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ABSTRACT
A range restricted C1 interpolation local scheme to scattered data is derived. Each macro triangle of the
triangulated domain is split into three mini triangles and the interpolating surface on each mini triangle is a cubic
B6zier triangle. Sufficient conditions derived for the non-negativity of these cubic B6zier triangles are expressed
as lower bounds to the B6zier ordinates. The non-negativity preserving interpolation scheme extends to the
construction of a range restricted interpolating surface with lower or upper constraints which are polynomial
surfaces of degree up to three. The scheme is illustrated with graphical examples.
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ChaO la, Mu194a, Mu194b] for the bivariate cases.

[ChaOla] describes a local scheme for scattered data
range restricted C1 interpolation. The interpolating
surface is piecewise a convex combination of three
cubic B6zier patches. N, the coefficients of the
convex combination involve rational functions, thus
the interpolant' is piecewise a rational patch.
Sufficient conditions for the non-negativity of a cubic
B6zier triangle are derived and these conditions
prescribe lower bounds to the' B6zier ordinates. Non­
negativity is achieved by modifying if necessary the
first order partial derivatives at the data sites and
some B6zier ordinates.

Pennission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice' and the full citation on the first page. To copy
otherwise, or republish, to P9st on servers or to redistribute
to lists, requires prior specifi? permission and/or a fee.

1. INTRODUCTION
The construction of a surface in computer., aided
geometric design usually involves generating a set of
surface patches which are smoothly connected
together with certain degree of continuity. Besides,
one is often interested in preserving some properties
inherent in the data such as positivity, monotonity
and convexity as displayed by its piecewise linear
interpolant. For example, in scientific visualization
when physical quantities like densities and rainfall
are reconstructed graphically the non-negativity of
their values should be preserved for otherwise
negative values are not physically meaningful.

The preservation of non-negativity refers to that the
generated interpolating surface will be non-negative
if the given data are non-negative. Non-negativity
preserving interpolation or more generally range
restricted interpolation has been considered, for
example in [Go09Ia, Ong92a, Opf88a, Sch88a,
Wev88] for the univariate cases and in [Br095a,

Given scattered data points (x i , Yi' Z i) with

Zi >0, 1=1,2,···,N, (Xj'Yi);t(Xj'Yj) for i;tj.

In this paper we have constructed a C l non-negativity
preserving piecewise cubic polynomial surface
z=F(x,y) with F(x/> Y/) =z/> j=I,2,···,N, and

then extended the scheme to construct a range
restricted C1 interpolant subject to polynomial
constraint siJrface of degree up to three! An approach'
similar to [ChaOla] is adopted, but the interpolant has
a simpler and different structure,. being piecewise a
cubic polynomial B6zier triangle instead of a rational
function of degree seven. This is achieved by

. subdividing each triangle, refeired as a macro
triangle, in the triangulated domain into three mini

WSCG'2004, February 2-6,2004, Plzen, Czech Republic. triangles as in the Clough-Tocher split [Cl065a] and
C<?eyright UNION Agency':" ~cience Press constructing a B6zier triangle on each mini triangle.

'-- ..J - This subdivision of a macrQ triangle into three mini
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triangles is driven by the fact that it is generally not
possible to solve the scattered data C l interpolation
problem with cubic polynomials defmed over the
triangulated data. We describe in Section 2 the
conditions for CI continuity between two adjacent
Bezier triangles. In Section 3, we derive sufficient
conditions On the Bezier ordinates fo ensure the-non­
negativity for a composite Cl triangular patch
consisting of three adjacent cubic Bezier triangles on
the three mini triangles of a macro triangle. In
Section 4 !a local C l non-negativity preserving'
scattered data interpolation scheme applying these
sufficient non-negativity conditions is derived.
Section 5 extends the results to range restricted
interpolation which considers polynomial surfaces up
to degree three as lower bound or upper bound.
Lastly, two numerical examples are presented
graphicat"ly.

the same boundary curve along the common edge of
the domain triangles. We shall recall two sets of
conditions for C l continuity along the common
boundary of the two adjacent patches for the later
reference.

.V3 =W2

bO,O,3 =CO,3,O

b l•O,2 C1,2,O

b2,o,I b' - C

b
°il'2\- O.2~

VI b3,o,o 1,1,1 1,1,1

b 2,1,O bO,~,I: CO,I,2

bl ,2,O CI,O,2

bO,3;O =cO,O,3

V2 =W3

Figure 1. Two adjacent B6zier triangular patches

The first to be noted are the necessary and sufficient
conditions de'scribed in [Far96a]. Let !J. V;V2V3 ,

!J. Jt'tW2W3 be two adjacent triangles on the x-y

plane with V2 = W3 and V3 = W2• Suppose that the
cubic B6zier triangles on these two triangles have
B6zier ordinates bjj,k dan Cjj,k respectively (see Figure
1). These two cubic Bezier triangles have the same
boundary curve along the common boundary V2V3,

thus b O,O,3 = CO,3,O, b O,J,2 = CO,2,b b O,2,J = CO,I,2 and
bO,3,O = CO,O,3' Then the neccesaiy and sufficient
conditions for C l continuity between the two patches
are

where WI = a VI + PV2 + r V3, a; P and rare
constants which sum to 1. Conditions (2.1) and (2.3)
will be automatically fulfilled when the B6zier
triangles have common first order partial derivatives
at V2 and V3. If we associate the B6zier ordinates

bjj,k with (Xjj,J" Ylj,k) for 05, i, j, k 5, 3 where

(Xi,j,k' YI,j,k) =t (i Vj + j Vj + k Vd

so as to obtain Bjj,k with BjJ,k = (Xij,k> Yij,h b ij•k) and
the points CIJ,k are similarly defined, then the three
conditions above have a geometrical interpretation,
i.e. the four points in each set, {Cl ,O.2, B J,2,O, BO,3,O,

B O,2,l}, {Cl,),b BI,l,ll BO,2,b BO,J,i}, {Cl ,2,O, B),O,2,

BO,I,2, BO,O,3}, are coplanar.

V

(2.1)

(2.2)

(2.3)

Ve 23

Figure 2, Notation on the triangle

CI,O,2 = ab l ,2,O +Pb O,3,O + r b O,2,l

CI,I.1 = a bl,l,1 + Pb O,2,I + rbO,I.2

CI,2,O = a b l ,o.2 + Pb O,I,2 + rbO,O.3

V

A cubic Bezier triangle S on T is defined as

S(u, v, w) = L bj j k _3_!_ uj vj wk

i+j+k=3 " j! j! k!
l,j,k~O

V=uV;+vV2 +wV;,

2. Cl CONTINUITY BETWEEN
ADJACENT CUBIC RitZIER
TRIANGLES

Let T be the triangle on the x-y plane with vertices
Vb V2, V3 and barycentric coordinates u, v and w such
that any point Von the triangle can be expressed as

u+v+w=l, u,v,w~O,

with bjj•k denoting Bezier ordinates of S. Note that
S interpolates the Bezier ordinates b 3,o,o, b O,3,O, b O•O,3 at
the vertices Vb V2, V3 of T respectively since the
barycentric coordinates of these vertices are (1,0,0),
(0,1,0) and (0,0,1). Ordinate bjj,k (except bl,I,I) is
referred as a boundary Bezier ordinate and bl,l.1 is
referred as the inner B6zier ordinate of the cubic
B6zier triangle S. The boundary B6zier ordinates are
determined by the first order partial derivatives at the
vertices along the corresponding boundary, For
example,

u + v + w = 1, u, v, w ~ 0.

where as /aelJ are the directional derivatives along
the respective edges of the triangle (see Figures 1 and
2). Consider two adjacent cubic B6zier'triangles with
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(3.3)

The second set of sufficient conditions is quoted from
[Go091b] to determine the inner Bezier ordinates
bl,I,. and CU.I so as to attain CI continuity along
the common boundary. This is achieved by fixing the
nonnal derivative to vary linearly along the common
boundary. Consider the edge elj of the triangle from
vertex V, to l'J. Let nl be the inward normal to the
edge e23 (see Figure 2). The normal derivative
ap / anIon e23 being linear yields

bi•••• = [ b l ,2,o + bl•O.2 + hI ( 2 bO•I ,2 - bO;2,1 - bO.O•3) +

(1- hI) ( 2 bO,2,I - bO•3.0 - bO•I,2)] /2 (2.4)

where hI = -(e12' e23) / IeZ3/2. Ordinate CI,I.I of
the adjace~t Bezier triangle T is determined similarly.
In our scheme, each macro triangle in the triangulated
domain is subdivided into three mini triangles at an
interior point G of T (see Figure 3). G is chosen as
the centroid of T as this yields a more even
subdivision of T into three triangles but otherwise G
can be chosen arbitrarily. CI continuity along the
common boundary of two adjacent macro triangles is
obtained by using the second set of conditions while
CI continuity along the common boundary between
two adjacent mini triangles which are in the same
macro triangle is achieved by using the first set of
conditions.

Suppose that each cubic Bezier triangle on the three
mini triangles which are in the macro triangle T have
Bezier ordinates {ai,j,k}, {bi!i>k} and {Ci!i'k}, 0 S; i,j, k
S; 3 , i + j + k = 3, respectively as shown in the Figure
3. The three cubic Bezier patches are required to
meet with Cl continuity and their normal derivatives
vary linearly along the three edges of the macro
triangle T. By CO continuity between these three cubic
Bezier triangles along GV" i =1,2,3, we have.

aO.3,O = CO,O,3, al,2,O = CI,O,2, aZ.l,O= C2,O,"

aO.O,3 = bO.3,o, bl,z,o = al.O,Z, bz.l .o= a2,O,"

bO,O,3 = CO,3,O, CI,2,O = bl,o,2' CZ.I.O = b2,o."
a3.0.0 = b3,o.o = C3,O.O·

Denote the sets

M I ={az,I,o= C2.0," bi:I,o=az,o,,, CZ.I.O= bZ,O,I},

M 2 = {al,I,1> bl, •• 1> CI,.,.},

M 3 = {c.,O,Z=al,Z,O, al,o,z= b.,2,O, bl,o,2= CI,2.0},

. M 4 ,,; {aO,2,haO,I,2, bO,z,1> bO.I,z, CO,2,I> co,.,z}, .

M s =(aO,3,O = co,o,), aO,O,3 = bO,3,O, bO,O.3 = co.3,6}.

As noted earlier, the Bezier ordinates and the first
order partial' derivatives at the vertices V, will
detlfnnine the boundary Bezier ordinates in M4•

From this,- the elemeiifs in M3 are determined by CI

continuity (with the geometrical interpretation) as

. a.,O,2 = (bo,2,. + aO,1.2 + bO,3,O) / 3

bl.O•2= (CO,2,1 + bO,I,2 + co,~,o) /3 (2.5)

CI,O,2 = (aO,2,1 + CO.I.2 + aO,3,O) /3.

If we now fix the choice of the three inner Bezier
ordinates in M2; then by CI continuity the remaining
four Bezier ordinates will be determined, namely

aZ,o,1 = (al,O,2 + bl,I,I+ al,I,I) / 3

bZ,o,1 = (b.,O,2 + CI,I,.+ bl,I.I) /3 (2.6)

C2,O.1 = (CI,O,2 + al.I ••+ CI,U) / 3· ,

(2.7)

3. SUFFICIENT CONDITIONS FOR
THE NON-NEGATIVITY OF THE
CUBIC REZIER PATCHES

Suppose that the Bezier ordinates at the three vertices
of a triangle T are positive, i.e. m ~.e, 'i/ m E Ms , for

some .e> O. We shall derive sufficient conditions to
ensure that the three cubic Bezier patches defined on
the mini triangles of T interpolating the given positive
data values are non-negative while CI continuity is
maintained along the common edges (see Figure 3).
These sufficient non-negativity conditions prescribe
lower bounds for Bezier ordinates. Let us first
observe conditions for the non-negativity of a cubic
B6zier curve described in following theorem quoted
from [Goo91a].

Theorem 1
Let rex) = A(1-x)3 + 3B (1- x)z x + 3 C (l - x) i +

Dx3
, OS;xs; 1,

where A and D are positive, and at least one of B

or C, is negative. Then r(x) < 0 for some x E (0, 1)

[ resp. rex) = °for only one point in (0, 1)] if and
only if 3BzCZ + 6 ABCD - 4(AC + B3D) _AzDz > 0

[resp. = 0 ].. (3.1)

With r(x), 0 s; x S;1, as in Theorem 1 where A, D > 0,
denote

<l> = 3B2CZ + 6ABCD- 4(AC + B3D) _A2Dz.

If B =- A / 3 and C = - D /3, then

<l> = 4AD(A-D)2 /27 ~ O.

Thus in this case, <l> = °if and only if A = D; and:
<l> > 0 if and only if A ¢ D. (3.2) .

Also note that if A =D =I. > 0 and I
B = C = -I. / 3a where a > 1, then we have

() I.(a-I) O· ""' [0 1]
rx~-->, vXE,.

4a

In view of Theorem I and (3.2), we fix the lower
bounds of the boundary Bezier ordinates of T as
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m4 ~ -f/3a, with a> 1, V m 4 E M 4 • (3.4) G (1,0,0)

Figure 3. Bezier ordinates of the iniili triangles

,,,,,,

//(1-t, tv, tw)

on the mini triangle G V2 V). Let P( 0, v, ';V ), where

v+ w=1, denote a point along the ydge V2V)

opposite the vertex G. With 1as the parameter which
varies between 0 to l' from vertex G to the point P,
the barycentric coordinates for a point on the line
segment GP can be written as (l-t, tv, tw), 0 ~ t ~ 1
(see Figure 4). Then the curve on the cubic Bezier
triangular patch S along the line segment GP is given
by

V2 P (O,v,w) V3

Figure 4. Notation on the mini triangle

CO,2,)
aO,I,2

a2,I,O =:= c2,O.l

al,I,1 : c·G1 1,1,1
•••• '" r

a - b" b ". - C .2,0,1 - 2,1,0 2,0,1 - 2,J,0

a =b' bl,l,l bl '0,'2' =C1201,0,2 1,2,0 , , , '
V2 ••••• ''' V

3.. ~ ......

GO,O.3 = bO,3,O bO,2,I bO,I,2 . bO,O,3 = CO,3,0

I. 8
=-(1--) .

9 3a

By (2.5), we obtain

1 ( -I. -I.) P. 2m3 ~- e+-+- =-(1--), Vm)eM 3 •
3 3a 3a 3 3a

If in addition, the lower bound of the inner Bezier
.ordinates is also fixed as - I. /3a, i.e:,

nl2 ~-f/3a, Vm 2 eM2 , (3.5)

then from (2.6), V ml e M I ,

1 (e . 2 -f. -I.)ml ~ - -(1--)+-+-
3 3 3a 3a 3a

The Bezier ordinates a),o.o = b),o,o = C3,O.0 at the
centroid G is the value of the interpolating surface at
G, so b3,o,0 ~ 0 is necessary to ensure non-negativity
of the triangluar Bezier patches. Moreover, it is
also necessary that ml ~ 0, V ml e M I , otherwise

negative values of mJ would lead to negative partial
derivatives at G along the corresponding edges and
the corresponding Bezier patches will not be non­
negative. By (2.7),

1 I. 8
b) 00 = - (a2 0I + b20I + C2 0I ) ~ - (1- -) ." 3 ., " " 9 3a

For b).o,o ~ 0, it is required to have

a ~ 8 / 3.

So if V nl e M 2 U M 4' m ~ - I. / 3a 2! - I. / 8 with

a ~ 8 /3, we obtain as described above

m) ~ f/ 4, V nl3 E M 3'

g ~ 0, VgeMl u{b3,0,0}.

Now consider the triangular Bezier patch

31 .• k
S(u, V, w) = I bi j k --'- u'vJw

i+j+k=) ,. i ! j! k!

S(l-l,t(1- w),tw) =A(w)B6 (t)+ B(w)Bf (I)

+C(w)B~(t)+D(w)Bl(t) (3.6)

where A(w) = b),o,o, B(w) = (1-w) b2,I,O + wb2,o,l>
C(w) = (l-w)2bl ,2,o + 2(1-w)wbl,l,1 + w2b1,o,2 and
D(w) = (l-w)3bo,3,O + 3(1-w)2wbo.2,1 + 3(I:-w)w2bo,I,2

+w3bo,O,3' and the Bernstein polynomial
Br(t)=3! (l-tp-i t i / (3-i)Ul. As Vte [0,1],

B) (t) ~ 0, so if A("!), B(w), C(w) and D(w) are non­

negative, then S(l- I, 1(1- w), tw) ~ 0 .

Taking a ~ 8/3 , then from the above discussion.
b),o.o ~ 0, b2,J,o ~ 0, b2•O,1 ~ 0, thus A(w) ~ 0 and

B(w) ~ O. Since bIll ~ _!... and bl20 bl 0,2 ~ !...,.. 8 .. " 4

so C(w) ~ O. Note that by (3.3), D(w) > O. Thus the

curve S(l-t, t(l-w), tw) ~ 0, t E [0, 1) . The triangular

patch S(u, v, w) is made up of these univariate cubic
Bezier curves along GP where P e V2 V3 , so the

patch S(u, v, w) will be non-negative.

With the same argument, the Bezier triangles with
Bezier ordinates {ai,j,k} and {Ci,j,k} on the other two
mini triangles are also non-negative. The result of
the above discussion is summarized as below.

Proposition 1
Let T be a triangle on the plane which is split into
three mini triangles at its centroid. Let the triangular
cubic Bezier patches defined on each of these mini
triangles respectively have Bezier ordinates {ai,j,k},
{bi,j,k} and {c/!/>k}, O~ i,i, k ~ 3, i +i + k = 3.

Suppose the three Bezier triangles fonn a Cl

triangular patch Q on T. If 'rj meMs, m ~ f. ,

where I. > 0 and Vme M 4 uM2 , m ~ -f/3a,

with a ~8/3, then Q(x,y) ~O, V(x,Y)ET.
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the equation

then

Then we define

1 aFF(O)+--";?' -I. 183 a IZ'I'eOA

If

with l. =min {F(f),F(V2 ),F(V3)} as in

Proposition 1. To achieve i~, the first order partial
derivatives at Vj is modified if necessary. The
modification of the derivatives Fx and Fy at a vertex
V; is performed by scaling each of them with a
positive factor a < 1by taking into consideration all
the triangular patches on the macro triangles sharing
that vertex. We proceed as follows:

Let 0 be a vertex in our triangulated domain and let
1(j, i = 1, ... , k, be the macro triangles in the

triangulation which have 0 as a vertex. Consider the
triangle 1() (see Figure 5) and lower bound -e IZ'I 18

where elt
l

= min {F(O), F(A), F(B)}.

L::-~~-/CF

otherwise aOA is determined by' the equation

F(0) +aOAt aF = -llZ', I 8. Similarly ifaeOA

1 'dF
F(0) +J-a- ";?, -I. ltl I 8, then aOB =1, otherwise

eOD

Denote the partial derivatives at 0 along OA and OB
by "dF l"deoA and 'dF l'deOB respectively. The

scaling factors aOA and aOB are defined as
follows.

Figure 5. Triangles in the triangulation with
common vertex O.

aOB is defined by

1 'dF
F(O) +aOBJ- =-llr, I 8.

'deOD

alZ', = min {aOA ,aop}. By using the same method,

alr/, i =2, 3, "', k are found. For all the B6zier

ordinates adjacentto 0 to fulfill the non-negativity
conditions, we choose a o = min{ a lt ,air ,"', air j

• 12k

If ao < 1, then the first partial derivatives at 0 are

scaled !by the factor ao and the B6zier ordinates

adjacent to 0 are determined accordingly. The above
process is repeated at all the vertices Vi in the domain
n. Thus all B6zier ordinates along the edges of the
macro mangles can be determine.d as described
above. By the Cl continuity property, ordinates in M3

4. CONSTRUCTION OF THE Cl NON­
NEGATIVITY PRESERVING
INTERPOLATING SURFACE

Given data points (xj,yj,Zj) with z/>O,

1=1,2,"',N, (x/JYj)~(xJ'YJ) for i~j. We

describe the construction of a Cl non-negativity
preserving function F(x,y) with F(x;,y;)=z;,

i = 1, 2, "', N. The construction process consists of

the three usual steps for scattered data interpolation.

(i) The domain Q of the function F is the convex
hull of {V; = (Xi' yj): i = 1, "', N}. Points

V;, i = 1, "', N are used as the vertices of the

triangulation of the domain Q. The Delaunay
triangulation the method [Fan92a] is used to
triangulate the domain .Q..

(ii) Estimation of first order partial derivatives, i.e.,
Fx and Fy at each Vi (x j , yj) for surface F, is

obtained by using the method in [Goo94a].

(iii) For every macro triangle in the domain, a
triangular patch will be generated.

Here we will concentrate on the third step. We shall
discuss how to construct on each macro triangle a
non-negative C l triangular patch. Each macro triangle
is subdivided into three mini triangles at its centroid
and a cubic Bezier triangle is constructed on a mini
triangle. The determination of the Bezier ordinates of
these three Bezier triangles, {aj,p}, {b;,j,kl and

, {Ci,j,k}' is described as follows.

The first order partial derivatives Fx and Fy at each
vertex V; (xj , y;) in the triangulated dQmain n are

estimated by the method in [Goo94a]. For each patch
Q on a macro triangle, the partial derivatives at its
vertex V; in the direction along the edge eij from V;
to 'V.i is given by

~Q (ft;) =(xj-X;) OaF CV;)+(Yj- Yj) ~F (ft;).
u~ x ~

From the given data, the 'ordinates at the vertices of
each macro triangle are determined. For example, on

,the macro triangle T (see Figure 3),

aO•3•0 = CO,O,3 = F(V;) = Z) •

From the estimated· derivatives at each vertex, the
boundary Bezier ordinates in M4 are determined.
,lHowever these ordinates determined need not ensure
that the resulting patch is non-negative. To ensure
this, we need to impose conditions on these
boundary B6zier ordinates, i.e., we require

m4 ";?,-f/8, 'r:I m4E M 4 ,
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(4.3)

(4.4)

will be detennined by using the relations in (2.5) (see
Figure 3). .

Next the inner Bezier ordinates in M2 are detennined
by using (2.4). Proposition I imposes a lower bound
on these inner Bezier ordinates. Here since the
boundary Bezier ordinates of the_~cro triangle are
already fixed, we could use their actual values to
relax the bound .on the inner Bezier ordinates
suggested in Proposition 1. Observe that to ensure
that C(w) in (3.6) is non-negative, we require that

I' .
bl.I,1 ~-mm{bl,2,o, bl ,o,2}' (4.1)

Similarly, we.require

al,l,l ~-min{al,2,O' a l ,O,2}

CI,I,I ~ - min {C1,2,O' CI ,O,2}' (4.2)

Moreover, since a2,O,I ,b2,o,1 and C2,O.1 have to non­
negative, we require by (2.6) that

al,O.2 + bl,I.I+ al,l,l ~ 0

b l ,O,2 + CI,J,I+ bl,I,! ~ 0

CI,O,2'+ al,I.I+ CI,I,I ~ 0

To fulfill (4.1), (4.2) and (4.3), it suffices to have

a1,I,I ~ --} min {a l ,2,O' al,O,2} '

bl,l,l ~ --} min {b l ,2,O' bl ,o,2} '

CI,I,) ~ --} min {CI,2,O' C},O,2}'

Note that these lower bounds in (4.4) are less than or

equal to -P./ 8 where e=min {aO,O,3' bO,O,3' CO,0,3}'

If the initial values of al,I,I' bl ,],] and cl,l,l do not

satisfy (4.4), then they are increased to the
corresponding bound. This will suffice to ensure the
control ordinates A(w), B(w), C(w), D(w) of the

cubic Bezier curve in (3.6) are non-negative and thus
the Bezier triangle concerned is non-negative.

Finally a2,O,I' b2,o,l' C2,O,1 and a3,O,O are obtained

via (2.6) and (2.7). When an inner Bezier ordinate
has been modified, the CI continuity along the
boundary of the macro triangle is maintained by
modifying the corresponding inner Bezier ordinate of
the adjacent macro triangle according to (2.2) and
recomputing the Bezier ordinates which are
dependent on the modified inner Bezier ordinate.
ThiS adjustment to maintain Cl continuity will not
upset the non-negativity property because of (2.2)
and the lower bound in (3.4).

The triangular patch on a macro triangle, consisting
of three Bezier triangles with its Bezier ordinates

{al,j,k}, {bl,j,k}' {cl,j,t} respectively, thus generated

is non-negative and is C I along the common boundary
curve with the adjacent patch.

Denote the triangular patch formed by this way on the
macro .triangle T.as QT' Then the interpolating
surface F which is C l

' and preserves non-negativity
can be defined on the triangulated· domain as
FIT=QT for every macro triangle T in the domain,

5. RANGE RESTRICTED
INTERPOLATION

SO far we have only discussed the construction of the
CI interpolating sprface which is constrained to lie
above the plane z =O. Now we wowd like to extend
our scheme to iriclude a larger set of constraint
surfaces besides the plane z =O. The constraint
surfaces to be considered are of the form z =D(x,y)

. where D(x,y) is' a constant, liriear, quadratic or

. cubic polynomi'al, i.e.,
D(x,y) =ax 3 +bx2y+cxy2 +dy 3

+ex2 + fxy+ gy2 +hx+iy+ j

where a, b, c, d, e,!, g, h, i and j are real numbers.

These surfaces are considered because they can be
expressed as a cubic Bezier triangle on each mini
triangle .ofthe domain.

Given the data points (Xi' Yi' Zi)' i =1,"', N,

(Xi' Yi);t (x1'Yl) for i;t j, which lie on one side

of the given constraint surface z = D(x,Y) we would

like to generate a Cl interpolating surface z = F(x, y)

that lies on the same side of the constraint surface as
the data points. This problem can be reduced to the
problem of non-negativity preserving interpolation
which we have considered in Section 4. Suppose that
the data points lie above the constraint surface. As
before, the partial derivatives Fx and F.v at (XI' YI)

are estimated by using the method in [Go094a].

Let H(x,y)=F(x,y)-D(x,y). A new set of data

points (xl'YI'z;), i=I,2,"',N, is obtained from

the original data set and the constraint function

D(x,y) by defining z; =Zj -D(xj,yj)' With this,

the problem of constructing a Cl interpolating surface
z =F(x, y) subject to the constraint surface

z =D(x,y) is transformed to the problem of

constructing a non-negative Cl interpolating surface

z=H(x,y) with H.(Xj'Yi) = z;, and initial

derivatives H iXI'Yi) =Fx (x j,YI)- Dx (x j'YI)

and H y (xl,Yi)=Fy(Xi,Yj)-Dy(xj,Yj)' By using

the scheme in Section 4, the function H(x,Y) which

is made up of non-negative cubic Bezier triangles
with each of its domain on a mini triangle can be
generated. Then F can be obtained as
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F(x,y) =H(x,y)+D(x,y). AI> a result, the Cl

interpolating surface F is piecewise a cubic Bezier
triangle and it lies on one side of the constraint
z =D(x,y).

Suppose the data points lie below the constraint
surface z =D(x,y). By using the same construction

as above with H(x,y)=D(x,y)-F(x,y), we.can

generate a Cl interpolating surface z = F(x,y) which

also lies below the constraint surface.

6. GRAPHICAL EXAMPLES
To illustrate our scheme, we use the following two
test fimctions:-

/(x,y) =sin xcos y, (x,y) E [-3, 3]x[-3, 3],

2(y-x), O~y-x~O.5

1, . y-x~0.5

g(x,y) = 0.5 cos(4tr~(X-:-1.5)2+(y -0.5l )+ 0.5,

(x-l.5)2 +(y -0.5)2 ~ 1/16
0, elsewhere on [O,2]x[0,1]

The first example consists of 25 data points
obtained from the function f These data are
bounded below by the constraint surface

z =-0.55x2 -1.35x-O.2xy-O.2y-1.35. The

triangulation of the domain is given in Figure 6(a). As
a comparison, we show in Figure 6(b) the Cl

interpolating surface generated without applying the
non-negativity conditions. Indeed it crosses the
constraint surface. After the non-negativity conditions
are imposed, the interpolating surface does not cross
the constraint surface anymore as shown in Figure
6(c).
The second example consists of 36 data points
obtained from the fimction g (quoted from [Lan86a])
which are bounded above by the plane z =1.00 1and
bounded below by the plane z = -1.001. The
triangulation of the .domain isgiven in Figure 7(a)
and the unconstrained interpolating surface is shown
in Figure 7(b). It oscillates at a ntimber ofplaces and
crosses the upper and lower bounding planes. When

.the upper and lower constraints are imposed, the
range restricted interpolating sUrface in Figure 7(c)
does not oscillate unnecessarily and it stays between
the two boundmg planes.
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Figure 6(a). Triangulated domain of J

Ii·

Figme 6(b). The unconstrained interpolating surface

to data fromJ (with the constraint surface)

Figure 6(c). The constrained interpolating surface

to data fromJ (with the constraint smface)

Figure 7(a). Triangulated domain of g

Figure 7(b). The unconstrained interpolating

surface to data from g

Figure 7(c). The constrained interpolating

surface to data fromg (without displaying

both constraint planes)
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