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HUBUNG-SILANG ISOLAT PROTEIN SOYA MENGGUNAKAN 
TRANSGLUTAMINASE MIKROBIAL DIIKUTI OLEH  

TINDAKBALAS MAILLARD ARUHAN-RIBOSA 
 

ABSTRAK 
 

Tesis ini menjelaskan tentang penggunaan pengolahan hubung-silang 

gabungan untuk mengubahsuaikan sifat-sifat berfungsi isolat protein soya (SPI). 

Ampaian SPI telah dihubung-silang dengan menggunakan transglutaminase 

mikrobial (MTGase) pada suhu 40 °C untuk 5 atau 24 jam, diikuti dengan 

pengeringan sejuk-beku ke bentuk serbuk. SPI terhubung-silang MTGase kemudian 

dipanaskan dengan 2% (v/w) larutan ribosa pada suhu 95 atau 100 °C untuk 

menghasilkan jel SPI terhubung-silang gabungan. Hubung-silang protein telah 

dibuktikan dengan menggunakan teknik elektroforesis (SDS-PAGE), ujian 

keterlarutan dalam pelarut-pelarut pemecah, teknik mikroskopik penskanan elektron 

pemancaran medan (FESEM) dan penilaian sifat-sifat mekanikal dengan 

menggunakan alat analisa tekstur. Jel terhubung-silang gabungan menunjukkan 

kehilangan semua garisan fraksi dalam profil SDS-PAGE menandakan kesemua 

fraksi SPI telah dihubung-silang, dan jel-jel ini adalah rendah keterlarutan, tinggi 

dalam sifat-sifat mekanikal (kekuatan jel termampat, kelikat-kenyalan dan 

kekerasan) dan mempamerkan struktur rangkaian yang lebih padat berbanding jel-jel 

lain yang dihasilkan daripada pengolahan hubung-silang tunggal  dengan MTGase 

atau ribosa. Keputusan ini mengesahkan kewujudan ikatan ε-(γ-glutamyl)lysine dan 

hubung-silang Maillard di dalam jel-jel terhubung-silang gabungan. Jel-jel dihubung-

silang gabungan adalah lebih rendah dari segi pemerangan Maillard dan hubung-

silang Maillard, dan menunjukkan retensi asid amino yang tinggi berbanding jel SPI 

yang diolah tunggal dengan ribosa. Oleh kerana hubung-silang MTGase telah 

 xxii



menggunakan suatu kuantiti lisina dan glutamina, jumlah asid amino ini untuk 

tindakbalas Maillard telah berkurangan. Dalam fasa aplikasi, pengolahan hubung-

silang gabungan telah diuji dalam mi kuning yang ditambah SPI, mikrokapsul SPI 

dan “beadlet” jel albumin serum bovin (BSA) untuk memperbaiki sifat-sifat indeks 

glisemik (GI), memperlahankan pembebasan in-vitro minyak ikan tinggi ω-3 dan 

kafeina masing-masing. Mi kuning yang ditambah SPI menggunakan pengolahan 

hubung-silang gabungan adalah lebih kuat dari segi tekstur and lebih rendah dalam 

GI secara signifikan (p<0.05) berbanding mi lain terhasil daripada pengolahan 

tunggal. Pengolahan hubung-silang dalam mikrokapsul SPI telah menunjukkan 

penambahbaikan pada pembebasan-terkawal minyak ikan berbanding sampel 

kawalan, namun profil pembebasan adalah sama seperti mikrokapsul diolah tunggal 

dengan ribosa. Hayat simpanan minyak dalam mikrokapsul telah dipanjangkan sama 

dengan mikrokapsul diolah tunggal yang mengandungi ribosa. Kejadian ini mungkin 

disebabkan oleh pembebasan produk-produk tindakbalas Maillard yang bersifat anti-

pengoksidaan semasa pemanasan dan penyimpanan dan kadar penembusan gas 

melalui kapsul yang perlahan. “Beadlet” jel BSA terhasil menggunakan pengolahan 

hubung-silang gabungan telah memberikan tindakan tertangguh dalam pembebasan 

kafeina dengan berkesan. Morfologi “beadlet” yang didapati melalui FESEM 

mencadangkan bahawa pembaikan kelakuan pembebasan ini adalah disebabkan 

pembentukan rangkaian yang padat and pemegangan kafeina dalam rangkaian 

beadlet yang menyekat pembauran kafeina dan juga menghalang protein daripada 

membengkak. Kesimpulannya, thesis ini telah menunjukkan bahawa hubung-silang 

Maillard aruhan-ribosa dapat dibentuk dalam rangkaian protein dihubung-silang 

MTGase. Pengolahan hubung-silang gabungan berpotensi diaplikasikan dalam 

produk-produk makanan dan nutraseutikal. 
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CROSS-LINKING OF SOY PROTEIN ISOLATE USING  
MICROBIAL TRANSGLUTAMINASE FOLLOWED BY  

RIBOSE-INDUCED MAILLARD REACTION  
 

ABSTRACT 
 

 

This thesis describes the use of combined cross-linking treatment 

techniques to modify functional properties of soy protein isolate (SPI). SPI 

suspensions were cross-linked with microbial transglutaminase (MTGase) at 40 °C 

for 5 or 24 hrs, followed by lyophilization of the suspensions into powders. MTGase 

pre-crosslinked SPI was then subjected to a heating treatment with solution 

containing 2% (w/v) ribose at 95 or 100 °C to produce combined cross-linked SPI 

gel. Cross-linking of protein was monitored using sodium dodecyl sulphate-

polyacrylamide gel electrophoresis (SDS-PAGE), solubility studies in disruptive 

solvents, field emission scanning electron microscopic (FESEM) technique and 

evaluation of mechanical properties of the gels using texture analyzer. Combined 

cross-linked gels showed disappearance of all the bands in SDS-PAGE profile 

indicating all protein fractions of SPI were cross-linked and these gels were lower in 

solubility, higher in gel mechanical properties (i.e. compressive gel strength, 

viscoelasticity and solidity) and exhibited a denser network structure than those 

produced using single cross-linking treatments with MTGase or ribose. These results 

confirmed the occurrence of ε-(γ-glutamyl)lysine bonds and Maillard cross-linking in 

the combined cross-linked gels.  The combined cross-linked gels were lower in the 

extent of Maillard browning and Maillard cross-linking, and had higher retention of 

amino acids compared to that of single treated SPI gel with ribose. As MTGase 

cross-linking consumed a quantity of lysine and glutamine, less of these amino acids 

were available for the Maillard reaction to occur. In the application phase of the 
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study, the combined cross-linking treatment was tested in SPI incorporated-yellow 

noodles, SPI microcapsules and bovine serum albumin (BSA) gel beadlets to 

improve glycemic index (GI) properties, sustain the in-vitro release of high ω-3 fish 

oil and caffeine respectively. SPI incorporated-yellow noodles produced using the 

combined cross-linking treatment were significantly (p<0.05) stronger in texture and 

lower in GI than those produced using single treatment. The combined cross-linking 

treatment of SPI microcapsules showed an improved sustained-release of fish oil 

compared to the control, but the profile of release was similar to that of single treated 

microcapsules with ribose. The shelf-life of the oil in the microcapsules was 

extended in combined cross-linked as well as in the single treated microcapsule 

containing ribose. This may be due to the release of anti-oxidative Maillard reaction 

products during heating and storage and a slower rate of gas permeability through the 

capsules. BSA gel beadlets produced using combined cross-linking treatment had 

effectively provided a delay action in releasing caffeine. The morphology of the 

beadlets obtained via FESEM suggested that this improved release behaviour was 

mainly due to the denser network formed and the holding of the caffeine within the 

beadlet’s network that restricted the diffusion of the caffeine as well as preventing 

protein from further swelling. In conclusion, this thesis showed that ribose-induced 

Maillard cross-linking could be formed within the MTGase pre-crosslinked protein 

network. The combined cross-linking treatment may find useful applications in food 

and nutraceutical products. 
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CHAPTER 1 
INTRODUCTION 

 
 
 
 
1.1 Background and Rationale  

Modification of soy protein for functionality improvements has been 

carried out via physical means such as heat treatment (Renkema & van Vliet, 2002) 

and application of pressure (Torrezan et al., 2007) or via chemical means such as 

acidification (Tay et al., 2005), addition of salts (Puppo & Añón, 1999) and by the 

Maillard reaction induced cross-linkings (Md Yasir et al., 2007b).  However, one of 

the most popular methods of protein modification in industry involves the application 

of transglutaminase enzyme (Md Yasir et al., 2007a; Tang, 2007). Microbial 

transglutaminase (MTGase; protein-glutamine: amine γ-glutamyltransferase, E.C. 

2.3.2.13) functions by catalyzing an acyl-transfer reaction between the γ-

carboxyamide group of peptide-bound glutamine residues (acyl donors) and variety 

of primary amines (acyl acceptors), including the ε-amino group of lysine residues to 

form an ε-(γ-glutamyl)lysine bond (Motoki & Seguro, 1998). This treatment has 

been used in meat products (Trespalacios & Pla, 2007), fish products (Jongjareonrak 

et al., 2006), dairy products (Lorenzen, 2007), legume products (Tang et al., 2007) 

and wheat products (Caballero et al., 2007) to enhance their textural and functional 

properties.  

To further enhance the functionalities of cross-linked protein it is possible 

for technologists to use a combination of cross-linking treatments. The “Maillard 

cross-link” that is induced during heating a protein and reducing sugars via the 

Maillard reaction, has been shown to produce cross-linked protein and improve 

protein gels and food texture (Gerrard et al., 2002; Hill & Easa, 1998; Md Yasir et 
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al., 2007b; Oliver et al., 2006). Walsh et al. (2003) and Cabodevila et al. (1994) 

suggested that 7S and 11S globulins of SPI have different susceptibility in MTGase 

cross-linking and Maillard reaction. Therefore, it is hypothesized that polymerization 

of SPI protein fractions can be maximized via this combined cross-linking treatment 

to improve the protein gelling capacity and thus form a densed network that could 

enhance the mechanical and other functional properties of SPI gels.  

A major drawback of the Maillard reaction and “Maillard cross-links” has 

been associated with the anti-nutritional properties such as indigestibility of 

isopeptide bonds and bioavailability of lysine, caused by destruction of amino acids, 

structural changes and inhibition of digestive enzyme activity (Friedman, 1996b). In 

contrast to “Maillard cross-links”, ε-(γ-glutamyl)lysine moiety could be more 

accessible during digestion (Seguro et al., 1995, 1996a, 1996b), and was able to 

almost completely replace L-lysine in animal feeding studies (Waibel & Carpenter, 

1972). Therefore attempts to control the destructive effects of the Maillard reaction 

by monitoring the Maillard reactions parameters/factors (e.g. temperature, water 

activity, pressure, pH and concentration of reactants) (Hill et al., 1996), 

incorporation of flavonoids (Schamberger & Labuza, 2007), supercritical carbon 

dioxide treatment (Casal et al., 2006), deglycation methods employing bacterial 

enzyme, fructosyl-N-alkyl oxidase (EC 1.5.3) (Gerhardinger et al., 1995) and 

modification of amino groups by acetylation (Friedman, 1996a) are beneficial for the 

food processors.  

The techniques that control the extent of the Maillard reaction and its 

subsequent cross-linking have not been commercially viable due to the complexity of 

the methods. Hence, the use of MTGase to control the Maillard reaction and 

“Maillard cross-links” is suggested. MTGase will be introduced into soy protein to 
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initiate the ε-(γ-glutamyl)lysine bonds. Ribose, an emerging nutraceutical ingredient 

(Hellsten et al., 2004), which is also known for its high reactivity in terms of reacting 

with protein via the Maillard reaction (Ashoor & Zent, 1984) and capability to cross-

link proteins (Graham, 1996), is then added to the MTGase pre-crosslinked SPI and 

the mixtures are heated to induce the Maillard reaction and “Maillard cross-links”. 

Other than the potential “Maillard cross-link”, ribose may also produce other 

changes that is related to the Maillard reaction, such as charge modification and pH 

adjustment (Easa, 1996; Yaylayan, 1997). Since the formation of ε-(γ-

glutamyl)lysine bonds catalyzed by MTGase may cause the loss of lysine and 

glutamine, the Maillard-derived browning and its subsequent cross-links could be 

restricted. Thus, the MTGase pre-incubation will preserve the nutritional value of soy 

protein by protecting the amino acids, particularly lysine residues against the 

damaging effects of the Maillard reaction. 

The techniques of protein modification described in this thesis are directed 

to the applications in either food or nutraceutical systems that use protein as matrix, 

in order to enhance the physical properties or to monitor the controlled-release of 

drugs from food-grade matrix. It will be appreciated that this combined cross-linking 

treatment would render the protein more feasible to these applications by modifying 

the protein properties that suit to the product requirement. 
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1.2 Objectives 

The main objective of this study is to develop a cross-linking treatment 

involving MTGase pre-incubation of SPI followed by ribose-induced Maillard 

reaction. The resultant gel product of combined cross-linking treatment can be 

applied in food and nutraceutical systems in order to suit to the functional 

requirements of the product. The measurable objectives of this study are listed as 

follows: 

1. To show the effect of MTGase pre-incubation on Maillard reaction by retaining 

amino acids from destruction effects of the Maillard reaction. 

2. To explore the feasibility of introducing ribose into MTGase cross-linked SPI.  

3. To produce and to evaluate the physicochemical properties of SPI gels treated via 

combined cross-linked treatment.  

4. To assess the applicability of the combined cross-linking treatment in 3 different 

food and nutraceutical systems: (i) SPI-incorporated yellow noodle, (ii) SPI 

microcapsules containing fish oil and (iii) caffeine-encapsulated gel beadlets.  
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1.3 Thesis Outline 

The covalent cross-linking treatments of soy protein isolate using microbial 

transglutaminase incubation followed by ribose-induced Maillard reaction for food 

and nutraceutical applications is presented in this thesis. The main body of this 

dissertation consists of a general introduction and background, literature reviews, 

material and methods, results and discussion, general conclusions as well as 

recommendations for future study.  

CHAPTER ONE is a general introduction on the background of this project 

in which the current situations and challenges encountered by food industry 

regarding the modifications protein. It also presented the proposed method to solve 

the problems with detailed background that supports the application of combined 

cross-linking treatment in modification of SPI. Besides, the rationales and the 

objectives of this study are briefly discussed. 

This project deals with combination of both MTGase incubation and the 

Maillard reaction to induce covalent cross-links in SPI, the model system. The 

general literature review of SPI and the modification methods (i.e. transglutaminase 

and the Maillard reaction) is illustrated in CHAPTER TWO. 

CHAPTER THREE lists down all the applied materials and methodology 

for every single assay conducted throughout the whole study. 

In CHAPTER FOUR, the experimental results with discussions are 

presented. Basically, this chapter is divided into two major parts with six sections, in 

which the first part of this chapter involves fundamental studies: (section 1) the 

preliminary study on the effects of MTGase incubation on SPIs, (section 2) the 

evaluation on the effects of ribose-induced Maillard reaction and the effects of 

MTGase pre-incubation on ribose-induced Maillard reaction, (section 3) the 
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elucidation on the gelation of covalent cross-linked SPIs, (section 4) the evaluation 

on the physico-chemical properties of covalent cross-linked SPI gels and (section 5) 

the evaluation on the digestibility of the covalent cross-linked SPI gels. Whereas, the 

second part involves the applications of combined cross-linking treatment in food 

and nutraceutical systems (section 6). Each sub-section describes and summarizes the 

results and the statistical analysis was used to evaluate the result. Note that bovine 

serum albumin (BSA) was used in one of the application evaluations. This is because 

BSA is widely accepted in pharmaceutical industry that the overall distribution, 

metabolism and efficacy of many drugs can be altered based on their affinity to BSA. 

Also, the potential of using a different source of protein in applying the combined 

cross-linking treatment could also be explored.  

The last chapter (CHAPTER FIVE) consists of overall conclusions on the 

whole study and recommendations for the future study of this combined cross-

linking treatment developed.      
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CHAPTER 2  
LITERATURE REVIEWS  

 

 

In this chapter, literature reviews is divided into three sections. Sections 2.1 

will review the components of soy protein isolate followed by the interactions 

between the subunits of the protein as well as the gelling mechanisms.  Two major 

modification treatments, i.e. microbial transglutaminase and Maillard reaction, will 

be reviewed in following sections (2.2 and 2.3, respectively). These sections include 

the factors and mechanisms of the modifications as well as the effects on the protein 

matrix.  

 

2.1 Soy Protein Isolate (SPI) 

A variety of soy protein, for instances soy flours, soy concentrates and soy 

isolates, possessing a range of functionalities such as gelling, emulsifying, and 

foaming capacity (Utsumi et al., 2002) has been widely used in food industry. Soy 

flours are used in a wide range of foods, particularly in bakery products and cereals 

whereas concentrates (70% protein), because of their improved flavour, colour, and 

higher protein content, it can be used in a greater quantities in many of the same 

foods, especially when higher level of protein (nutrition, functionality) are required. 

Soy protein isolate (SPI), which is of particular interest in this project, are prepared 

commercially with minimum heat-treatment, contain approximately 90-95% pure 

protein on dry basis (Kinsella, 1975; Wolf & Cowan, 1971) and has been used in 

comminuted meats and dairy foods where emulsifying, thickening and gelling 

properties are of prime importance. The general amino acid composition of SPI is 

shown in Table 2.1.  
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Table 2.1 Amino acid composition of soy protein isolate.  
 

Amino Acids Percentage 
  

Essential  
Lysine 6.1 
Methionine 1.1 
Cystine 1.0 
Tryptophan 1.4 
Threonine 3.7 
Isoleucine 4.9 
Leucine 7.7 
Phenylalanine 5.4 
Valine 4.8 
  

Non-essential  
Arginine  7.8 
Histidine 2.5 
Tyrosine 3.7 
Serine 5.5 
Glutamic acid 20.5 
Aspartic acid 11.9 
Glycine 4.0 
Alanine 3.9 
Proline 5.3 

(adapted from: Wolf & Cowan, 1971) 

 

2.1.1 Structures/components of soy protein 

Approximately 85-95% of the soybean storage proteins are globulin, i.e. 

those proteins insoluble in water near their isoelectric points (pH 4.2-4.6), but soluble 

in dilute salt solutions or at neutral pH and above (Kinsella, 1975; Wolf & Cowan, 

1971). Soybean globulins are generally classified on the basis of their sedimentation 

coefficients. Four major fractions are reported and designated as 2, 7, 11 and 15S 

(Table 2.2). Both 11S globulin (glycinin) and 7S globulin (β-conglycinin) are 

considered the major fractions of SPI with different compositions/subunits, structures 

and functionalities (Kilara & Sharkasi, 1985). The subunits of β-conglycinin-rich 

(lane a) and glycinin-rich (lane b) SPIs are illustrated in SDS-PAGE profiles (Plate. 

2.1).  
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Plate 2.1 The SDS-PAGE patterns of glycinin-rich and β-conglycinin-rich SPIs. The 
lanes a and b indicate the β-conglycinin-rich and glycinin-rich SPIs, respectively. 
Lane M indicates the standard protein markers. (adapted from: Tang et al., 2006b) 
 

 

Table 2.2 Approximate amounts and components of ultracentrifuge fractions of water 
extractable soybean proteins.  

 
Fraction Percent of Total Components Molecular Weight 

2S 22 Trypsin inhibitors 8,000 - 21,500 
  Cytochrome c 12,000 

7S 37 Hemagglutinins  110,000 
  Lipoxygenases  102,000 
  α-Amylase 61,700 
  7S Globulin 180,000 - 210,000 

11S 31 11S Globulin 350,000 

15S 11 - 600,000 

(adapted from: Wolf & Cowan, 1971) 
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2.1.1.1 The 7S (β-conglycinin) component 

β-Conglycinin, a major 7S protein, exists in monomeric (7S) and dimeric 

(9S) forms at 0.5 and 0.1 ionic strength, respectively. The original 7S fraction is a 

glycoprotein and contains the carbohydrates as one unit attached to the aspartic acid 

residue at the N-terminal end of the molecule. The carbohydrate moiety consists of 

38 mannose and 12 glucosamine residues per molecule of protein. The molecular 

weight of the 7S form is in the range 150,000 to 175,000 and that of the 9S form is 

370,000. The 7S form is composed of three subunits (α, α’ and β) which interact to 

produce six isomeric forms (B1 to B6), shown in Fig. 2.1 with varying properties 

(Table 2.3 and 2.4) and compositions (Table 2.5). 

 

 

    

 
Figure 2.1 Subunits of 7S protein from soybean in each of six isomers. (adapted from: 
Kilara & Sharkasi,1985) 
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Table 2.3 Physicochemical properties of β-conglycinin (7S) component. 
 

7S Isomers Characteristic 7S 
(monomer) 

9S 
(dimer) Group A Group B Group C β3 

 
Molecular weight 

      

From sedimentation. 
Stokes radius 

 
175,000 

     
137,000 

From subunit size   141,000 156,000 171,000  
From sedimentation-
diffusion 

150,000 370,000     

       
N-terminal 

Amino acid 
Val, Leu Val, Leu Val (1) 

Leu (2) 
Val (2) 
Leu (1) 

Val (3) 
- 

- 
Leu (3) 

       
Carbohydrate  Mannose, 

glucosamine 
 

     

(adapted from: Kilara & Sharkasi,1985) 

 

 

Table 2.4 Physicochemical properties of the subunits of β-conglycinin (7S) 
component. 

 
Subunits  

α α’ β γ 
Molecular weight     

Electrophoresis      
Urea/acetate (10% acrylamide 
gel) 

68,000 68,000 42,000 - 

SDS (10% acrylamide gel) 59,000 58,000 44,000 44,000 
Urea/SDS (9%  acrylamide gel) 57,000 58,000 46,000 46,000 
Gel filtration 57,000 57,000 42,000 - 

     
Carbohydrate (moles)     

Mannose (%) 3.88 3.81 2.46 4.53 
Glucosamine (%) 1.27 1.22 0.84 1.25 

     
Isoelectric point 4.90 5.18 5.66 - 6.00 - 

 

(adapted from: Kilara & Sharkasi,1985) 
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Table 2.5 Amino acid composition of β-conglycinin (7S) component.  
 

7S Isomers (mole %) 
Amino acid 

Group A Group B Group C β3 Isomer 
     

Asp 12.40 12.53 12.35 12.40 
Thr 2.27 1.98 1.98 2.90 
Ser 8.22 5.76 6.79 8.70 
Glu 17.57 20.54 23.07 18.60 
Pro 4.57 5.94 7.72 4.90 
Gly 4.30 6.17 6.48 6.60 
Ala 7.59 4.57 4.85 5.20 
Val 5.67 5.42 3.48 5.30 
Leu 10.31 8.98 7.12 9.30 
Ile 4.74 6.07 6.05 5.20 
Tyr 1.58 1.89 2.85 1.90 
Phe 6.02 5.76 4.41 5.30 
His 2.29 2.26 1.31 1.90 
Lys 5.68 6.00 5.85 5.60 
Arg 6.19 6.12 5.67 6.00 
Met - - - 0.13 

(adapted from: Kilara & Sharkasi,1985) 

 

 

2.1.1.2 The 11S (glycinin) component 

The 11S globulin (glycinin) is made up of 12 subunits, 6 acidic and 6 basic, 

and has a molecular weight of 302,000 to 375,000, which are packed into hexagons 

placed one over the other to form a hollow oblate cylinder. Table 2.6 and 2.7 showed 

the physicochemical properties and the amino acid composition of glycinin 

component, respectively. 
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Table 2.6 Physicochemical properties of glycinin (11S) component. 
___________________________________________________________________ 

Molecular weight 
   Gel filtration    302,000 ± 33,000 
   Sedimentation equilibrium   317,000 ± 15,000 
   Sedimentation diffusion   322,000 ± 15,000 
   From subunit size   326,000 ± 35,000 
   Gel electrophoresis    350,000 ± 35,000 
 
  Number of subunits     12 (6 Acidic [A], and 6 Basic [B]) 
 
  Intermediary subunits 
   Urea or SDS treated   A1B3, A2B3, A3B1, A3B2, 2A4B4 
   (Urea or SDS) + β-ME   A1A2, 2A3, 2A4, B1, B2, 2B3, 2B4 
 
  Molecular weight of acidic subunits 
   A1, A2, A4, A5    38,000 
   A3     45,000 
 
  Molecular weight of basic subunits 
   B1, B2, B3, B4    ~21,000 
 
  N-terminal amino acids 

      Acidic            Basic 
A1      Phe B1 – B4         Gly 
A2      Leu  
A3      Ile  
A4      Ile  

 
  Size 
   Electron microscopic    100 ×  100 ×  70 Å 
   X-ray scattering    110 ×  110 ×  75 Å 
 
  Isoelectric point 

Acidic Basic 
A1 = 5.15 B1 = 8.0 
A2 = 5.40 B2 = 8.25 
A3 = 4.75 B3 = 8.50 

___________________________________________________________________ 

(adapted from: Kilara & Sharkasi,1985) 
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Table 2.7 Amino acid composition of glycinin (11S) component. 
 

Acidic subunits Basic subunits Amino 
Acid A1 A2 A3 A4 B1 B2 B3 B4 

         
Asp 36.8 42.1 45.5 50.8 25.5 24.3 19.2 20.7 
Thr 12.0 12.3 15.5 11.8 8.1 9.1 6.2 5.4 
Ser 18.3 16.4 27.1 23.5 13.5 12.4 12.1 12.4 
Glu 85.3 86.4 91.6 92.6 22.5 22.7 24.8 21.0 
Pro 24.0 21.3 33.9 27.3 10.5 10.8 10.2 9.1 
Gly 31.0 29.9 29.5 22.4 11.1 10.4 13.4 16.1 
Ala 14.4 18.1 10.9 6.2 15.6 14.3 12.4 11.2 
Val 11.9 15.3 17.4 12.1 11.4 10.8 17.0 19.2 
Leu 20.1 20.0 21.8 14.0 17.9 17.4 18.1 18.1 
Ile 17.6 15.3 12.2 10.4 9.2 9.8 7.0 7.3 
Try 7.3 6.6 5.6 4.4 2.8 2.5 5.8 8.4 
Phe 12.2 12.3 12.0 7.7 8.6 9.1 6.0 5.7 
His 6.0 2.6 14.1 9.5 2.1 2.7 4.8 4.2 
Lys 21.2 14.9 14.8 18.8 5.9 5.9 7.0 6.5 
Arg 18.1 22.7 22.2 28.4 8.9 9.9 10.9 12.5 
Met 3.6 5.8 2.4 1.4 2.3 2.7 0 1.3 
Cys 4.5 4.3 3.6 0.7 1.7 1.5 0.2 1.5 

 

(adapted from: Kilara & Sharkasi,1985) 

 

 

2.1.1.3 7S and 11S globulins: the mixed system 

Lawrence et al. (1994) demonstrated that the entire region of 11S globulin 

can be mapped onto 7S sequences in a way that preserves the structure of the 7S 

globulins. They observed 30 residues that are globally conserved or conservatively 

exchanged across the 7S and 11S globulins. These globally conserved residues 

correspond predominantly in the 7S structure to residues forming part of the inter-

monomer packing or to residues in the inter-strand loops. Considering the presence 

of an intra-disulfide bond at the N-terminus of the 11S acidic polypeptide and 

insertion of the hypervariable region in the 11S acidic polypeptide, the authors 

suggested that the 11S N- and C-terminal halves are paired oppositely to 7S modules. 

Further, the 11S globulin sequence was suggested can be aligned like the 7S 
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globulins, which likely consist of two 7S-like trimers, indicating that the 11S 

globulin would also exhibit 32 symmetry.  

In the mixed system such as SPI, the gelation behaviour is influenced by the 

interaction of the individual components. Therefore, the interaction among major soy 

protein components, i.e., glycinin and β-conglycinin, during gelation has been 

studied. These will be reviewed in details in later section.  

 

 

2.1.2 Gelation 

In general, gel produced by heating protein solutions involved a two-step 

process according to Ferry (1948) and the gelation of globular protein has been 

widely reviewed by Clark & Lee-Tuffnell (1986), Clark (1992), Clark et al. (2001), 

Doi (1993), and Gosal & Ross-Murphy (2000). Figure 2.2 illustrates a model 

representing the possible aggregation steps in a typical heat-set globular protein. 

Both dimmer and monomer to denatured monomer equilibrium are shown. At pH 

values well below the isoelectric point fibrils are formed simply from aggregated 

monomers (A). Under other conditions, (B), a pre-aggregate is formed, which in turn 

leads to a more particulate gel (Gosal & Ross-Murphy, 2000). Another general 

mechanism of thermal gelation of globular proteins, which involve reversible 

gelation on cooling after denaturation, had also been proposed by Damodaran (1988), 

shown in Fig. 2.3.  
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Figure 2.2 Formation of heat set gels. (adapted from: Gosal & Ross-Murphy, 2000) 
 

 

 

 

 
Figure 2.3 Mechanism of thermal gelation of globular proteins. (adapted from: 
Damodaran, 1988) 

 

Coagulum-type gel 

Native state Denatured state 

Partially refolded state 
(Progel state) 

Gel state (reversible gel) 
heat cooling 

cooling 

aggregation and coagulation  

B 

A 

GEL 
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However, a more widely accepted model for gelation of soy protein (Fig. 

2.4) had been suggested by Catsimpoolas & Meyer (1970). The authors have 

reported the two state models for soy proteins as follows: The first step is the loss of 

secondary and tertiary structure by heating (denaturation) which is irreversible 

(‘progel state’). The actual formation of the gel association, which occurs on cooling 

of the protein suspension, depends on a controlled aggregation of the protein subunits 

such that solution is trapped in the three-dimensional network; this step is reversible. 

 

 

 
Figure 2.4 Gelation of soybean globulins. (adapted from: Catsimpoolas & Meyer, 
1970) 

 

 

Of all models mentioned above, the mechanisms and conformations 

involved could be summarized as in Table 2.8. 

 

 

 

 

 

 

 

Sol                 Progel                     Gel 

Metasol  

cool 
 
heat 

excess heat (125°C) 
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Table 2.8 Mechanisms and conformations involved in structure formation of protein. 
 

Protein-solvent Protein-protein 
 
Mechanism(s) 

 
Mechanism(s) 

Dissociation  Association  
Denaturation Precipitation 
Solubilization Coagulation 
Swelling  Flocculation 

 Aggregation 
  
Conformation(s) Conformation(s) 

Coil  Helix 
 Native structure 
 Three-dimensional structure 

(adapted from: Hermansson, 1986a) 

 

 

2.1.2.1 SPI gelation (mixed system) 

Glycinin and β-conglycinin exhibited different structures and gel properties. 

The gelling properties of both of these globulins have been investigated individually 

(Utsumi et al., 1997). Interactions between glycinin and β-conglycinin are of 

particular interest in this section since SPI is a mixed system of both globulins.  

Babajimopoulous et al., (1983) demonstrated that soy protein isolate 

exhibited better gelling properties at 80 °C than either of the constituent protein 

fractions. This reflects the interaction between the subunits of the constituent 

glycinin and β-conglycinin during heating. Nakamura et al. (1986) also found 

interaction of both globulins in the mixed system during heat-induced gelation at 100 

°C under high ionic strength (0.5). However, the results showed that the gelation of 

glycinin was suppressed by β-conglycinin. For instance, although the lowest protein 

concentration for the formation of self-supporting gel for glycinin and β-conglycinin 

were 2.5 and 7.5%, respectively, for the mixed system at a 1:1 ratio of the two 

globulins, the lowest concentration was 7.5%. Furthermore, the gel hardness of a 
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mixed system was between that of glycinin and β-conglycinin at most protein 

concentrations. The difference between these two studies may be attributable to the 

different heating conditions employed and the presence or absence of reducing 

agents.  

The interaction between glycinin and β-conglycinin was also demonstrated 

in commercial SPI. It was reported that the SPI which has a higher proportion of β 

subunit and basic polypeptides in water soluble fraction, exhibited good gel-forming 

ability (Arrese et al., 1991). This indicates the importance of the presence of a 

soluble form of β subunit of β-conglycinin and basic polypeptides of glycinin in SPI 

for gelation. These subunits may interact electrostatically and produce 

macroaggregates that lead to gel formation of SPI upon heating (Utsumi et al., 1984). 

Further, it was reported that the soluble macromolecule complexes formed upon 

heating of soy isolates were composed mostly of basic subunits of 11S associated 

with β subunits of 7S, mostly via electrostatic interaction. Association of basic 

subunits via disulfide bonds also occurred (Utsumi et al., 1984). It was also 

suggested that subunit A3 plays an important role in increasing the hardness of the 

11S globulin gels and coincide with the observation that A4 is liberated during the 

formation of the soluble aggregate (transient intermediate) during heating of 11S 

(Nakamura et al., 1984) 

Investigations into the gel properties of mixed system reveal information on 

contributions of two globulins to the physical properties of the SPI gels (Kang et al., 

1991). In the mixed systems prepared by mixing the acid-precipitated proteins and β-

conglycinin, hardness and unfracturability of the gels increase remarkably with 

heating temperature above 93 °C. The elasticity of the gels decreases gradually with 

an increase in the heating temperature (80-100 °C). The mixed system with a 
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glycinin: β-conglycinin ratio of 2.41 exhibits higher gel hardness at heating 

temperature above 93 °C than those of with a ratio of 0.88. Unfracturability of the 

gels is higher in the mixed system having a higher ratio than those having a lower 

ratio over the heating temperature range 80-100 °C whereas gel elasticity is higher in 

the mixed system with lower glycinin content. In the mixed system, the gel 

properties are thus changeable depending on the glycinin: β-conglycinin ratio and 

heating temperature. Although complex interactions occur in the mixed system, some 

insight is still obtainable with regard to the specific contribution of each globulin 

fraction to gel properties. Glycinin is apparently related to hardness and 

unfracturability of gels. β-conglycinin largely contributes to the elasticity of the gels. 

In addition, it has been shown that the basic polypeptides of glycinin preferentially 

associate with the β-subunit of β-conglycinin via electrostatic interaction, and that 

glycinin and β-conglycinin interact non-covalently with each other to form 

composite aggregates during gel formation (Damodaran & Kinsella, 1982; German et 

al., 1982; Kinsella, 1979; Nakamura et al., 1986). These interactions and their 

extents are likely to be influenced by glycinin: β-conglycinin ratio (Damodaran & 

Kinsella, 1982), and they may play a role in the manifestation of gel properties in the 

mixed system.  

 

 

2.1.2.2 Forces involved in gelation 

Structure formation normally involves mechanisms depending on chain-

solvent as well as chain-chain interactions. It was suggested that the network 

structure might be formed via hydrogen bonding, hydrophobic association, ionic 

interactions and electrostatic cross-links, and also through some sulphydryl-
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disulphide linkages of unfolded polypeptides (Catsimpoolas et al., 1970; 

Catsimpoolas & Meyer, 1970; Utsumi & Kinsella, 1985). Non-covalent bonding is 

more favorable in the direct cooling process, covalent bonding more favorable in the 

heating process. 

In the mixed system, disulfide bonding and various non-covalent bonds and 

interactions between the subunits of glycinin and β-conglycinin are involved in 

determining the properties of the gel. Among these molecular forces, disulfide bonds 

play an important role in gelation. Evidence for this role comes from the effects of β-

mercaptoethanol, which cleaves disulfide bonds, on the formation of gel network and 

gel hardness (Kinsella, 1979; Mori et al., 1982; Mori et al., 1986). Also, correlations 

have been shown between disulfide bond formation and gel firmness from direct 

determination of sulfhydryl and disulfide bond contents in SPI gels (Shimada & 

Cheftel, 1988). The free sulfhydryl groups present in the unheated SPI play an 

important role in the formation of a firm gel. The sulfhydryl groups are present in α 

and α’ subunits of β-conglycinin and acidic and basic polypeptides of glycinin. These 

can either undergo oxidation and/or catalyze the SH–S-S interchange reaction. It is 

likely that the sulfhydryl group content of SPI varies widely depending on the 

procedures used for its preparation. Thus, variations in SH content can also cause 

variations in the properties of SPI gels.  

A more recent study by Renkema et al. (2002) discussed about the heat-

induced gel formation of 10% SPI suspension at pH 7 and low salt concentration. Gel 

stiffness, measured as the elastic modulus, G', increased with proportion of denatured 

glycinin, which varied by changing the heating temperature (Renkema & van Vliet, 

2002; Wongprecha et al., 2000). Pre-heating of SPI and glycinin and β-conglycinin 

fractions well above the denaturation temperature drastically decreased gel formation 
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and gel properties. (Nagano et al., 2000). This indicates that the aggregation stage 

following denaturation strongly affects the resulting G'.  

During prolonged heating at pH 7 of SPI suspension at 90 °C a further 

increase in G' was observed, which has been explained by the occurrence of 

rearrangements in network structure and probably also some further incorporation of 

protein in network (Renkema & van Vliet, 2002). At 90 °C the gel exhibits a rather 

viscous characteristic at low frequencies, which is assumed to promote 

rearrangement.  

Other researches on the rheological and mechanical properties of soy 

protein gels have also been studied in different conditions (Chronakis, 1996; Kang et 

al., 1991; Puppo & Añón, 1999; Renkema & van Vliet, 2004; Renkema, 2004; 

Renkema et al., 2001, 2000).  

Other functional properties of SPI such as solubility, emulsifying and 

foaming capacity have been reviewed elsewhere (Kilara & Sharkasi, 1985; Kinsella, 

1979; Utsumi et al., 1997; Wolf & Cowan, 1971). 

 

 

2.1.3 Modification of SPI 

Owing to the gelation of SPI that requires high protein concentration 

(Grindberget al., 1992), modification of soy protein for functionality improvements 

have been carried out via physical means such as heat treatment (Renkema & van 

Vliet, 2002) and application of pressure (Molina et al., 2002; Torrezan et al., 2007) 

or via chemical means such as acidification (Tay et al., 2005), addition of salts 

(Puppo & Añón, 1999) and by the Maillard reaction induced cross-linkings 

(Cabodevila et al., 1994; Md Yasir et al., 2007b).  Enzymatic modifications 
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(transglutaminase) based on polymerization also provide a broad potential for 

designing functionality for specific applications (Md Yasir et al., 2007a; Tang et al., 

2006b; Tang, 2007).  

In addition, to further enhance the functionalities of protein it is possible for 

technologists to combine two or more of the modification treatments. For example, 

chymotrypsin/acid pre-digestion or heat pre-treatment was performed prior to 

transglutaminase cross-linking or polysaccharide conjugation was carried out in 

order to improve gelation of protein and other functional properties (Babiker, 2000; 

Babiker et al., 1996; Walsh et al., 2003; Hassan et al., 2006; Tang, 2007).  

Combination of two cross-linking treatments using transglutaminase 

incubation followed by heating with ribose to induce Maillard cross-linking in order 

to enhance physical properties of SPI gels (e.g. textural properties, colour and water 

holding capacity) has never been conducted.  The cross-linking between amino acids 

of the soy protein by microbial transglutaminase (MTGase) and the Maillard reaction 

are of particular interest due to the differences in susceptibility of soy protein 

fractions in both of these treatments (Cabodevila et al., 1994; Walsh et al., 2003). 

The details of these modifications will be reviewed in later sections (2.2 and 2.3).  
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2.2 Microbial Transglutaminase (MTGase) 

Transglutaminase (TGase) was first introduced by Clarke et al. (1959), 

which is widely distributed in various living organisms, fulfilling a great variety of 

biological functions (Griffin et al., 2002; Lorand & Graham, 2003), and responsible 

for the transamidating activity of guinea pig liver. Such enzymes, represent protein-

glutamine γ-glutamyltransferase (enzyme class [EC] 2.3.2.13), have been found in 

animal tissues and body fluids (Folk, 1980), fish (Worratao & Yongsawatdigul, 

2005), plants (Icekson & Apelbaum, 1987) and microorganisms (Yan et al., 2005; 

Zheng et al., 2002).  

Guinea pig liver transglutaminase (GTGase) was the only TGase 

commercially available until the late 1980s. Owing to the extensive purification 

procedure, the market price is high, hence the potential for industrial applications as 

a texture enhancer was affected (Motoki & Kumazawa 2000; Zhu et al., 1995, 1999). 

In addition, calcium ion (Ca2+) was required for its activation, which leads to protein 

precipitation in some food systems containing casein, soy bean globulin or myosin 

(Seguro et al., 1996b). On the other hand, Factor XIII, a TGase isolated from blood, 

is also rarely used in the food industry due to its detrimental red pigmentation and 

thrombin was required for its activation (Motoki & Kumazawa 2000; Yokoyama et 

al., 2004).  

Therefore, a number of efforts were made to obtain TGase by genetic 

manipulation of various microorganisms such as Escherichia coli (Ikura et al., 1990; 

Yokoyama et al., 2004) but none of these enzymes have been commercialized 

because of the lack of public acceptability of additives used for, e.g. texture 

enhancement in a particular food systems (Motoki & Kumazawa, 2000; Yokoyama 

et al., 2004) until TGase from Streptoverticillium S-8112 was found by Ando et al., 
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