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CIRI-CIRI PEMATANGAN, SIFAT-SIFAT MEKANIK DAN MORFOLOGI 

KOMPOSIT NANO GETAH ASLI TERISI MONTMORILLONITE 

TERUBAHSUAI PERMUKAAN 

 

ABSTRAK 

 Komposit nano getah asli telah disediakan dengan menggunakan ‘Standard 

Malaysian Rubber’ (SMR L), montmorillonite yang bersifat organofilik (tanah liat 

organo) dan pengisi hybrid hitam karbon/tanah liat organo. Komposit nano SMR L 

telah disediakan melalui teknik pencampuran dengan menggunakan penggiling 

bergulung dua. Seterusnya komposit nano tersebut telah disambung-silang dengan 

menggunakan sistem pemvulkanan sulfur separa cekap. Komposit nano getah asli 

terepoksida (ENR 50) (50 % mol pengepoksidaan)/tanah liat organo telah disediakan 

untuk tujuan perbandingan. Kesan pembebanan tanah liat organo sehingga 10 bsg 

(bahagian per seratus getah) terhadap kelakuan sambung-silang, sifat-sifat 

mekanikal, kekerasan, pembengkakan dan kestabilan termal komposit nano SMR L 

dan ENR 50 telah dikaji. Masa skorj dan masa pematangan menurun  manakala nilai  

tork maksimum dan indeks pematangan  meningkat apabila pembebanan tanah liat 

organo meningkat dalam komposit nano SMR L. Komposit nano ENR 50 pula 

mempamerkan masa skorj dan masa pematangan yang lebih pendek, indeks 

pematangan yang lebih rendah tetapi nilai tork maksimum yang lebih tinggi. 

Kekuatan tensil bagi kedua-dua jenis komposit nano meningkat hingga pembebanan 

tanah liat organo yang tertentu (4 bsg untuk komposit nano SMR L dan 6 bsg untuk 

komposit nano ENR 50). Apabila pembebanan tanah liat nano ditingkatkan lagi, 

kekuatan tensil menurun. Pemanjangan takat putus semakin menurun dengan 

pembebanan tanah liat organo bagi ENR 50 manakala  mencapai nilai optimum pada 

pembebanan 4 bsg bagi sistem SMR L. Seperti yang dijangkakan kekerasan dan 
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modulus tensil meningkat dengan peningkatan pembebanan tanah liat organo. Ujian 

pembengkakan menunjukkan bahawa interaksi getah-pengisi adalah lebih baik dalam 

komposit nano ENR 50 yang seterusnya membawa kepada peningkatan yang lebih 

baik dalam sifat-sifat mekanikal komposit nano ENR 50 berbanding komposit nano 

SMR L. Kestabilan termal komposit nano SMR L adalah lebih baik berbanding 

kestabilan termal komposit nano ENR 50. Ujian penyerakan sinar ‘X-ray’ (XRD) 

dan mikroskopi transmisi electron (TEM) membuktikan kewujudan struktur tanah 

liat nano yang terinterkalasi dan tereksfoliasi. Kedua-dua struktur nano ini 

bertanggungjawab ke atas peningkatan sifat-sifat komposit nano. Mikrograf daripada 

mikroskopi pengimbasan electron (SEM) menunjukkan tanah liat nano telah 

menukarkan mekanisme kegagalan komposit nano di dalam kedua-dua matrik. 

Dalam pada itu, peningkatan kekuatan tensil, pemanjangan takat putus dan kestabilan 

termal berlaku apabila 2 bsg tanah liat nano dan 8 bsg hitam karbon digunakan. Ini 

adalah kerana kesan sinergistik kedua-dua pengisi. 
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CURING CHARACTERISTICS, MECHANICAL PROPERTIES AND 

MORPHOLOGY OF SURFACE MODIFIED MONTMORILLONITE 

FILLED NATURAL RUBBER NANOCOMPOSITES 

 

ABSTRACT 

 Natural rubber (NR) nanocomposites was investigated by using Standard 

Malaysian Rubber (SMR L) grade, organophilic modified montmorillonite 

(organoclay) and carbon black/organoclay as hybrid filler. The NR nanocomposites 

were prepared by melt mixing on a two roll mill and cured using a sulfur semi 

efficient vulcanization system. For comparison purpose, epoxidized natural rubber 

(50 mol % epoxidation), ENR 50/organoclay nanocomposites were produced as well. 

The effects of organoclay with different filler loading up to 10 phr on curing 

characteristics, mechanical properties, hardness, swelling behavior and thermal 

stability of SMR L and ENR 50 nanocomposites were studied. In term of curing 

characteristics, both scorch time and cure time reduced, whereas the maximum 

torque and cure rate index increased with the incorporation of organoclay. ENR 50 

nanocomposites showed shorter scorch time, cure time and lower cure rate index but 

higher maximum torque values. The tensile strength of both NR nanocomposites 

increased up to certain filler loading (4 phr for SMR L and 6 phr for ENR 50) and 

then decreased. Elongation at break continuously decreased for ENR 50 compounds 

and achieved an optimum at 4 phr for SMR L nanocomposites. As expected, the 

hardness and the tensile modulus increased with increasing organoclay loading. 

Swelling test indicated that ENR 50 nanocomposites had the higher filler-rubber 

interaction. The improvement in mechanical properties of ENR 50 nanocomposites is 

better as compared to SMR L nanocomposites. The thermal stability of SMR L 

nanocomposites was better enhanced by adding organoclay than that of ENR 50 
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nanocomposites. X-ray diffraction (XRD) and transmission electron microscopy 

(TEM) revealed the existence of intercalated and exfoliated structure of organoclay, 

which resulted in the improved mechanical properties. Scanning electron microscopy 

(SEM) manifested the addition of organoclay has transformed the failure mechanism 

of both rubber nanocomposites. For the carbon black/organoclay hybrid 

nanocomposites, the enhanced properties such as tensile strength, elongation at break 

and thermal stability were observed at 2 phr of organoclay and 8 phr of carbon black. 

This has been attributed to the synergistic effect of both fillers. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Introduction 

Addition of an inorganic component to polymers leads to improvements in 

various physical and mechanical properties. These improvements are the result of a 

complex interplay between the properties of the individual constituent phases: the 

polymer, the filler, and the interfacial region. Filler morphology such as the particle 

size, structure, and aspect ratio (length/diameter) have a large influence on the 

physical performance of the polymer composites (Joly et al., 2002).  

 

Recently, considerable research interest is focused on nanocomposites 

prepared by incorporation of layered silicate of natural or synthetic origin in various 

polymers. The term polymer layered silicate nanocomposites describes a class where 

the reinforcing phases, in shape of platelets, has only nano level dimensions. Due to 

their nanometer phase dimensions, nanocomposites possess unique properties 

typically not share by their conventional microcomposites counterparts, and therefore 

offer new technology and business opportunities. Polymer nanocomposites exhibit 

significant improvement in physical and mechanical properties in relation to the 

polymer host (Giannelis, 1996; Alexandre & Dubois, 2000; Ray & Okamoto, 2003). 

The addition of nanolayered silicates can increase the stiffness and strength with a 

minimal loss in ductility and impact resistance, decrease the permeability and 

swelling in solvents, enhance the abrasion, flame resistance and thermal endurance. 

These substantial improvements are obtained at very low silicate content (Pinnavaia, 

1983). 
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A wide variety of particulate fillers are used in the rubber industry to improve 

and modify the mechanical and physical properties of elastomeric materials. The 

reinforcement of rubbers is expressed by enhancement of modulus, failure properties 

(tensile and tear strength), and abrasion of resistance of the vulcanizates (Arroyo, 

2003). Carbon black is one of the most common reinforcing fillers use in rubber 

compounding since the beginning of the XX century. Due to special particle 

dimension, shape and its special interaction with polymer matrices with physical and 

chemical bonding, carbon black is able to produce an excellent nano-reinforcing 

effect that greatly enhances the mechanical properties of the bare polymer or rubber 

(Cataldo, 2007).  However, its polluting nature, the monotonous black color of the 

rubber material, its dependence on petroleum and it often reduces the processability 

of rubber compounds, especially at high volume loadings caused researchers to 

develop other satisfying reinforcing agents instead (Zhang et al., 2000).  

 

Clays and clay minerals such as montmorillonite, saponite, hectorite, etc, are 

cheap natural raw materials that have been widely used for many years as filler for 

rubber and plastic to reduce polymer consumption and cost. Clay is comprised of 

silicate layers having a 1 nm thick planar structure and 200-300 nm in the lateral 

dimension. Because of the agglomeration of these particles, their low surface activity 

and these mineral fillers are not compatible with polymer matrix, their reinforcing 

effect is poor (Arroyo et al., 2003). Organophilic modification improves the 

compatibilization between the surface of the clay and the hydrophobic polymer 

matrix and thus polymers penetrate more easily into the layer galleries. The resulting 

organophilic clay (organoclay) can well be dispersed in the polymer exploiting the 

shear stress field created by the mixing equipment.  
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While organoclays have been extensively used in various thermoplastics and 

thermosetting polymer, much less attention has been paid to the elastomer as 

matrices (Kader et al., 2006; Arroyo at al., 2007; Cataldo, 2007). There are various 

methods to prepare rubber/layered silicate nanocomposites, including in situ 

polymerization intercalation (Zilg et al., 1999), solution intercalation (Vu et al., 

2001, Liang et al., 2005), melt intercalation (Arroyo et al., 2003; Varghese et al., 

2004; Wu et al., 2004; Arroyo et al., 2007) and latex compounding (Wang et al., 

2000; Kader et al., 2006). Among them, melt intercalation is the simplest method and 

considered as the most effective route for the preparation of clay-nanocomposites 

(Alexandre & Dubois, 2000; Ray & Okamoto, 2003). 

 

Although natural rubber (NR) is known to exhibit numerous outstanding 

properties, such as high tensile strength due to the ability to crystallize under strain, 

high resilience, excellent flexibility and resistance to impact and tear, low heat-build-

up, reinforcing fillers are usually added into NR in most cases in order to gain the 

appropriate properties for specific applications. Organoclay may become suitable 

substitute as filler in applications where carbon black and silica are currently 

dominant or combine with them to produce hybrid reinforcement for natural rubber.  

 

In this work, the organoclay used was a nanomer I.30T. It was a surface 

modified montmorillonite mineral, which was added to natural rubber matrices to 

produce rubber/organoclay nanocomposites. The effect of this organoclay on the 

vulcanization behavior, mechanical properties, and thermal stability of 

NR/organoclay hybrid was investigated to determine the potential of this filler to 

improve the properties of NR vulcanizates. 
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1.2 Objectives of Study 

In this research, the preparation and properties of NR/organoclay 

nanocomposites were studied using two types of natural rubber i.e. SMR L and ENR 

50. The melt compounding method was used to produce the nanocomposites. The 

main aim of this research can be divided into three categories:  

 To determine the effect of organoclay loading on the properties of organoclay 

filled SMR L nanocomposites.  

 To study the effect of organoclay on the properties of organoclay filled ENR 

50 nanocomposites as compared to SMR L nanocomposites. 

 To investigate the effect of carbon black/organoclay loading ratio on the 

properties of SMR L nanocomposites. 

 

For each part of this research, the curing characteristics, mechanical properties 

(tensile strength, elongation at break, tensile modulus at 100 % and tensile modulus 

at 300%), hardness, swelling behavior and thermogravimetric analysis (TGA) were 

carried out. In addition, X-ray diffraction (XRD), scanning electron microscopy 

(SEM) and transmission electron microscopy (TEM) were also conducted to 

characterize the NR/organoclay nanocomposites. 
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1 Introduction to Rubbers (Elastomers) 

The term rubber (elastomer) is used to describe vulcanized polymeric 

materials, whose glass transition temperature is sub-ambient and, amongst other 

properties, has the ability to be extensively and on release of stress, return to its 

original length (Heinisch, 1966). The common characteristics of elastomers are their 

elasticity, flexibility, and toughness. Beyond these common characteristics, each 

rubber has its own unique properties, often requiring additives to achieve the 

appropriate behaviors. It is customary when discussing the formulation of rubber 

compounds to classify the additives by the function they serve. Rubber compounding 

ingredients can be categorized as: vulcanizing or crosslinking agents, processing 

aids, fillers, antidegradants, plasticizers and other specialty additives (Hamed, 2001). 

 

The rubbers in the marketplace are of two main types: crosslinking system 

and thermoplastic elastomer. Most of the commonly used rubbers are polymeric 

materials with long chains, which are chemically crosslinked during the curing 

process. This type of elastomer cannot be reshaped, softened, melted nor reprocessed 

by subsequent reheating, once formed (Hamed, 2001, Walker, 1988). They absorb 

solvent and swell, but do not dissolve; furthermore, they cannot be reprocessed 

simply by heating. The molecules of thermoplastic rubbers, on the other hand, are 

not connected by primary chemical bonds. Instead, they are joined by the physical 

aggregation of parts of the molecules into hard domains. Hence, thermoplastic 

rubbers dissolve in suitable solvents and soften on heating, so that they can be 
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processed repeatedly. In many cases thermoplastic and thermoset rubbers may be 

used interchangeably. However, in demanding uses, such as in tires, engine mounts, 

and springs, thermoset elastomers are used exclusively because of their better 

elasticity, resistance to set, and durability (Hamed, 2001).  

 

The commercial natural rubber (NR) is obtained from latex produced almost 

exclusively from the tree Hevea brasiliensis, which are grown in plantation around 

the world (Mark, 1989). NR is a nearly perfect type of raw material source. Natural 

rubber (NR) is a linear polymer with repeat units being isoprene (C5H8), its sub-

ambient glass transition temperature is about -700C and its specific gravity is 0.93 at 

200C. It crystallizes when stretched or stored at temperatures below 200C due to its 

regularity of structure. Temperature and type (grade) of natural rubber are factors 

which influence this rate of crystallization (Barlow, 1988). Natural rubber is the only 

true hydrocarbon polymer found in nature. Unstretched rubber has no regular X-

diffraction patterned is therefore, amorphous. However, stretched rubber has an 

orderly crystalline-like X-ray diffraction pattern. Analysis of the pattern indicates 

that rubber has either an all cis or trans configuration depending upon its sources as 

shown in Figure 2.1. Common rubber has cis configuration (Billmeyer, 1971). 

 

 

 

 

 

Figure 2.1 (a) cis-1, 4-polyisoprene, (b) trans-1, 4-polyisoprene (Billmeyer, 1971). 
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NR compounds usually contain peptizers, carbon black or non-black fillers or 

both, zinc oxide, fatty acids, processing aids, plasticizers, antioxidants, antiozonants, 

protective waxes and vulcanizing ingredients (usually sulphur, low sulphur or 

nonelemental sulphur vulcanizing systems; less frequently peroxides). NR can be 

blended with other diene rubbers such as synthetic polyisoprene (IR), Styrene-

butadiene rubber (SBR) and polybutadiene (BR) (Nagdi, 1993). 

 

Fillers and curing agents largely control the technical properties of rubber 

compounds. Sulphur is the most widely used curing agent for rubber, due to its 

ability to produce good properties. When it is used together with an accelerator and 

activator at elevated temperatures, thermally stable covalent bonds are formed 

between the elastomer chains at the carbon–carbon double bonds. This improves the 

properties of rubber vulcanisates. Nasir and Teh (1988) investigated the effects of the 

various types of crosslinks, including sulfur-based systems on the physical properties 

of NR. They reported improvement in tensile strength as a function of crosslink 

density.   

 

NR vulcanizates have high tensile strength over a wide hardness range. The 

high strength is due to crystallization of the polymer chain at high strains enabling 

NR to be used in unfilled compounds. Furthermore, NR vulcanizates have the 

highest resilience of all elastomers (except BR), which is responsible for very low 

heat buildup. Further advantages include low compression set and stress relaxation, 

good electrical insulation and good resistance to abrasion, tear and fatigue.  
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NR can be compounded for continuous use at 900C and for intermittent 

periods up to 1000C. The vulcanizates remain flexible at temperature down to -550C 

without adding plasticizers. However, they tend to crystallize readily when stored for 

long periods at low temperatures. Like other unsaturated elastomers, NR vulcanizates 

are susceptible to attack by atmospheric ozone. However, the ozone and weather 

resistance can be improved by blending with a saturated rubber such as ethylene-

propylene rubber (EPDM) or by incorporating antiozonants and protective waxes in 

the compound. NR vulcanizates are not resistant to petroleum-based oils and fuels 

but they can be used with a wide range of organic and inorganic chemicals, such as 

nonpetroleum-based automotive brake fluids, silicone oils and greases; glycols; 

alcohols; water; and nonoxidizing aqueous solutions of acids, alkalis and salts 

(Nagdi, 1993). 

 

NR is the only rubber available for many years that has been the subject of 

intensive development and today it remains as the best choices for many applications 

that require low heat buildup such as large tires, passenger car tires, vibration 

mounts, springs and bearings. Other products include hoses, conveyer belts, gaskets, 

seals, rolls, rubberized fabrics, elastic bands and pharmaceutical goods (Nagdi, 

1993). 
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2.1.1 SMR L 

SMR (Standard Malaysian Rubber) are natural rubbers graded by technical 

specifications, not by the conventional visual standards. The introduction of the 

Standard Malaysian Rubber (SMR) scheme in 1965 marked a turning point in the 

whole approach to production and marketing of natural rubber. The scheme was so 

successful that it led to the adoption of an international scheme for Technically 

Specified Rubber (TSR). These schemes led to fewer grades, all with guaranteed 

specifications relating to quality and packed in small polyethylene wrapped bales 

(33.3 kg) for easy transport, storage, and factory handling. TSR production is 

different to conventional rubber production. Figure 2.2 gives an example of the SMR 

scheme with the relationship between source materials and grades (Fulton and 

Thorpe, 1996).  

 

Based on SMR specification scheme, natural rubber has been classified by 

referring to dirt level, ash level, nitrogen level, volatile level matter, Lovibond color, 

P0/PRI where P0 is Wallace plasticity and PRI (Plasticity Retention Index). SMR L 

was classified based on the Lovibond color. SMR L is a color-specified rubber with a 

range limit of two Lovibond units within a production lot. The light amber color is 

produced by selecting clones with a low carotenoid content. After collection, the 

field latex is preserved with a mixture of ammonia and boric acid and subsequently 

treated using 0.05% sodium metabisulphite to inhibit enzymic darkening. The latex is 

coagulated by addition of formic acid and allowed to mature for up to 12 hours. The 

resulting coagulum is processed into crumb form, followed by hot air drying at 

1000C for about 5 hours. The dried crumbs are cooled to 60 °C and compressed into 
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standard bales of 33.3 kg and wrapped in polyethylene. Table 2.1 summarizes the 

specification scheme for SMR L (Fulton and Thorpe, 1996). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.2 Processing routes by which raw materials are converted into the various 

grades of Standard Malaysian Rubber (Fulton and Thorpe, 1996) 
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Table 2.1 SMR L properties and specifications (Fulton and Thorpe, 1996) 

Parameters Value 

Dirt retained on 44µ aperture (max), % wt 0.02 

Ash content (max), % wt 0.50 

Nitrogen (max), % wt 0.60 

Volatile matter (max), % wt 0.80 

Wallace rapid plasticity (P0), min 30 

Plasticity Retention Index (PRI), min, %b 60 

Lovibond color: 

Individual value (max) 

Individual range (max) 

 

6.0 

2.0 

 
bSpecial producer limits and related controls are also imposed by RRIM to provide 

safeguard. 

 

2.1.2 Epoxidized Natural Rubber (ENR) 

Natural rubber (NR) has a number of its disadvantages: some of its 

engineering properties, such as its resistance to oils and solvents, air permeability 

and wet skid are quite poor. These properties can be improved greatly by the 

modification of NR by means of epoxidation, using an organic peracid directly or 

produced in situ (Heping et al. 1999).  Epoxidized natural rubber (ENR) is a rubber 

that has properties which resemble those of synthetic rubbers rather than natural 

rubber. The epoxidized natural rubber (ENR) has epoxy groups that are randomly 

distributed along the chain backbones, which gives it increased polarity and higher 

glass transition temperatures (Tg). The increased polarity is of particular interest in 
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the present context since it frequently facilitates reinforcement by fillers without the 

need for coupling agents (Baker & Gelling, 1979).   

 

ENR is a derivative of natural rubber produced by chemical modification. 

The chemistry of epoxidizing unsaturated compounds employing peroxyacids is well 

documented in the literature and has been applied to NR to produce a range of ENRs. 

Currently, 50 percent mol of epoxidized natural rubber (ENR 50) is commercially 

available, and other epoxidation levels can be manufactured on request. As the 

natural rubber is expoxidized, its chemical and physical properties change according 

to the extent to which the mole percentage of modification is introduced. ENR 50 has 

comparable oil resistance and air permeability to some of the speciality synthetic 

elastomers. ENR has high tensile strength like NR, they undergo strain induced 

crystallization same as NR. In addition, a high degree of reinforcement is obtained 

with silica fillers, even in the absence of a coupling agent (Gelling, 1996). An X-ray 

study of ENR gum vulcanizates has confirmed that the strain crystallization does 

indeed occur. The crystallization percentage remains practically constant up to 50-

percentage of mol epoxidation. However, beyond 50 percentage of mol epoxidation, 

there is a sharp reduction in degree of crystallinity (Colin, 1981). 

 

2.2 Rubber Compounding 

The production sequence in the rubber manufacturing industry can be defined 

into three stages: mixing (mastication and compounding), forming, and curing. A 

general rubber formulation is given in Table 2.2.  
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Table 2.2 A general rubber formulation (Nagdi, 1993) 

 Parts per hundred parts of rubber 

Crude rubber 100 

Filler 50 

Softener 5 

Antioxidant 1 

Stearic acid 1 

Zinc oxide 5 

Accelerator 1 

Sulfur 2 

 

Each of ingredients has a specific function, in either processing, vulcanization 

or end use of the product. The various ingredients may be classified according to 

their specific function in the following groups:  

- Fillers (carbon blacks and non-black fillers) 

- Plasticizers or softeners (extenders, processing aids, special plasticizers) 

- Age resistors or antidegradants (antioxidants, antiozonants, special age 

resistors, protective waxes) 

- Vulcanizing ingredients (vulcanizing agents, accelerators, activators) 

- Special-purpose ingredients (coloring pigments, blowing agents, flame 

retardants, odorants, antistatic agents, retarders, peptizers). 
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2.2.1 Mixing  

The polymers, fillers, processing aids, vulcanizing ingredients, and other 

additives, which the compounder has decided on, have to be mixed together. The two 

basic machines for this process are the two-roll mill and the internal mixer.  

 

 Prior to mixing of natural rubber, there is the mastication step. The reduction 

of viscosity and increase of plasticity of natural rubber and some synthetic rubbers 

brought about by mechanical milling and working have both advantages and 

disadvantages. The advantages lie in the ability to reduce molecular weight and 

viscosity so as to render the material more easily processable; the disadvantage is 

that processing involving mechanical working of the mix reduces molecular weight 

and hence the modulus of the vulcanizate . 

 

 The mixing of the ingredients into rubber often involves a compromise. High 

viscosity promotes high shear, which is required to break up filler aggregates; low 

viscosity assists wetting of the particles, which is essential to achieve uniform 

modulus and other properties. It has been said that the quality of the final product is 

made in the mill room or mixing department because it is there that a uniform and 

high level of dispersion and consistent rheological properties must be produced in the 

batches of mixed compounds (Blow, 1971) 

 

2.2.2 Forming 

After mixing, the green stock generally requires forming (shaping) into 

blanks of suitable dimensions. At this stage the stock will retain the shape imposed 

on it because it is predominantly plastic (Nagdi, 1993). Although alternative methods 
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of shaping exist, the majority of products are produced by combined shaping and 

vulcanization operation known as moulding. Three distinct types of moulding are 

used – compression, transfer and injection. For each, a steel or aluminum mould 

having a cavity of the product shape required is heated to the vulcanization 

temperature (140-2000C). The differences arise in the method of introducing the 

unvulcanised rubber into the mould. 

 

In compression moulding, a hydraulic press having heated platens is utilized. 

A shape and weighed charge of rubber is introduced into the mould which is then 

reassembled and placed between the platens of the press. The force generated by the 

press closing the mould causes the rubber to flow to the form of the cavity and 

ensures that the expansion of volatiles within the rubber mix are contained until 

dimensional stability is achieved. The vulcanization time is dependent upon 

temperature, size of product and their heat transfer. 

 

Transfer moulding may involve the heated hydraulic press used for 

compression moulding. The principle is the same in both instances; the mould cavity 

is closed before the moulding operation starts, the rubber is then introduced into a 

secondary cavity adjacent to the shaped product-forming cavity and is transferred by 

hydraulic ram pressure to the primary mould cavity through channels known as 

runners. The advantage of this system is twofold; the rubber received considerable 

fractional heating in transfer, shortening the vulcanization time; and metal inserts 

used in rubber to metal bonding may be positively located. The majority of 

engineering rubber components is produced by this method. Injection moulding is an 

extension and improvement of transfer moulding, allowing more precise control of 
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material temperature during injection (which is similar to transfer) and thus allowing 

the further reduction of vulcanization times (Freakly & Payne, 1978) 

 

2.2.3 Curing 

After the green stock has been formed to the desired shape, it needs to be 

converted to an elastic material. This can be achieved by the vulcanization process, 

which usually takes place under pressure at elevated temperature, using different 

techniques, such as: press vulcanization, open vulcanization, continuous 

vulcanization and cold vulcanization. Chemically, the process involves insertion of 

cross-links between polymer macromolecules through the action of vulcanizing 

ingredients. Without these chemical bonds no improvements in the physical 

properties of the rubber mix can occur. It is quite probable that the crosslinks tie the 

macromolecules together in such a way that the whole mass becomes a single 

molecule. The cross-linking of rubber is also referred to as curing, because it is a 

process whereby a raw material is converted into a useful product (Nagdi, 1993). 

When rubber is vulcanized, sulfur molecules crosslink the polymer strands. That 

cross-linking helps hold rubber products together and allow them to resume their 

original shape after stretching (Freakley & Payne, 1978). 

 

2.3 Vulcanizing Ingredients 

Vulcanizing agents are chemicals which are incorporated in order to insert 

cross-linking between the polymer chains when the compounded stock is heated to 

an appropriate temperature. A cross-linking is formation of chemical bonds between 

polymer chains to give a network structure. The main purpose of vulcanization is to 

convert the essentially plastic raw rubber into an elastic and dimensionally stable 
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material and also to render its physical properties temperature independent to a 

greater extent while making it insoluble in liquids which would have dissolved the 

unvulcanized rubber (Freakly & Payne, 1978). The type of cross-linking agent 

required will vary with the type of rubber used; however, they can usually be 

grouped in the following categories: 

- Sulfur and related elements: the most common agent used is sulfur, as it 

enters into reactions with the majority of the unsaturated rubber to 

produce vulcanizates. In addition, two other elements in the same periodic 

family, namely selenium and tellurium, are capable of producing 

vulcanization. Selenium and tellurium are used in place of sulfur where 

excellent heat resistance is required. They generally shorten cure time and 

improve some vulcanizate properties.  

 

- Sulfur-bearing chemicals: accelerators and similar compounds can be 

used as a source of sulfur for the vulcanization of natural and styrene-

butadiene rubbers in recipes using very small amount of elemental sulfur.  

 

- Nonsulfur vulcanization: most nonsulfur vulcanization agents belong to 

one of three groups: metal oxides, difunctional compounds, and 

peroxides. Carboxylated nitrile, butadiene, and styrene-butadiene rubbers 

may be crosslinked by the reaction of zinc oxide with the carboxulated 

groups on the polymer chains. This involves the formation of zinc salts by 

neutralization of the carboxylate groups. Other metal oxides are also 

capable of reacting in the same manner. Certain difunctional compounds 

form crosslinks with rubbers by reacting to bridge polymer chains into 
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three-dimensional networks. Organic peroxides are used to vulcanize 

rubbers that are saturated or do not contain any reactive groups capable of 

forming crosslinks. This type of vulcanization agent does not enter into 

the polymer chains but produces radicals which form carbon-carbon 

linkages with adjacent polymer chains (Morton, 1973).  

 

2.3.1 Accelerators 

The function of an accelerator is to increase the rate of vulcanization. 

Accelerators can cut the vulcanization time from hours to minutes or seconds at high 

temperatures; and at lower temperatures the vulcanization time may be reduced from 

months to hours or minutes. This reduction is of a great importance as this result in 

very high production rates and reduction in capital investment. The main reason for 

using accelerators is to aid controlling the time and/or temperature required for 

vulcanization and thus improves properties of the vulcanizate. The reduction in the 

amount of time required for vulcanization is generally accomplished by changing the 

amounts and/ or types of accelerators used (Morton, 1973). At one time, basic oxides 

such as lime, litharge, and magnesia were widely used as accelerators. Today, 

accelerators are almost always organic compounds containing either nitrogen or 

sulfur or both. Very few accelerators, knows as sulfur donors, such as 

tetramethylthiuram disulphide, can be used as vulcanizing agents without the 

addition of elemental sulfur. According to speed of action, accelerators are 

sometimes described as slow, moderately fast, fast and ultra accelerators (Nagdi, 

1993). 
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2.3.2 Activators  

These components are used to increase the vulcanization rate by activating 

accelerators so that it performs more effectively. It is believed that they react in some 

manner to form intermediate complexes with the accelerators. The complex thus 

formed is more effective in activating the sulfur present in the mixture, thus 

increasing the cure rate. Accelerators are grouped as follows: 

- Inorganic compounds (mainly metal oxides): zinc oxide, red lead, white 

lead, magnesium oxide, alkali carbonate, etc. Zinc oxide is the most 

common and it is often used in combination with a fatty acid to form a 

rubber-soluble soap in the rubber matrix. 

 

- Organic acids: are normally used in combination with metal oxides; they 

are generally high molecular weight monobasic acids or mixtures of the 

following types: stearic, oleic, lauric, palmitic, etc. 

 

- Alkaline substances will increase the pH of a rubber compound and in 

most instance increase the cure rate. As a rule of thumb, in the majority of 

recipes, any material which makes the compound more basic will increase 

the cure rate since acidic materials tend to retard the effect of accelerators 

(Morton, 1973). 

 

2.3.3 Antioxidants 

Antioxidants design to inhibit oxidative and ozone-caused deterioration, but 

ultraviolet light protectors and antiflex agents are included as well. The results of 

oxidative attack depend on the polymer, like NR, become soft and sticky. Ozone 
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attack is manifested by cracking at the surface perpendicular to the stress. In the 

selection of antioxidant, the following factors must be considered: type of protection 

desired, chemical activity, discoloration, staining and cost.  IPPD is one of the most 

popular antioxidant being used in compounding; the chemical structure is shown in 

Figure 2.3. 

HC

CH3

CH3

NH N
H

 

Figure 2.3 N-isopropyl-N’-phenyl-p-phenylenediamine (IPPD) (Roff & Scott, 1971) 

 

2.3.4 Special-Purpose Ingredients 

Certain ingredients are added for special purposes, but these ingredients are 

not normally required in the majority of rubber compounds. Examples include 

coloring pigments, blowing agents, flame retardants, odorants, antistactic agents, 

retarders and peptizers.  

 

Coloring pigments are substances added for coloring nonblack rubber goods. 

It is important to note that only the nonstaining grades of crude rubbers, age resistors, 

accelerators and other ingredients should be used for colored compounds. Coloring 

pigments are usually divided into two groups: inorganic or mineral pigments and 

organic dyes. 

 

Blowing agents are gas-generating chemicals that are necessary for 

manufacturing sponge and microporous rubber products. Suitable agents that are 

capable of releasing gas during the vulcanization period include sodium bicarbonate, 
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ammonium carbonate and certain nitrogen-bearing compounds. The released gas 

brings about a cellular or spongelike structure.  

 

Flame retardants are chemicals added to reduce the flammability of the end 

product. Materials used extensively for this purpose include, for example, chlorinated 

hydrocarbons, certain phosphates and antimony compounds. Odorants or odor 

improvers are strongly scented substances added in very small amounts (about 0.1 

phr) that are capable of masking the characteristic odor of some rubber compounds 

or imparting a scent. Vanillin is frequently used for this purpose. 

 

Antistatic agents are sometimes added to reduce the accumulation of dust or 

dirt on the surface of the elastomeric part during service and also to minimize the 

possibility of sparking resulting from discharge of accumulated static electricity. 

Typical antistatic agents include certain esters, fatty amines and amides. Retardants 

are substance used to reduce the tendency of a rubber mix to scorch, that is, to avoid 

premature vulcanization during factory processing. Peptizers are compounding 

ingredients used in small proportions to accelerate the softening o crude rubber under 

the influence of mechanical action, generally induced on open roll mills or in internal 

mixers (Nagdi, 1993). 
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2.4 Fillers 

Since the early days of the rubber industry, fillers in the form of fine 

particulates have been used in rubber compounding. Particulate fillers are usually 

divided into two groups, inert fillers and reinforcing fillers. Inert fillers are added to 

the rubber to increase the bulk and reduce costs. In contrast, reinforcing fillers such 

as carbon black and silica are incorporated in the rubber to enhance the mechanical 

properties, to change the electrical conductivity, to improve the barrier properties or 

to increase the resistance to fire and ignition (Alexandre & Dubois, 2000, Nugay & 

Erman, 1999). Reinforcement of elastomeric compounds, defined as the 

simultaneous enhancement of the elastic modulus and the elongation at break, by 

addition of particulate filler, is probably one of the most important phenomena in 

material science and technology. The increase in stiffness imparted by the filler 

particles involves a hydrodynamic effect, which depends on the filler volume 

fraction, but the occlusion of rubber by the aggregate and the rubber trapped within 

the filler agglomerates may increase the effective filler volume. On the other hand, 

the shape factor (anisometry) also contributes to the increase in moduli (Bokobza & 

Chauvin, 2005).  

 

The performance of filler in the rubber matrix is governed by its 

characteristics, such as the particle size and concentration, particle shape, surface 

activity, degree of interactions with rubber matrix and structure of the particle 

agglomerates (Siriwardena et al., 2001, Bokobza & Rapoport, 2001). One of the most 

important parameters is the average particle size, as shown in Figure 2.4. Particles 

larger than 103nm do not have reinforcing capabilities (at best) or have a detrimental 

action, and generally increase viscosity by a mere hydrodynamic effect. 
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Reinforcement is readily obtained with sizes smaller than 100 nm but particle 

structure appears as a more decisive factor. Two classes of minerals have been found 

to offer significant reinforcing capabilities are carbon black and silica. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.4 Classification of fillers according to average particle size (Leblanc, 2002) 

 

Increasing the area of contact between rubber matrix and filler particles 

seems to be the most important factor in providing a strong reinforcement effect. The 

interfacial contact area between rubber matrix and filler is controlled by the size of 

filler particles and filler volume fraction. The degree of bonding between rubber 

matrix and filler particles is a key factor in determining the degree of elastomer 

reinforcement (Moshev & Evlampieva, 2003).  
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2.4.1 Carbon Black 

Carbon black (CB) is the most extensively used reinforcing filler in rubber 

compounds, since the discovery of colloidal carbon black reinforcing qualities in 

1904 (Blow, 1971). CB is an amorphous carbon of semi-graphitic structure which, 

when compounded with rubbers, increases the tensile strength, modulus, abrasion 

and tear resistance of vulcanizates. Carbon blacks have the smallest particle size of 

any industrial commodity. The CB used to reinforce rubbers has a particle size that 

ranges between 1 and 500 nanometers (Semaana et al., 2001).  

 

The structure of carbon black is schematically shown in Figure 2.5. The 

primary dispersable unit of carbon black is referred as an “aggregate,” which is a 

discrete, rigid colloidal entity. It is the functional unit in well-dispersed systems. The 

aggregate is composed of spheres that are fused together by covalent bonds (Mark, 

2004 a). Carbon black particles diameters are less than 20 nm in some of furnace CB 

grades and up to few hundred nanometers in the thermal CB, whilst the carbon black 

aggregate dimensions fall in range of 100 nm to a few micrometers (Rogers, 2004). 

 

The incorporation of carbon black with high surface area in an elastomer 

results in a high level of reinforcement and higher tensile strength, tear strength, and 

abrasion resistance, but also results in a compound with high hysteresis, high cost, 

and one which is more difficult to mix and process (Evans, 1981). The dramatic 

improvement in properties such as tensile strength, modulus, tear strength, and 

abrasion resistance when carbon black is added to elastomers has motivated much 

research into the mechanisms of such reinforcement. There are likely both chemical 

and physical interactions between carbon back and the rubber matrix, resulting in 
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