-benchmarking studies to understand current issues in 

maintenance industry. The purpose of the Scandinavian and US benchmarking studies 

was to identify issues and general maintenance trends for improving maintenance.  

 

The survey indicates that industrial firms’ maintenance costs have increased 

with Scandinavian firms at 0.5% per year and US firms (10-15%). Wireman (1990) 

noted that the total "waste" in excessive maintenance expenditures was approximately 

200 billion dollars in 1990, which equaled the total maintenance costs in 1979. 

 

Wireman (1990) concluded that the survey results illustrate the need for better 

maintenance planning and the need for more maintenance research and development. 

One of the key needs identified in the studies includes the move toward computer-

based maintenance systems as the result of emerging developments and advances in 

maintenance technology, information and decision technology, and maintenance 

methods. This requires development of expert systems or decision support tools, as 

advocated by Werner and Hermansson (2002, p.131) to support equipment 

maintenance that will be key driving forces to address issues in maintenance industry. 
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1.1  Problem Statement 

Based on a brief introduction on maintenance benchmarking and case studies 

mentioned in Introduction, the problem statement summarized as “a need to aid current 

troubleshooting process using artificial intelligence techniques to generate more 

accurate decisions to solve a tester equipment non-productive downtime issues.” This 

research attempts to address an issue when using the troubleshooting guides to 

diagnose equipment issues. The guides are static information designed to fix specific 

failures and cannot be utilized to resolve failures different from those defined in the 

guides. As different machines perform differently over time, the ongoing 

troubleshooting information captured by the technicians might reveal certain patterns or 

trends that might be able to help troubleshoot future failures. 

 

According to Bloch, H.P. (2001 p.74), the causes of all process-machinery 

failures, without exception, can be put into one or more of seven categories: faulty 

design, material defects, fabrication or processing errors, assembly or installation 

defects, off-design or unintended service conditions, maintenance deficiencies, 

whether procedural or due to neglect, and improper operation. Kindree, et al. (1994, 

p.66) provides a similar troubleshooting concept but the focus is more on the 5 phases 

of machine and equipment life cycle, namely concept, development design, build and 

install, operation and support, and conversion and/or decommission, where upfront 

engineering diagnosis and continuous improvement done in each of the process. 

  

 For this research, the tester equipment non-productive downtime issues defined 

under the problem statement mostly focus on material defects with some issues on 

assembly or installation defects. 
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1.2  Research Objectives 

The main objective of this research is to develop a technique to diagnose or 

troubleshoot non-productive downtime issues for tester equipment used in a 

manufacturing process to enable value-added troubleshooting by using Bayesian 

Networks.   

 

As reflected by the Problem Statement in Section 1.1, the benchmarking 

studies identifies an established need based on increasing maintenance costs, high 

unforeseen maintenance, and high ratio of lost production due to maintenance cost for 

Scandinavian and United States organizations (Luxhoj et al. 1997, p.437). The 

benchmarking studies clearly recommended using artificial intelligence techniques to 

generate decisions that are more accurate. In doing so, troubleshooting process can be 

improved and made more effective in solving tester equipment non-productive 

downtime issues. 

 

To achieve the main objectives of this research, the detailed research objective 

are defined as follows: 

• Develop a model using Bayesian Networks technique by using existing real-

world repair or maintenance data to produce practical troubleshooting steps for 

use by maintenance technicians 

• Utilize downtime data embedded in the repair or maintenance data to compare 

troubleshooting steps generated from NeticaTM software with existing 

Troubleshooting Guide currently in use to evaluate the effectiveness of this 

technique 
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1.3  Scope and Limitation 

The scope of this research is limited to the use of the data source derived from 

the content of a Web-based tester equipment downtime database, accessible at 

http://e-db.png.intel.com/ developed by Intel Corporation for ten production machines 

for the year 2003.  

 

The database is used to capture or document failures that occur during a 

particular tester equipment operation. How a tester equipment fails and how the 

failures are captured can be explained per the generic high-level Universal Data 

Feedback Model process, defined by Kindree, et al. (1994, p.67). This process 

comprises a close-loop system of various functions. The first function is the data 

collection function where the tester equipment failure information is captured. The 

second function is the analysis function where failure information is analyzed. The third 

function is the feedback function where recommendations are provided to fix the tester 

equipment issues and improve the tester equipment reliability and maintainability. In 

addition, it also specifies how to handle failure in a typical tester equipment process, as 

shown in Figure 1.1.  

 

While the tester equipment is in operation (shown as ‘Equipment Operation’), a 

failure happens (shown as ‘Equipment Failure’). A decision box poses a question 

whether to replace the tester equipment part, with a subsequent need to document the 

failure. This process step, known as ‘Document the Failure’, produces the data source 

used in this research. 
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Figure 1.1 Universal Data Feedback Model (Kindree, et al. 1994, p.67) 

 

This process of capturing the tester equipment failure information, analyzing 

failure information, and providing feedback to fix the tester equipment issues and 

improve the tester equipment reliability and maintainability proposed by Kindree, et al. 

adequately simulates a real-world manufacturing process. During a particular tester 

equipment operation, a problem may occur unexpectedly, which either will stop the 

process from running entirely or cause the process not to run per the expected 

performance specifications. The operator of the machine running this process will then 

stop the machine and notify the technician to fix the problem.  
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The technician will attempt to diagnose the problem, determine, and execute 

the most appropriate troubleshooting steps to fix the problem. Bloch, H.P. (2001 p.74) 

cited the strategy of rational thinking, referring to equipment documentation, and 

occasional recollection of the simpler laws of physics, to result in failure identification, 

and point to future failure avoidance. In a factory where proper the tester equipment 

record keeping are maintained, the technician will record down the machine 

information, failure signature, and the troubleshooting steps to fix the problem for future 

reference. 

 

This research is only limited to ‘Document the Failure’ process step where the 

tester equipment failure information is being captured and ‘Data Analysis’ process step 

where the tester equipment failure information is being analyzed. The process to define 

troubleshooting steps recommended to fix the tester equipment issues is similar to 

‘Corrective Action Determined & Executed by Supplier to User/Supplier’ process step.  

 

However, in this step, the troubleshooting steps recommendations are provided 

to the tester equipment technician, not to the User/Supplier as described in the process 

step. All the other process steps, i.e. the tester ‘Equipment Operation’, ‘Equipment 

Failure’, Store in Files (Paper or Magnetic), Return Part With Tag to Part Manufacturer 

or Equipment Supplier’, Complete Universal Tag & Attach to Part’ and ‘Does the Part 

Require Replacement?’ decision box are not included in this research. In short, the 

scope and limitations are clearly defined in this research.  

 

1.4  Approach 

This research approach is divided into several milestones. The first step is to 

analyze current issues facing the tester equipment in manufacturing processes. This is 

accomplished by reviewing the current literature on the topic.  
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Whitney (2004) noted that all current maintenance issues apply to any one of 

three major approaches concerning equipment: strategic, technical, and economic. The 

strategic issues focus on choice of method of accomplishing the manufacturing — 

manual, robotic, and so on — plus part presentation, flexibility, inspection, and 

throughput. The technical problems involve detailed technology choice and assurance 

of proper performance, mainly achieved via an error analysis. Economic analysis is 

concerned with choosing a good combination of alternative methods of achieving 

assembly and controlling error. The focus of this research work will be more on 

technical standpoint as selection of techniques is a matter of technology choice. Proper 

performance will be monitored by a set of pre-defined metrics (to be explained in 

Chapter 4).  

 

As current issues are understood, the second step is to determine the focus of 

research work to be undertaken to address one of the issues selected for study. Once 

the research focus has been determined, the third step is to understand other 

researches done in this field of study and comprehend how those researchers address 

the issues. At this point, a research is proposed that tackles a different aspect of the 

issue or propose improvements on existing research.  

 

The fourth step is to make use of existing data collected on target tester 

equipment in the manufacturing process. The process of selecting a technique to 

define an algorithm to process the collected data and to subject to a model to predict 

systematic troubleshooting guides is considered. This output of predicted 

troubleshooting steps is compared to the existing manual troubleshooting guide using 

pre-defined criteria to determine the effectiveness of the technique. The pre-defined 

criteria for comparison will indicate whether the so-called the Bayesian Networks 
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models is better at predicting appropriate troubleshooting steps than existing manual 

troubleshooting guide to solve a particular tester equipment problem. 

 

The data source derived from the content of a Web-based tester equipment 

downtime database is extracted into Microsoft® Excel-based files. All the tester 

equipment failure information is captured per the ‘Document the Failure’ process step 

in Section 1.3 in these files. The decision to limit to a number of so-called failure data 

bins for particular tester equipment is due to several factors to be explained further in 

Chapter 3. 

 

Commenting on this, Liu and Desmarais (1997 p.991) agreed that constructing 

a valid knowledge representation is a time-consuming task and there are issues on 

insufficient empirical or meaningful data and/or the complexity involved in the network 

induction in real-life applications. Jäger and Bertsche (2004 p.91) also cautioned that 

the accumulated information might be very imprecise If the amount of information 

becomes quite large. 

 

Buntine (1996, p. 200) also agreed on the difficulties in determining the number 

of cases required for the sample, which is referred to as Sample Complexity, and the 

time or space required for optimizing the sample into the model, which is referred to as 

Computational Complexity. Buntine quoted the computational learning theory where 

there are roughly three distinct phases depending on the quantity of cases obtained for 

the sample, namely the small sample, the medium sample, and the large sample 

phases. Initially with a small sample, Buntine used the term ‘learning’ or absorption of 

information to correspond to one's biases or prior information. With a large sample, 

learning is close to the "true" model possible with high probability. Since an error rate 

known as Bayes optimal error rate is inherent in all three different types of samples, 
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this indicates that using a small sample is possible. From literature, Bayes optimal error 

rate is proven not to influence the validity of the sample data. 

 

These files are in the form of spreadsheet that comprises a number of columns. 

The listing contains the associated tester equipment type and number, the root cause 

of equipment failure, equipment type and number (secondary supporting equipment), 

equipment downtime and up-time dates and times. It also contains Mean Time to 

Repair (or MTTR) in hours, down-time (or D/T) in hours, equipment failure mode, the 

employee number of the technician who attended to the problematic equipment, 

technician work shift hours, and comments or troubleshooting steps taken by the 

technician to fix the problem. 

 

From these files, the Failure Mode column (column M) is filtered to reflect a list 

of output binning called Bin 9, Bin 18, and Bin 21 (to be explained in Chapter 3). They 

will be used to be taken as sample of the equipment failure mode that contribute to the 

downtime are taken for further analysis to determine the standard troubleshooting 

steps taken to resolve the problem.  

 

A Theoretical Framework for the algorithm to process the data for the model will 

be defined. Once a systematic troubleshooting has been determined, this data is 

plugged into the Norsys Software Corp NeticaTM Bayesian Networks software that will 

recommend the most effective troubleshooting set of steps to rectify the problem based 

on evidence using Bayesian Networks algorithm. The troubleshooting set of steps 

derived from the Bayesian Networks model will be compared against the existing 

troubleshooting steps found in the guides. 
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1.5  Thesis Outline 

This thesis is organized into six main chapters: Chapter 1 starts with 

Introduction that briefly explains the challenges faced by companies doing business on 

a global level, especially on technology and cost, and results of maintenance 

benchmarking studies that advocates effective manufacturing equipment management 

and usage of data for decision-making in manufacturing process improvement. Chapter 

2 focuses on Literature Review with an academic treatment and definition of the ideas, 

terminology, and equations for Failure and Downtime, Artificial Intelligence Techniques 

and Theoretical Considerations for Bayesian Networks used in this research.  

 

Chapter 3 describes the Theoretical Framework or the definition on the 

algorithms and the data manipulation steps necessary to process the raw data for the 

proposed system. Chapter 4 deals with the Development of the Diagnosis System on 

how this research is pursued together with the assumptions, processing and 

transforming the data in the model for analysis. Chapter 5 discusses on Comparison 

and Results where tabulated data is compared and interpreted, and wraps up with 

Discussion where analysis made on the data is being discussed. In Chapter 6, a 

Conclusion is made to support the objectives of this research and Recommendation for 

future proposal is included to provide future directions for this research. 
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CHAPTER 2 

LITERATURE REVIEW 
 

 
2.0 Introduction 
 

Literature review is divided into four sections in this chapter. The first part is on 

introducing rising trends in industries on making informed decision-making by having 

highly structured data infrastructure and the method to process the data. It also 

includes results of maintenance benchmarking studies that identify the maintenance 

industry need for development of expert systems or decision support tools to support 

equipment maintenance. The second part is on academic treatment of maintenance 

terms, i.e. Failure and Downtime including definitions, equations, and related concepts. 

The third part is on the method to process the data, namely Artificial Intelligence 

Techniques with definitions, related concepts and review on available AI techniques 

with special focus on Bayesian Networks. The fourth part is on Theoretical 

Considerations for Bayesian Networks with definitions, concepts, and applications. 

 

This research paper deals with the effort to develop methods and algorithms for 

resolving equipment failures using Bayesian Networks model and validate them using 

standard industry metrics. Emerging trends in computers and industry, case studies, 

and importance of structured data infrastructure for informed decision-making in 

businesses are discussed, leading to a review of two maintenance-benchmarking 

studies necessary to provide an understanding of current maintenance issues in 

industry before proceeding to the next section. 

 

Initially, company information has been accumulated on paper in various forms; 

i.e. paper ledgers, logbooks, balance sheets, manuals, directories, data sheets, 

records, and other analog forms. Goldsmith (2003) states one case study where 

advances in other American economic sectors in applying digital information and 
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communications technologies are not proliferated successfully to some industries. 

Decision-making in the new millennium remains glued to paper, the telephone, and 

practitioners’ memories. This includes paper records, often-unreadable paper 

prescriptions, paper orders, paper lab reports, paper telephone message slips, fax 

paper verifications, and paper bills of questionable accuracy. Retrieving useful data 

from this compendium can be an intimidating effort. Quite often, due to the 

considerable amount of time spent searching for data, that data holds less value when 

it is found for use. As Foy (1996, p.24) summed it up, the current model for information 

acquisition, storage, and access in today’s corporations is hopelessly out-of-date. This 

is the state of an early 1970s information environment.  

 

 

With the advancement of computer technologies available at a much lower cost, 

the availability of inexpensive yet powerful computer hardware and software reduces 

the costs of setting up new types of businesses, for example e-business, and expands 

the possibilities for setting up electronic portals or Web sites to conduct business 

(Brynjolfsson and Kahin, 2000). Companies have started engaging on new business 

models on digital platform over traditional channels. Example companies include 

VeriSign and GTE CyberTrust that have recently emerged as Certification Authorities 

(CAs), or third party companies, to provide software authentication services. These 

companies issue digital certificates based on technological mechanisms such as the 

public key cryptography, equivalent to software key, to access secure Web sites and 

databases (Schneier 1994). Another company, Red Hat, functions as a digital 

intermediary company, or ‘middle-man’ company, which adds value by testing and 

assembling customized software components for consumers (Brynjolfsson and Kahin, 

2000). In short, improvement in computer technologies enables new businesses 

opportunities. 
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Slywotzky (1999, p.94) commented that some companies suffered through hard 

ways, i.e. missing profitability projections, or losing out market share to competition, etc 

before taking the digital transition. Intel, for example, decided to invest $300 million to 

digitize its product-development process in computer-aided design and computer-aided 

manufacturing (CAD/CAM) following a $203 million loss in 1986. That is a key 

investment as becoming digital in the design and production of chips improves 

competitive performance. Slywotzky also cited Wal-Mart making similar investments 

digitizing its logistics system at about the same time. By installing sophisticated 

communications and technology systems to provide real-time sales-and-ordering 

information, the company moved from atoms to bits. As a result, Wal-Mart 

outperformed its competitors by offering the right products at the right stores, by cutting 

costs, by integrating its operations with its suppliers, and by capturing valuable 

information about its customers. Twenty years ago, Wal-Mart and Intel were already 

digitizing their way of doing business. 

 

This is demonstrated by the fact that a typical Fortune 500 company keeps an 

average of 8 Gigabytes of digital information in 1970, and steadily increases to 27,000 

Gigabytes in 1990 and expected to reach 400,000 Gigabytes in 2000 (Foy 1996, p.23). 

However, a lot of this information resides on standalone computers or workstations, 

stored in a certain format understood by and benefit only a small number of staff. This 

will make other people difficult to access and analyze the data. At that time, networked 

computers were too costly and complex and are only in the domain of very large 

companies, which were financially able and willing to pay for its high cost. This is the 

first wave of digital evolution where there is a surge in industry transition to digital 

environment.  

 

As time changed, and computer networks become more prevalent, these 

standalone computers or workstations started to connect in form of networks and the 
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digital data are shared among employees around the office. Pesko (1999, p.11) noted 

that by end of the millennium there are 50 million computers in the U.S. workplace and 

12.3 million networks in operation, providing broader access to information. Within the 

companies, the digital data traffic started to increase, but still confines to the small 

periphery of the network topology it was being designed. In reality, what this means is 

that for example, office computer networks cannot speak the language used by the 

computer networks in the manufacturing floor, and vice versa. Hence, these networks 

are like ‘'islands of automation', with little or no connection between processes 

(Bentlage et al. 2001, p.215). This is the second wave of digital evolution where those 

seemingly separate digital environments start communicating to each other. 

 

With the explosion of Internet in 1994, many companies, organization, 

governments, as well as individuals have started to tap into the power of Internet with 

the idea that this novel communication medium has the potential to spread the 

information quickly and in a standardized fashion. The open structure of the Internet 

now allows small firms to conduct businesses previously available only to a select few 

who had access to EDI (Electronic Data Interchange) which is the exchange of 

electronic business documents between two or more businesses.  

 

With the advent of Internet or World Wide Web, publishing information becomes 

easier with increasing use of HTTP or Hyper Text Transfer Protocol, one of the most 

popular protocols. More than 100 million Internet users surf the Web around the world 

with 27.5 million people exchanging e-mail messages every day (Pesko 1999, p.11). 

The efficient distribution of content - any information that enabled to be communicated 

electronically, made possible by virtually removing all physical barriers of content 

distribution, promising bright future on the Web (Mccandless 1996, p.8). Most network 

configurations already employed in companies in either LAN (Local Area Network) as 

shown in Figure 2.1, or dial-up computer connected to the Internet have started using 
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World Wide Web as a method to disseminate information. This typifies the third wave 

of digital evolution where digital communication is used for serious business purposes.  

 

 

 

                        Online Spreadsheet              Online SPC 

                                                                               

 

Online Data Collection                                                                                       SCADA Systems 

 

 

 

                           Engineering Workstation                           Database Servers 

 
Figure 2.1: A Sample Token Ring Local Area Network (LAN) (Bentlage et al. 2001, 

p.216) 
 

For the next phase, the fourth wave of digital evolution envisions all types of 

electrical or electronic appliances and equipments available in offices or homes to be 

connected to the network using the familiar HTTP Protocol. Information can be shared 

easily, quickly and understood by common people to make decisions. The intimate 

connection of a computer with the information infrastructure creates the demand for an 

appliance that can provide specialized access to information—hence the name 

“information appliance.” The real value of an information appliance is the ability to 

connect to the global repository of information, the Internet and the World Wide Web 

(Want, and Borriello, 2000, p.24). The Internet-enabled manufacturing is one 

breakthrough concept in an attempt to get the manufacturing equipment and machines 

in the factories connected to a company-wide network and have the key production 

parameters and controls hardwired to the central infrastructure. The fourth wave 

indicates ubiquitous computing or any time and any-place computing. 

Token Ring 
Network 
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Today, a single multinational company can have a multitude of factories and 

offices spreading across continents. These factories usually deploy numerous 

manufacturing equipments producing a variety of products in various stages of 

production. With the increase in the number of factories spread in various geographical 

regions, the numbers of machines used for production without doubt will increase. This 

phenomenon poses new challenges to businesses. 

 

As Michael and Thomas (2006) noted, the challenges faced are “... capacity 

allocation strongly influences supply chain performance and profitability. As with so 

many other supply chain considerations, it is a balancing act for manufacturers with 

multiple locations. Allocating too little capacity to a facility creates inability to meet 

demand and loss of sales. Saddling a facility with having to carry too much capacity 

results in low utilization rates and higher supply chain costs.”  

 

Other challenges include low cost and technology advantage, which are 

important criteria that enable successful companies to compete with and force other 

companies out of the market (Masatsugu 2000, p.178). Slywotzky (1999, p.94) 

reiterated that new challengers using new business models have risen to take on 

almost every leading company in almost every industry with the new models producing 

cost advantages of 10% to 20% for the innovators. For the computer industry, Compaq 

reinvented the business model to the dismay of IBM. Then Dell reinvented the model 

again - to the dismay of Compaq. For the air carriers business, Southwest Airlines 

reinvented the business model to the dismay of American Airlines. For steelmakers, 

Nucor reinvented the business model to the dismay of U.S. Steel. To maintain 

competitiveness, technology and cost are key factors to today’s companies. 
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This is further demonstrated by a case study by Miltenburg (2005). Rolls-Royce 

used to be the most famous engineering company in the world but eventually lost due 

to cost and technology. The company is known to the public as a producer of luxury 

automobiles. It promoted its aircraft engines products against established companies 

such as Pratt and Whitney and General Electric to win a major order from Lockheed in 

1968. 

 

After some time, Rolls-Royce began to realize that it lacked the capabilities 

required for the project. The new engine incorporated new, unproven technologies, 

which was difficult for Rolls-Royce because the company was a technology follower, 

not a leader. Unanticipated problems and delays eventually caused development costs, 

originally estimated at £65 million, doubled to £135 million by early 1970. It nearly 

doubled again to £220 million in 1971. In 1971, Rolls-Royce fell into bankruptcy, 

showing technology and cost is important for maintaining companies’ viability. 

 

How these companies can overcome these challenges? Foy (1996, p.23) 

stated, “The value of a corporation becomes its ability to generate and to effectively 

communicate needed knowledge throughout the system of suppliers, customers, 

employees and communities to which it operates.” Key learning for companies to take 

into consideration is facilitating data exchange for efficient decision-making to drive 

cost and technology. Corporations should practice effective data flow across their 

supply chains to ensure that business information is communicated effectively and 

timely to the correct audience.  

 

Changes are happening in the industry at a very rapid pace, especially for 

technology companies. Without strong data infrastructure, organizations are unable to 

effectively and timely maintain control their own processes, resources and inventory. In 

time, it renders those organizations to become less and less competitive, lose market 
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share and eventually driven out of the marketplace. As remarked by Werner and 

Hermansson (2002, p.130), companies have to utilize all their resources, including 

information and technology, and refine and combine them to show patterns and 

support conclusions that could be used to provide better service to the customers, gain 

market share and increase profit by reducing cost. 

 

How a well-defined data infrastructure can improve cost? Bentlage et al. (2001, 

p.215) observed that many different processes in companies were ‘islands of 

automation’, and being controlled or monitored using unrelated and incompatible tools. 

It was not possible to share data between processes, merge data for statistical 

analyses, and gain access to the data from an individual process. Many processes 

have no controls in place, and those using paper-based SPC or Statistical Process 

Control charts, for example, makes acquiring data for further analysis difficult. These 

were regarded as limitations to an effective defect and yield detractors analysis and 

development of solutions. Without the right data collection methodology or accessibility 

to the required data, engineers were constrained in their efforts to improve their 

processes (Bentlage et al. 2001, p.215). With this in perspective, without well-thought 

data mechanisms in place, any changes desired to the manufacturing process either to 

reduce cost or to simplify the manufacturing process or to shorten the throughput time 

are too tedious and time-consuming to make them happen. 

  

How to optimize the use of data infrastructure? According to Mena et al. (2002, 

p.225), in order for an organization to be competitive, it has to deliver value to 

customers by offering better products and services at reduced costs to be profitable 

and gain market share. To this end, the organization needs to organize its data in such 

a way so that it is easily accessible in a timely fashion to decision-making people in the 

company, so that the most optimized decisions can be made in the best interest of the 
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company to produce better products and services. In essence, effective data flow is 

essential for companies to be successful.  

 

Moreover, Werner and Hermansson (2002, p.131) pointed out, the necessary 

information exists within the company, but is too fragmented and complex for a human 

mind to make efficient conclusions upon. Getting the raw data is one thing, applying 

them appropriately to get the job done is another, and these issues pose challenges in 

formulating intelligent business decision-making.  

 

The diagram shown in Figure 2.2 can represent this decision flow. The flow 

starts with Data Collection Process, where data coming from a specific monitored 

process is being collected. The flow continues with Data Analysis Process where the 

collected data is processed and analyzed for patterns or trends. The analyzed data is 

then used as a base for making decisions. Foy (1996, p.25) noted an example, for an 

accountant to accomplish a particular audit recommendation, a person may need to 

extract company financial data, from which he may construct statistical analysis, 

followed by an executive summary for him or others to make appropriate decisions. In 

this example, extracting company financial data constitutes the Data Collection 

Process; constructing statistical analysis comprises the Data Analysis Process, 

whereas summarizing the findings to make appropriate decisions falls under Decision-

making Process. 

 

 

 

 

 

 

Figure 2.2 Block Diagram of Decision Flow 
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Going down to second level detail, one important piece of data to a company is 

in-depth equipment troubleshooting information, which can be in the form of paper-

based file ledgers or records or an equivalent electronic database, used by technicians 

(in Intel Corporation for this research) to fix equipment problems. This repository or 

database of equipment troubleshooting information taps on the expertise of 

experienced people, acquired over the years on top of generic equipment training. This 

type of information enables experienced people to make good troubleshooting 

decisions. As for inexperienced people, for unfamiliar tasks, they will tend to perform 

trial and error judgment before arriving at the correct decisions, unless working under 

supervision of experienced people. When experienced people move out or transition to 

different positions or in the event that their skills decay after periods of skill disuse (Hall 

et al 1998, p.184), this valuable information goes with them. This is considered a loss 

to the company. 

 

Luxhoj et al. (1997, p.437) stated that the changing needs of modern 

manufacturing necessitate a reexamination of the role that improved maintenance 

management plays in achieving key cost and service advantages and maintenance 

improvements to the organization. 

 

From this point, to understand current issues in maintenance industry, Luxhoj et 

al. (1997, p.437) and Tu and Yeung (1997, p.453) reviewed two major maintenance 

benchmarking studies from Scandinavia and the United States. In February 1992, a 

EUREKA (European Benchmark Study on Maintenance, 1993) project was initiated 

that attempted to benchmark maintenance in Scandinavian countries, i.e. Denmark, 

Norway, Sweden, and Finland. The purpose of the benchmarking study was to 

establish a trade-by-trade overview of maintenance methods to assist companies in 

identifying current issues and general maintenance trends for improving maintenance. 
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Actual interpretation of the study's results among countries will largely depends on 

dynamic factors such as varying age and quality of machinery and buildings, 

interpretation or use of maintenance concepts, varying environmental conditions, 

differing forms of production operations (due to number of shifts and production 

technology).  

 

Luxhoj et al. cited that the benchmarking study, beginning with Denmark, was 

based on an analysis of questionnaire responses from 43 industrial companies. The 

companies accounted for approximately 12% of the total revenues in Danish industry 

and approximately 8% of industrial employment. The industrial sectors of chemical and 

petroleum, nonmetallic mineral products, and manufacturers of food, beverages, and 

tobacco accounted for approximately 64% of the industry sector turnover in the sample.  

 

On average, approximately 4.9% of the companies' turnover in 1991 was spent 

on maintenance, which was similar in percentage as 10 years earlier. It is interesting to 

note that from 1981 to 1991, there were increases in maintenance costs (expressed as 

a percentage of capital value) for the overall survey average (0.6%), for production, 

transport, and storage equipment (0.9%), and for spare parts (0.4%).  

 

The "average" Danish company represented in the survey spent 32% of its 

maintenance budget on spare parts, 32% on salary and wages, and 31% on external 

services. In the average company, 23.8% of the maintenance costs were attributed to 

unforeseen repairs, 28.7% to preventive maintenance, and 45.5% to planned repairs.  

 

Approximately 39% of the time spent on maintenance is used for unforeseen 

repairs, 20% for preventive maintenance, and 37% for planned repairs. Planning and 

control of preventive maintenance is performed in 45% of the companies. Use of the 

computer to control spare parts increased from 10% to 50% from 1981 to 1991, and 
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computer usage to control preventive maintenance increased from 9% to 60% in the 

corresponding period. However, 25% of the companies do not have any inventory 

control procedures in place for spare parts.  

 

In Finland, the benchmarking survey was based on responses from 80 

companies, which accounted for approximately 12% of the total Finnish revenues and 

approximately 14% of industrial employment. On average, approximately 4.8% of the 

companies' turnover in 1991 was spent on maintenance.  

 

The Swedish maintenance survey was based on responses from 71 of 200 

large and medium-sized companies from varied industries, such as chemical, paper, 

and pulp, steel and metal works, machine and transport equipment, electromechanical, 

and food. The Swedish survey illustrates that despite discussions of decentralization of 

maintenance resources, in the participating organizations, the majority of maintenance 

resources used (approximately 70%) are centrally organized.  

 

The companies in the survey identified the highest priorities for improvement as 

the maintenance skills of the production staff, involvement of the production staff in 

maintenance work, continuous use of key figures, knowledge of maintenance 

throughout the organization, and control of the effects of maintenance on production 

volume. In addition, the survey indicated that the companies with the fewest number of 

shifts, or the shortest production time, reported a greater need for improvement.  

 

Norway received 194 responses to its maintenance benchmarking study; 

approximately 60% of the respondents were from the food, engineering, and chemical 

industries. Seventy percent (70%) of the companies were small and medium-sized 

enterprises (SMEs). About 56% of the companies had no clear maintenance and 

availability objectives. Most of the companies had a centralized maintenance function. 
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