

THE ANTICANCER MECHANISM OF IBUPROFEN OR INDOMETHACIN IN COLORECTAL CANCER CELLS

KHOO BOON YIN

UNIVERSITI SAINS MALAYSIA 2007

Acknowledgements

I would like to extend my thanks and gratitude to my supervisor, Associate Professor Dr. Soriani Yaacob and co-supervisor, Professor Norazmi Mohd. Nor for their guidance and support in this project. I am grateful to be given the opportunity to carry out my research project under their supervision. I am also grateful for the help and advice given by all the academic and nonacademic staffs of the Department of Microbiology, PPSK, INFORMM and everyone else who had lend me a hand in my project. It has been a wonderful experience working with all of you. My sincere thanks to MOSTE for the National Science Fellowship. Special thanks to Prof. Smith M.-L. (University of Leeds, UK), Prof. Suzanne Cory (Walter & Eliza Hall Institute of Medical Research, Australia) and Prof. Shigeaki Kato (University of Tokyo, Japan) in providing the clones for this study. To my parents and friends, I thank them for their sound advice and relentless support.

Abbreviations

Aberrant crypt foli	ACF
Adenomatous polyposis coli	APC
Adenosine 5'-triphosphate	ATP
American Type Culture Collection	ATCC
Ammonium persulfate	APS
Apoptosis inducing factor	AIF
Apoptosis protease activating factor-1	Apaf-1
Arachidonic acid	AA
Azoxymethane	AOM
Base pair	bp
B-cell lymphoma 2	Bcl-2
Bcl-2 associated X protein	Bax
Bcl-2-associated death promoter homologue	Bad
Beta-mercaptoethanol	β -ΜΕ
Bovine serum albumin	BSA
Caspase recruitment domain	CARD
Chinese hamster ovary cells	CHO
c-jun N-terminal kinase	JNK
Colorectal cancer	CRC
COX-2-negative mice	COX-2 ^{-/-} mice
COX-2-positive mice	COX-2 ^{+/+} mice
Cyclooxygenase	COX
Cytokeratin-18	CK-18
Cytotoxic T-lymphocytes	CTLs
Death domains	DD
Death effector domain	DED
Death inducing signaling complex	DISC
Death receptor 4 and death receptor 5	DR4 and DR5
Diethylpyrocarbonate	DEPC
Dimethyl sulfoxide	DMSO
Docosahexanoic acid	DHA
Dulbecco's Modified Eagle's Medium	DMEM
Effective concentration that causes 50% of drug response	EC ₅₀
Ethidium bromide	EtBr
Ethylenediamine-tetra acetic acid	EDTA
Fas-associated death domain	FADD
Fetal bovine serum	FBS
European Collection of Cell Cultures	ECACC
Glycosylphosphatidylinositol	GPI
Hour	h
Horseradish peroxidase	HRP
in situ end labeling	ISEL
Inhibitors of apoptosis proteins	IAPs
Insuin-like growth factors I and II	
Isopropyi-beta-D-thiogalactopyranoside	
	KDa
Lactate denydrogenase	LUH

Ligand binding domain Molecular weight N,N,N'N'-Tetra-methylethylenediamine Necrosis factor-kappa B Non-steroidal anti-inflammatory drugs Optical density Peroxisome proliferator-activated receptors Peroxisome proliferators-activated receptor response	LBD MW TEMED NF-κB NSAIDs OD PPARs PPRE
Peroxisome proliferators-activated receptor-alpha	PPARα
Peroxisome proliferators-activated receptor-delta	PPARδ
Peroxisome proliferators-activated receptor-gamma	PPARγ
Phenylbutyrate	PB [']
Phenylmethylsulfonyl flouride	PMSF
Phosphate-buffered saline	PBS
Phosphoinositol -3-kinase	PI3K
Poly ADP-ribose polymerase	PARP
Prostaglandins	PGs
Receptor-interacting protein	RIP
Retinoid X receptor	RXR
RIP-associated ICH-1/CED-3 homologous protein with a DD	RAIDD
Roselle's Park Memorial Institute Medium	RPMI
Serine/threonine kinase	Akt
Sodium citrate	SOC
Sodium dodecyl sulphate	SDS
Standard error of the mean	SEM
I dt-mediated dU I P nick end labeling	
INF receptor-1	
INF α -related apoptosis-inducing ligand	
INF-associated factor 2	TRAF-2
INFR-associated death domain	
Tris borate EDTA	
Tumor necrosis factor	
i umor necrosis ractor-alpha	ΙΝΕα
	V/V
weight/volume	W/V V act
∧-yaiaciusiuase	∧-yai

List of contents

Ackno List of List of Abbre Abstra Abstra	owledger f content f Tables f Figures eviations act ak	ment S	Page ii vii vii viii x xii xvi
Chap	ter 1	Introduction	1
1.1	Introdu	ction of NSAIDs	2
1.2	The no	n-selective COX inhibitors	5
1.3	Evaluat	tion of NSAIDs as PPAR γ ligands	6
1.4	The rol	e of PPARγ ligands in cancer	9 11
1.5	Apopto	SIS	12
1.0		tative mechanisms of PPARy ligand-induced apoptosis	14
1.7	1.7.1	Mitochondrial-dependent apoptosis	15
		1.7.1.1 Caspases activation in apoptosis	19
	1.7.2	Death receptor-ligand apoptosis	24
		1.7.2.1 Signaling by CD95/Fas	24
		1.7.2.2 Signaling by TNF-R1	25
	4 7 0	1.7.2.3 Induction of apoptosis by TRAIL	29
4.0	1.7.3	I he survival signaling pathway	31
1.8	The me	en and Indomethacin	33 26
1.9	191	Mutation of APC gene in What signaling pathway	30
	1.0.1	1.9.1.1 Down-regulation of β -catenin by NSAIDs	40
	1.9.2	The effect of NSAIDs on PPAR δ expression	41
1.10	Aims of	f the study	41
Chap	ter 2	Materials and Methods	46
2.1	Material	ls	45
	2.1.1	Chemicals and reagents	45
	2.1.2	Kits and consumables	47
	2.1.3	Antibody used for Western blatting analysis	48
2.2			50 53
2.2	221	Human CRC cell lines	53
	2.2.2	Preparation of reagents for cell culture work	53
	2.2.3	Culture procedures and conditions	58
		2.2.3.1 Thawing of cells from frozen storage	58
		2.2.3.2 Sub-culturing of cells	59
		2.2.3.3 Viability test and counting the number of cells	60
		2.2.3.4 Mycoplasma contamination test	61
		Z.Z.3.5 Freezing down of cells	61

2.3	2.3 Cytotoxicity determination		
	2.3.1	Determination of the optimal cell concentration	63
	2.3.2	Preparation of NSAID stock solutions	65
	2.3.3	Treatment of cells for LDH assay	66
	2.3.4	Preparation of LDH assay reaction mixture	70
	2.3.5	Determination of LDH activity	70
2.4	Apopto	sis detection	72
	2.4.1	Preparation of buffers and reagents for apoptosis detection	72
	2.4.2	Treatment of cells for apoptosis detection	73
	2.4.3	Detection of apoptosis	73
	244	Flow cytometry	74
25	Wester	n blotting	76
2.0	251	Preparation of buffers and reagents for protein extraction	76
	252	Treatment of cells for protein preparation	78
	253	Extraction of protein	80
	254	Protein assav	81
	255	Preparation of buffers and reagents for Western bloting	82
	2.0.0	SDS-PAGE	85
	2.0.0	Transfer of proteins onto nitrocellulose membrane	86
	258	Antibodies and FCL detection	86
26			88
2.0	2 6 1	Buffers and reagents for agarose gel electrophoresis	88
	2.0.1	Prenaration of agarose del	90 90
	2.0.2	Agarose del electrophoresis	90 90
27	Pronar	ation of total cellular RNA and cDNA samples	Q1
2.1	271	Treatment of cells for the preparation of total cellular RNA	Q1
	2.7.1	Extraction of total cellular RNA	01
	2.7.2	Measurement of RNA purity and concentration	02
	2.7.3	Synthesis of first-strand cDNA	02
	2.7.4	Confirmation of cDNA synthesis	03
28	Constru	uction of endogenous standards for Real-time PCR	0/
2.0	2 8 1	Preparation of reagents for cloning	01
	2.0.1	Preparation of <i>E</i> , coli competent colle	94
	2.0.2	Transformation of compotent cells	90 07
	2.0.3	Scrooping of positive clopes by DCP	97 101
	2.0.4	Extraction of plasmid DNA	101
	2.0.5	Soquencing	101
	2.0.0	Measurement of DNA purity and concentration	102
	2.0.7	Proparation of <i>E</i> , colicity and concentration	103
20	2.0.0 Pool-tii		103
2.9	201	Poggonte for Pogl-time DCP	104
	2.9.1	Pool time PCP set up	104
2 10	Z.J.Z Statiati	and analysia	100
2.10	Statisti		100
Char	nter 3	Cytotoxic effect of ibunrofen or indomethacin in human	
Unap		CRC cell lines	107
			107
3.1	Introdu	ction	108
3.2	Fxperir	mental design	113
3.3	Results	S	114

	3.3.1	The COX-2 mRNA expression in CRC cell lines	114
	3.3.2	The cytotoxic effect of ibuprofen or indomethacin in HCA-7	447
	3.3.3	The cytotoxic effect of ibuprofen or indomethacin in HT-29 cells	117
	3.3.4	The cytotoxic effect of ibuprofen or indomethacin in HCT-116 cells	120
	3.3.5	Determination of the constant EC_{50} values of ibuprofen or indomethacin on HCA-7, HT-29 and HCT-116 cells	125
3.4	Discus	sion	128
Chap	oter 4	Cell death induced by ibuprofen or indomethacin in human CRC cell lines	131
4.1 4.2 4.3	Introd Exper Result 4.3.1 4.3.2 4.3.3 4.3.4 4.3.5 4.3.6 4.3.6 4.3.7	uction imental design ts The percentage of apoptotic cells induced by ibuprofen or indomethacin in HCA-7 cells The percentage of apoptotic cells induced by ibuprofen or indomethacin in HT-29 cells The percentage of apoptotic cells induced by ibuprofen or indomethacin in HCT-116 cells Optimisation of Western blot analysis. The expression of pro-caspase-8, -9, -3 and -7 in HCA-7 cells following treatment with ibuprofen or indomethacin The expression of pro-caspase-8, -9, -3 and -7 in HT-29 cells following treatment with ibuprofen or indomethacin The expression of pro-caspase-8, -9, -3 and -7 in HT-29 cells following treatment with ibuprofen or indomethacin The expression of pro-caspase-8, -9, -3 and -7 in HCT-116 cells following treatments with ibuprofen or indomethacin	132 135 137 137 139 141 143 143 143 145 147
Chap	oter 5	Modulation of COX-2, <i>c-myc</i> , β -catenin and TCF-4 mRNA	143
		expression by ibuprofen or indomethacin in human CRC cell lines	154
5.1 5.2 5.3	Introdu Experi Result 5.3.1 5.3.2 5.3.3 5.3.4 5.3.5	 action	155 157 158 158 162 164 164

	5.3.6	Expression of COX-2, <i>c-myc</i> , β-catenin and TCF-4 mRNA in HT-29 cells following treatment with ibuprofen or indomethacin.	171
	5.3.7	HCT-116 cells following treatment with ibuprofen or indomethacin	174
5.4	Discu	ssion	177
Chap	ter 6	Modulation of PPAR α , PPAR δ , PPAR γ 1 and PPAR γ 2 mRNA expression by ibuprofen or indomethacin in human CRC cell lines.	183
6.1 6.2 6.3	Introdu Experi Result	ıction mental Design s	184 186 188
	6.3.1	Confirmation of the specificity of PCR amplification of PPAR α , PPAR δ , PPAR γ 1 and PPAR γ 2	188
	6.3.2	Construction of standard curves of PPAR α , PPAR δ , PPAR γ 1 and PPAR γ 2	188
	6.3.3	Expression of PPAR α , PPAR δ , PPAR γ 1 and PPAR γ 2 mRNA in HCA-7 cells following treatments with ibuprofen or indomethacin.	192
	6.3.4	Expression of PPARα, PPARδ, PPARγ1 and PPARγ2 mRNA in HT-29 cells following treatments with ibuprofen or indomethacin	197
	6.3.5	Expression of PPAR α , PPAR δ , PPAR γ 1 and PPAR γ 2 mRNA in HCT-116 cells following treatments with ibuprofen or indomethacin	200
6.4	Discus	sion	203
Chap	ter 7	General Discussion	209
Refer	ence		217

List of tables

		Page
Table 1.1	A list of the main caspases and some of their substrates	20
Table 1.2	NSAID classification.	34
Table 2.1	List of general chemicals and reagents	47
Table 2.2	List of commercial kits and consumables	49
Table 2.3	Primer and probe sequences	50
Table 2.4	List of antibodies used for Western blotting analysis	52
Table 2.5	Overview of the controls used in LDH assay	69
Table 2.6	Composition of RIPA buffer	79
Table 3.1	The general characteristics of HCA-7, HT-29 and HCT-116 cell	
	lines used in this study	116
Table 3.2	The EC50 value of ibuprofen and indomethacin determined in	
	HCA-7 cell line	119
Table 3.3	The EC50 value of ibuprofen and indomethacin determined in	
	HT-29 cell line	123
Table 3.4	The EC50 value of ibuprofen and indomethacin determined in	
	HCT-116 cell line	126
Table 4.1	Potential biomarker molecules for apoptosis studies	133
Table 4.2	Summary of the pattern of pro-caspase-8, -9, -3 and -7 protein	
	expression in HCA-7, HT-29 and HCT-116 cells following	
	treatments with ibuprofen or indomethacin	150
Table 5.1	Comparison between the sequences of the COX-2, <i>c-mvc</i> , β -	
	catenin and TCF-4 cloned PCR products and the	
	corresponding human mRNA sequence access from	
	GeneBank	160
Table 5.2	Summary of the pattern of COX-2, <i>c-mvc</i> , B-catenin and TCF-4	
	mRNA expression in HCA-7. HT-29 and HCT-116 cells	
	following treatments with ibuprofen or indomethacin	178
Table 6.1	Comparison between the sequences of the PPAR α , PPAR δ .	
	PPARv1 and PPARv2 cloned PCR products and the	
	corresponding human mBNA sequence access from	
	GeneBank	190
Table 6.2	Summary of the pattern of PPARa PPARa PPARa and	-
	$PPAB_{2}$ mRNA expression in HCA-7 HT-29 and HCT-116	
	cells following treatment with ibunrofen or indomethacin	204
		-01

List of figures

Figure 1.1 Classification of NSAIDs based on the relative specificity ratio of COX-1 to COX-2 in human whole blood assay			Page
of COX-1 to COX-2 in human whole blood assay. 4 Figure 1.2 The transcriptional activation by PPARy. 8 Figure 1.3 Hallmarks of the apoptotic and necrotic cell death processes. 13 Figure 1.4 The putative apoptosis mechanism induced by PPARy ligands. 16 Figure 1.6 Activation of pro-caspases. 21 Figure 1.7 The apoptosis signaling mechanism by Fas death receptor. 26 Figure 1.8 The tumor necrosis factor receptor-1. 28 Figure 1.10 The putative mechanism of action of NSAIDs in human CRC cells <i>in vitro</i> . 37 Figure 2.1 Determination of LDH activity of indomethacin. 64 Figure 2.2 Determination of LDH activity of indomethacin. 67 Figure 2.3 Determination of LDH activity of indomethacin. 68 Figure 2.4 Overview procedure of measuring LDH activity. 71 Figure 2.5 Apoptosis detection using M30 CytoDEATH assay. 75 Figure 2.8 Maps of plasmid vectors used in this study. 98 Figure 2.8 Maps of plasmid vectors used in this study. 100 Figure 3.4 The typical epithelial appearance of a confluent monolayer of HCA-7, HT-29 and HCT-116 cells. 112	Figure 1.1	Classification of NSAIDs based on the relative specificity ratio	U
Figure 1.2The transcriptional activation by PPARy.8Figure 1.3Hallmarks of the apoptotic and necrotic cell death processes.13Figure 1.4The putative apoptosis mechanism induced by PPARy ligands.16Figure 1.5The mitochondrial-dependent apoptosis pathway.18Figure 1.6Activation of pro-caspases.21Figure 1.7The apoptosis signaling mechanism by Fas death receptor.26Figure 1.8The tumor necrosis factor receptor-1.28Figure 1.9The signal transduction of survival signaling pathway.32Figure 1.10The putative mechanism of action of NSAIDs in human CRC cells in vitro.37Figure 2.1Determination of the optimal cell concentration.64Figure 2.2Determination of LDH activity of indomethacin.67Figure 2.3Determination of LDH activity of ibuprofen.68Figure 2.4Overview procedure of measuring LDH activity.71Figure 2.5Apoptosis detection using M30 CytoDEATH assay.99Figure 3.6Maps of plasmid vectors used in this study.90Figure 3.1Principle of LDH assay.110Figure 3.2The sigmoid shape of dose response curve.111Figure 3.4The cytotoxic effect of ibuprofen or indomethacin in HCA-7 cells.112Figure 3.7The cytotoxic effect of ibuprofen or indomethacin in HCA-17 cells.113Figure 3.7The cytotoxic effect of ibuprofen or indomethacin in HCA-17 		of COX-1 to COX-2 in human whole blood assay	4
Figure 1.3 Hallmarks of the apoptotic and necrotic cell death processes	Figure 1.2	The transcriptional activation by PPARγ	8
Figure 1.4 The putative apoptosis mechanism induced by PPARγ ligands 18 Figure 1.5 The mitochondrial-dependent apoptosis pathway	Figure 1.3	Hallmarks of the apoptotic and necrotic cell death processes	13
Figure 1.5The mitochondrial-dependent apoptosis pathway.18Figure 1.6Activation of pro-caspases.21Figure 1.7The apoptosis signaling mechanism by Fas death receptor.26Figure 1.8The tumor necrosis factor receptor-1.28Figure 1.9The signal transduction of survival signaling pathway.32Figure 1.10The putative mechanism of action of NSAIDs in human CRC37Figure 2.1Determination of LDH activity of indomethacin.64Figure 2.2Determination of LDH activity of indomethacin.67Figure 2.3Determination of LDH activity of indomethacin.68Figure 2.4Overview procedure of measuring LDH activity.71Figure 2.5Apoptosis detection using M30 CytoDEATH assay.75Figure 2.6Maps of plasmid vectors used in this study.99Figure 2.7Maps of plasmid vectors used in this study.90Figure 3.1Principle of LDH assay.110Figure 3.2The sigmoid shape of dose response curve.111Figure 3.4The typical epithelial appearance of a confluent monolayer of HCA-7, HT-29 and HCT-116 cells.115Figure 3.6The cytotoxic effect of ibuprofen or indomethacin in HCA-7122Figure 4.7The percentage of apoptotic cells induced by ibuprofen or indomethacin in HCA-7138Figure 3.8Schematic representation of the determination of constant EC50 values of ibuprofen or indomethacin in HCA-7, HT-29138Figure 4.1The percentage of apoptotic cells induced by ibuprofen or indomethacin in HCA-7 cells. <t< td=""><td>Figure 1.4</td><td>The putative apoptosis mechanism induced by PPARγ ligands</td><td>16</td></t<>	Figure 1.4	The putative apoptosis mechanism induced by PPAR γ ligands	16
Figure 1.6Activation of pro-caspases.21Figure 1.7The apoptosis signaling mechanism by Fas death receptor.26Figure 1.8The tumor necrosis factor receptor-1.28Figure 1.9The signal transduction of survival signaling pathway.32Figure 1.10The putative mechanism of action of NSAIDs in human CRC37Figure 2.1Determination of the optimal cell concentration.64Figure 2.2Determination of LDH activity of indomethacin.67Figure 2.3Determination of LDH activity of indomethacin.67Figure 2.4Overview procedure of measuring LDH activity.71Figure 2.5Apoptosis detection using M30 CytoDEATH assay.75Figure 2.6Maps of plasmid vectors used in this study.99Figure 3.1Principle of LDH assay.100Figure 3.2The sigmoid shape of dose response curve.111Figure 3.3Schematic representation of the determination of constant EC50 value.112Figure 3.4The cytotoxic effect of ibuprofen or indomethacin in HCA-7 cells.118Figure 3.7The cytotoxic effect of ibuprofen or indomethacin in HCA-7 cells.121Figure 3.8Schematic representation of the determination of constant EC50 values of ibuprofen or indomethacin in HCA-7 cells.122Figure 3.4The cytotoxic effect of ibuprofen or indomethacin in HCA-7 cells.124Figure 3.4The cytotoxic effect of ibuprofen or indomethacin in HCA-7 cells.124Figure 3.5The cytotoxic effect of ibuprofen or indomethacin i	Figure 1.5	The mitochondrial-dependent apoptosis pathway	18
Figure 1.7 The apoptosis signaling mechanism by Fas death receptor	Figure 1.6	Activation of pro-caspases	21
Figure 1.8 The tumor necrosis factor receptor-1 28 Figure 1.9 The signal transduction of survival signaling pathway	Figure 1.7	The apoptosis signaling mechanism by Fas death receptor	26
Figure 1.9 The signal transduction of survival signaling pathway. 32 Figure 1.10 The putative mechanism of action of NSAIDs in human CRC cells <i>in vitro</i> . 37 Figure 1.11 A summary of the experiment design	Figure 1.8	The tumor necrosis factor receptor-1	28
Figure 1.10 The putative mechanism of action of NSAIDs in human CRC cells in vitro	Figure 1.9	The signal transduction of survival signaling pathway	32
cells in vitro.37Figure 1.11A summary of the experiment design.44Figure 2.1Determination of the optimal cell concentration.64Figure 2.2Determination of LDH activity of indomethacin.67Figure 2.3Determination of LDH activity of bibuprofen.68Figure 2.4Overview procedure of measuring LDH activity.71Figure 2.5Apoptosis detection using M30 CytoDEATH assay.75Figure 2.6Maps of plasmid vectors used in this study.98Figure 2.7Maps of plasmid vectors used in this study.99Figure 3.8Maps of plasmid vectors used in this study.100Figure 3.1Principle of LDH assay.110Figure 3.2The sigmoid shape of dose response curve.111Figure 3.3Schematic representation of the determination of constant EC50 value.112Figure 3.4The typical epithelial appearance of a confluent monolayer of HCA-7, HT-29 and HCT-116 cells.118Figure 3.6The cytotoxic effect of ibuprofen or indomethacin in HCA-7 cells.118Figure 3.7The cytotoxic effect of ibuprofen or indomethacin in HCA-7 cells.121Figure 3.8Schematic representation of the determination of constant EC50 values of ibuprofen or indomethacin in HCA-7, HT-29 and HCT-116 cells.124Figure 4.1The percentage of apoptotic cells induced by ibuprofen or indomethacin in HCA-7 cells.138Figure 4.2The percentage of apoptotic cells induced by ibuprofen or indomethacin in HCA-7 cells.140Figure 4.3The	Figure 1.10	The putative mechanism of action of NSAIDs in human CRC	
Higure 1.11 A summary of the experiment design		cells in vitro	37
Figure 2.1Determination of the optimal cell concentration.64Figure 2.2Determination of LDH activity of indomethacin.67Figure 2.3Determination of LDH activity of bipprofen.68Figure 2.4Overview procedure of measuring LDH activity.71Figure 2.5Apoptosis detection using M30 CytoDEATH assay.75Figure 2.6Maps of plasmid vectors used in this study.98Figure 2.7Maps of plasmid vectors used in this study.98Figure 3.1Principle of LDH assay.100Figure 3.2The sigmoid shape of dose response curve.111Figure 3.3Schematic representation of the determination of constant EC50 value.112Figure 3.4The typical epithelial appearance of a confluent monolayer of HCA-7, HT-29 and HCT-116 cells.115Figure 3.6The cytotoxic effect of ibuprofen or indomethacin in HCA-7 cells.121Figure 3.7The cytotoxic effect of ibuprofen or indomethacin in HCA-7 cells.124Figure 3.8Schematic representation of the determination of constant EC50 values of ibuprofen or indomethacin in HCA-7, HT-29 and HCT-116 cells.127Figure 4.1The percentage of apoptotic cells induced by ibuprofen or indomethacin in HCA-7 cells.138Figure 4.2The percentage of apoptotic cells induced by ibuprofen or indomethacin in HC-7 cells.140Figure 4.4Western blot analysis of caspase-8, -9, -3, -7 and β-actin expression in HCA-7 cells.144Figure 4.5Western blot analysis of caspase-8, -9, -3, -7 and b-actin expression in HT-29 cells.	Figure 1.11	A summary of the experiment design	44
Figure 2.2 Determination of LDH activity of indomethacin	Figure 2.1	Determination of the optimal cell concentration	64
Figure 2.3Determination of LDH activity of ibuprofen	Figure 2.2	Determination of LDH activity of indomethacin	67
Figure 2.4 Overview procedure of measuring LDH activity. 71 Figure 2.5 Apoptosis detection using M30 CytoDEATH assay	Figure 2.3	Determination of LDH activity of ibuproten	68
Figure 2.5 Apoptosis detection using M30 CytoDEATH assay	Figure 2.4	Overview procedure of measuring LDH activity	/1
Figure 2.6Maps of plasmid vectors used in this study.98Figure 2.7Maps of plasmid vectors used in this study.99Figure 2.8Maps of plasmid vectors used in this study.100Figure 3.1Principle of LDH assay.110Figure 3.2The sigmoid shape of dose response curve.111Figure 3.3Schematic representation of the determination of constant EC50 value.112Figure 3.4The typical epithelial appearance of a confluent monolayer of HCA-7, HT-29 and HCT-116 cells.115Figure 3.5The cytotoxic effect of ibuprofen or indomethacin in HCA-7 cells.118Figure 3.6The cytotoxic effect of ibuprofen or indomethacin in HT-29 cells.121Figure 3.7The cytotoxic effect of ibuprofen or indomethacin in HCT-116 cells.124Figure 3.8Schematic representation of the determination of constant EC50 values of ibuprofen or indomethacin in HCA-7, HT-29 and HCT-116 cells.127Figure 4.1The percentage of apoptotic cells induced by ibuprofen or indomethacin in HCA-7 cells.138Figure 4.2The percentage of apoptotic cells induced by ibuprofen or indomethacin in HCA-7 cells.140Figure 4.3The percentage of apoptotic cells induced by ibuprofen or indomethacin in HCA-7 cells.142Figure 4.4Western blot analysis of caspase-8, -9, -3, -7 and β-actin expression in HT-29 cells.144Figure 4.6Western blot analysis of caspase-8, -9, -3, -7 and b-actin146	Figure 2.5	Apoptosis detection using M30 CytoDEATH assay	/5
Figure 2.7 Maps of plasmid vectors used in this study	Figure 2.6	Maps of plasmid vectors used in this study	98
Figure 2.8Maps of plasmid vectors used in this study.100Figure 3.1Principle of LDH assay.110Figure 3.2The sigmoid shape of dose response curve.111Figure 3.3Schematic representation of the determination of constant EC50 value.112Figure 3.4The typical epithelial appearance of a confluent monolayer of HCA-7, HT-29 and HCT-116 cells.115Figure 3.5The cytotoxic effect of ibuprofen or indomethacin in HCA-7 cells.118Figure 3.6The cytotoxic effect of ibuprofen or indomethacin in HCT-116 cells.121Figure 3.7The cytotoxic effect of ibuprofen or indomethacin in HCT-116 cells.124Figure 3.8Schematic representation of the determination of constant EC50 values of ibuprofen or indomethacin in HCA-7, HT-29 and HCT-116 cells.127Figure 4.1The percentage of apoptotic cells induced by ibuprofen or indomethacin in HCA-7 cells.138Figure 4.2The percentage of apoptotic cells induced by ibuprofen or indomethacin in HCT-116 cells.140Figure 4.3The percentage of apoptotic cells induced by ibuprofen or indomethacin in HCT-116 cells.142Figure 4.4Western blot analysis of caspase-8, -9, -3, -7 and β-actin expression in HCA-7 cells.144Figure 4.5Western blot analysis of caspase-8, -9, -3, -7 and b-actin expression in HT-29 cells.146	Figure 2.7	Maps of plasmid vectors used in this study	100
Figure 3.1Principle of LDF assay	Figure 2.8	Maps of plasmid vectors used in this study	100
Figure 3.2The signoid shape of dose response curve	Figure 3.1	Principle of LDH assay	110
Figure 3.3 Schematic representation of the determination of constant EC50 value. 112 Figure 3.4 The typical epithelial appearance of a confluent monolayer of HCA-7, HT-29 and HCT-116 cells. 115 Figure 3.5 The cytotoxic effect of ibuprofen or indomethacin in HCA-7 cells. 118 Figure 3.6 The cytotoxic effect of ibuprofen or indomethacin in HT-29 cells. 121 Figure 3.7 The cytotoxic effect of ibuprofen or indomethacin in HCT-116 cells. 121 Figure 3.8 Schematic representation of the determination of constant EC50 values of ibuprofen or indomethacin in HCA-7, HT-29 and HCT-116 cells. 124 Figure 4.1 The percentage of apoptotic cells induced by ibuprofen or indomethacin in HCA-7 cells. 127 Figure 4.2 The percentage of apoptotic cells induced by ibuprofen or indomethacin in HCA-7 cells. 138 Figure 4.3 The percentage of apoptotic cells induced by ibuprofen or indomethacin in HC-116 cells. 140 Figure 4.4 Western blot analysis of caspase-8, -9, -3, -7 and β-actin expression in HCA-7 cells. 142 Figure 4.5 Western blot analysis of caspase-8, -9, -3, -7 and b-actin expression in HC-9 cells. 144 Figure 4.6 Western blot analysis of caspase-8, -9, -3, -7 and b-actin 146	Figure 3.2	The sigmoid shape of dose response curve	111
Figure 3.4 The typical epithelial appearance of a confluent monolayer of HCA-7, HT-29 and HCT-116 cells. 115 Figure 3.5 The cytotoxic effect of ibuprofen or indomethacin in HCA-7 cells. 118 Figure 3.6 The cytotoxic effect of ibuprofen or indomethacin in HT-29 cells. 121 Figure 3.7 The cytotoxic effect of ibuprofen or indomethacin in HCT-116 cells. 124 Figure 3.8 Schematic representation of the determination of constant EC50 values of ibuprofen or indomethacin in HCA-7, HT-29 and HCT-116 cells. 127 Figure 4.1 The percentage of apoptotic cells induced by ibuprofen or indomethacin in HCA-7 cells. 128 Figure 4.2 The percentage of apoptotic cells induced by ibuprofen or indomethacin in HCA-7 cells. 140 Figure 4.3 The percentage of apoptotic cells induced by ibuprofen or indomethacin in HCT-116 cells. 142 Figure 4.4 Western blot analysis of caspase-8, -9, -3, -7 and β-actin expression in HCA-7 cells. 144 Figure 4.5 Western blot analysis of caspase-8, -9, -3, -7 and b-actin expression in HT-29 cells. 146	Figure 3.3	EC50 value	112
HCA-7, HT-29 and HCT-116 cells.115Figure 3.5The cytotoxic effect of ibuprofen or indomethacin in HCA-7 cells.118Figure 3.6The cytotoxic effect of ibuprofen or indomethacin in HT-29 cells.121Figure 3.7The cytotoxic effect of ibuprofen or indomethacin in HCT-116 cells.121Figure 3.8Schematic representation of the determination of constant EC50 values of ibuprofen or indomethacin in HCA-7, HT-29 and HCT-116 cells.127Figure 4.1The percentage of apoptotic cells induced by ibuprofen or indomethacin in HCA-7 cells.138Figure 4.2The percentage of apoptotic cells induced by ibuprofen or indomethacin in HT-29 cells.140Figure 4.3The percentage of apoptotic cells induced by ibuprofen or indomethacin in HCT-116 cells.142Figure 4.4Western blot analysis of caspase-8, -9, -3, -7 and β-actin expression in HT-29 cells.144Figure 4.5Western blot analysis of caspase-8, -9, -3, -7 and b-actin expression in HT-29 cells.146	Figure 3.4	The typical epithelial appearance of a confluent monolayer of	
Figure 3.5The cytotoxic effect of ibuprofen or indomethacin in HCA-7 cells		HCA-7, HT-29 and HCT-116 cells	115
cells.118Figure 3.6The cytotoxic effect of ibuprofen or indomethacin in HT-29 cells.121Figure 3.7The cytotoxic effect of ibuprofen or indomethacin in HCT-116 cells.124Figure 3.8Schematic representation of the determination of constant EC50 values of ibuprofen or indomethacin in HCA-7, HT-29 	Figure 3.5	The cytotoxic effect of ibuprofen or indomethacin in HCA-7	
Figure 3.6The cytotoxic effect of ibuprofen or indomethacin in H1-29 cells	- : 0.0		118
Figure 3.7Cells.121Figure 3.7The cytotoxic effect of ibuprofen or indomethacin in HCT-116 cells.124Figure 3.8Schematic representation of the determination of constant EC50 values of ibuprofen or indomethacin in HCA-7, HT-29 and HCT-116 cells.127Figure 4.1The percentage of apoptotic cells induced by ibuprofen or indomethacin in HCA-7 cells.127Figure 4.2The percentage of apoptotic cells induced by ibuprofen or indomethacin in HT-29 cells.138Figure 4.3The percentage of apoptotic cells induced by ibuprofen or indomethacin in HCT-116 cells.140Figure 4.4Western blot analysis of caspase-8, -9, -3, -7 and β-actin expression in HCA-7 cells.144Figure 4.5Western blot analysis of caspase-8, -9, -3, -7 and b-actin expression in HT-29 cells.146	Figure 3.6	The cytotoxic effect of ibuproten or indomethacin in HT-29	101
Figure 3.7The cytotoxic effect of ibuprofen or indomethacin in HC1-116 cells	E :	Cells	121
Figure 3.8Schematic representation of the determination of constant EC50 values of ibuprofen or indomethacin in HCA-7, HT-29 and HCT-116 cells.127Figure 4.1The percentage of apoptotic cells induced by ibuprofen or indomethacin in HCA-7 cells.138Figure 4.2The percentage of apoptotic cells induced by ibuprofen or indomethacin in HT-29 cells.140Figure 4.3The percentage of apoptotic cells induced by ibuprofen or indomethacin in HT-29 cells.142Figure 4.4Western blot analysis of caspase-8, -9, -3, -7 and β-actin expression in HCA-7 cells.144Figure 4.5Western blot analysis of caspase-8, -9, -3, -7 and b-actin expression in HT-29 cells.146Figure 4.6Western blot analysis of caspase-8, -9, -3, -7 and b-actin expression in HT-29 cells.146	Figure 3.7	The cytotoxic effect of ibuproten or indomethacin in HCT-TT6	104
Figure 3.8Schematic representation of the determination of constantEC50 values of ibuprofen or indomethacin in HCA-7, HT-29 and HCT-116 cells.127Figure 4.1The percentage of apoptotic cells induced by ibuprofen or indomethacin in HCA-7 cells.138Figure 4.2The percentage of apoptotic cells induced by ibuprofen or indomethacin in HT-29 cells.140Figure 4.3The percentage of apoptotic cells induced by ibuprofen or indomethacin in HT-29 cells.140Figure 4.3The percentage of apoptotic cells induced by ibuprofen or indomethacin in HCT-116 cells.142Figure 4.4Western blot analysis of caspase-8, -9, -3, -7 and β-actin expression in HCA-7 cells.144Figure 4.5Western blot analysis of caspase-8, -9, -3, -7 and b-actin expression in HT-29 cells.146Figure 4.6Western blot analysis of caspase-8, -9, -3, -7 and b-actin expression in HT-29 cells.146	Eiguro 2.0	Cells	124
Figure 4.1The percentage of apoptotic cells induced by ibuprofen or indomethacin in HCA-7 cells.127Figure 4.2The percentage of apoptotic cells induced by ibuprofen or indomethacin in HT-29 cells.138Figure 4.3The percentage of apoptotic cells induced by ibuprofen or indomethacin in HT-29 cells.140Figure 4.3The percentage of apoptotic cells induced by ibuprofen or indomethacin in HCT-116 cells.142Figure 4.4Western blot analysis of caspase-8, -9, -3, -7 and β-actin expression in HCA-7 cells.144Figure 4.5Western blot analysis of caspase-8, -9, -3, -7 and b-actin expression in HT-29 cells.146Figure 4.6Western blot analysis of caspase-8, -9, -3, -7 and b-actin146	Figure 3.6	Schematic representation of the determination of constant	
Figure 4.1The percentage of apoptotic cells induced by ibuprofen or indomethacin in HCA-7 cells		and HCT 116 collo	107
Figure 4.1The percentage of apoptotic cells induced by ibuptoten of indomethacin in HCA-7 cells	Eiguro 4 1	The percentage of apoptotic cells induced by ibuprofer or	121
Figure 4.2The percentage of apoptotic cells induced by ibuprofen or indomethacin in HT-29 cells	rigule 4.1	indemethacin in HCA 7 colle	120
Figure 4.2The percentage of apoptotic cells induced by ibuptoter of indomethacin in HT-29 cells	Figure 4.2	The percentage of apoptotic cells induced by ibuprofer or	130
Figure 4.3The percentage of apoptotic cells induced by ibuprofen or indomethacin in HCT-116 cells	rigule 4.2	indomethacin in HT-29 cells	1/0
Figure 4.4Western blot analysis of caspase-8, -9, -3, -7 and β-actin expression in HCA-7 cells	Figure 4.3	The percentage of apontotic cells induced by ibuprofen or	140
Figure 4.4Western blot analysis of caspase-8, -9, -3, -7 and β-actin expression in HCA-7 cells	rigule 4.5	indomethacin in HCT-116 cells	142
Figure 4.4Western blot analysis of caspase-0, -9, -3, -7 and p-actinexpression in HCA-7 cells	Figure 4.4	Western blot analysis of caspase-8 -9 -3 -7 and B-actin	174
Figure 4.5 Western blot analysis of caspase-8, -9, -3, -7 and b-actin Every expression in HT-29 cells	1 iguie 4.4	expression in HCA-7 cells	144
Figure 4.6 Western blot analysis of caspase-8, -9, -3, -7 and b-actin 146	Figure 4.5	Western hlot analysis of cashase-8 -9 -3 -7 and h-actin	1- 7-7
Figure 4.6 Western blot analysis of caspase-8, -9, -3, -7 and b-actin	i iguio 4.0	expression in HT-29 cells	146
THE THE TRUCK AND A TRUCK AND	Figure 4.6	Western blot analysis of caspase-8 -9 -3 -7 and b-actin	0

Figure 5.1 Gel electrophoresis of PCR products	59
Figure 5.2 Standard curves	63
Figure 5.3 Electrophoresis of total RNA samples	65
Figure 5.4 The linear regression plot of CT value of β -actin from HCA-7, HT-29 and HCT-116 cDNA samples	66
Figure 5.5The modulation of COX-2, <i>c-myc</i> , β-catenin and TCF-4 mRNA expression in HCA-7 cells following treatment with ibuprofen or indomethacin.16	68
Figure 5.6 The modulation of COX-2, <i>c-myc</i> , β-catenin and TCF-4mRNA expression in HT-29 cells following treatment with ibuprofen or indomethacin	72
Figure 5.7The modulation of COX-2, <i>c-myc</i> , β-catenin and TCF-4 mRNA expression in HCT-116 cells following treatment with ibuprofen or indomethacin	75
Figure 6.1 Gel electrophoresis PCR products	89
Figure 6.2 Standard curves 19	93
Figure 6.3 The modulation of PPAR α , PPAR δ , PPAR γ 1 and PPAR γ 2 mRNA expression in HCA-7 cells following treatment with ibuprofen or indomethacin	94
Figure 6.4 The modulation of PPAR α , PPAR δ , PPAR γ 1 and PPAR γ 2 mRNA expression in HT-29 cells following treatment with	0.
ibuprofen or indomethacin19	98
Figure 6.5 The modulation of PPAR α , PPAR δ , PPAR γ 1 and PPAR γ 2 mRNA expression in HCT-116 cells following treatment with	
ibuproten or indomethacin	01

The anticancer mechanism of ibuprofen atau indomethacin in colorectal cancer cells

Abstract

Ibuprofen and indomethacin are among the frequently studied non-steroidal anti-inflammatory drugs (NSAIDs) for their anticancer activities. Besides being non-selective cyclooxygenase-2 (COX-2) inhibitors, both NSAIDs are also direct ligands for peroxisome proliferators-activated receptor-gamma (PPARy). However, the precise mechanism(s) of action whereby both NSAIDs exert their anticancer effect remain unclear. In this study, we investigated the effects of both NSAIDs in constitutively COX-2-expressing (HCA-7 and HT29) and nonconstitutively COX-2-expressing (HCT116) cell lines. Our initial aim of the study was to determine the NSAID growth inhibitory effect as well as the effective concentration to inhibit 50% of cell growth (EC₅₀) of each NSAID in each cell line using lactate dehydrogenase (LDH) release assay. The apoptosis mechanism was then investigated using M30 CytoDEATH assay prior to flow cytometry analysis. The apoptotic-related proteins such as caspase-8, -9, -3 and -7 were also investigated using Western blot analysis, whereas the modulation of mRNA expression of relevant molecular targets such as COX-2, *c-myc*, β-catenin, TCF-4 and PPAR subtypes (α , δ , γ 1 and γ 2) mRNA was quantified using Real-time PCR analysis. Our results demonstrated that both NSAIDs produced remarkable inhibition on the growth of all three cell lines tested. The

inhibitory effect occurred in a concentration- and time-dependent manner, with indomethacin (EC₅₀ value >100 μ M) being more potent compared to ibuprofen (EC₅₀ value >1000 μ M). Furthermore, the ability of both NSAIDs in inhibiting the growth of cells is likely not to be associated with COX-2 expression. The evidence from M30 CytoDEATH assay suggested that the major mode of cell death caused by both NSAIDs was caspase-dependent apoptosis. This evidence was further supported by Western blot analysis which indicated that the induction occurred via caspase-9-dependent pathway, whereas the Real-time PCR analysis showed that both NSAIDs appear to modulate gene expression via a variety of different molecular targets in COX-2-dependent and/or independent pathway(s) depending on the colorectal cancer (CRC) cell type. However, alteration of TCF-4 and PPARy1 mRNA expression are likely essential for both NSAIDs to induce apoptosis. Thus, Wnt and PPARy signaling pathways may be involved in mediating the apoptosis induced by both NSAIDs in CRC cells. In addition, PPAR δ is found to be another essential molecular target for indomethacin-induced CRC cell apoptosis. In conclusion, our study may provide additional information and evidence of the various mechanisms and actions of NSAIDs in human CRC cells which may be useful in selecting effective apoptotic drugs against specific CRC types. As we and others have shown, both NSAIDs have anti-CRC activities and are potential anti-CRC agents. Further studies on the effect of both NSAIDs on CRC cells remain important, as they may be developed as chemotherapeutic agents for human CRC.

iii

Antikanser mekanisme ibuprofen atau indomethacin dalam sel kanser kolorektal

Abstrak

Ibuprofen dan indometasin adalah antara drug antiinflamatori bukan steroid (NSAIDs) yang kerap dikaji untuk aktiviti-aktiviti anti kansernya. Selain daripada perencat siklooksigenase-2 (COX-2) bukan pilihan, kedua-dua NSAIDs ini adalah ligan langsung untuk reseptorgama pengaktif proliferators peroksimase (PPARy). Walaubagaimanapun, tindakan mekanisme atau mekanisme-mekanisme yang tepat yang mana kedua-dua NSAIDs mengenakan kesan anti kanser masih lagi tidak jelas. Kajian ini menyiasat kesan garis sel pada kedua-dua NSAIDs dalam sebahagian ekspresi COX-2 (HCA-7 dan HT29) dan bukan pada sebahagian ekspresi COX-2. Pada awalnya, kajian ini dijalankan untuk menentukan kesan perencatan pertumbuhan NSAIDs dan juga kepekatan (concentration) yang berkesan untuk merencat 50% daripada sel pertumbuhan (EC₅₀) pada setiap NSAIDs di setiap garis sel menggunakan dehidrogenase laktat (LDH) vang mengeluarkan assay. Mekanisme apoptosis kemudiannya disiasat menggunakan assay M30 CytoDEATH sebelum analisis aliran sitometri dijalankan. Protein-protein berkaitan apoptotic seperti caspase-8, -9, -3 dan -7 juga telah disiasat menggunakan analisis blot Western, manakala modulasi ekspresi mRNA untuk molekul sasaran yang berkaitan seperti COX-2, *c-myc*, β -catenin, TCF-4 dan subjenis-subjenis PPAR mRNA (α ,

iii

δ, y1 dan y2) dikuantitikan menggunakan analisis PCR masa-sebenar (REAL-time). Keputusan menunjukkan bahawa kedua-dua NSAIDs menghasilkan perencatan yang luar biasa pada pertumbuhan ketiga-tiga garis sel. Indometasin (nilai $EC_{50} > 100 \mu M$) adalah lebih kuat jika dibandingkan dengan ibuprofen (nilai EC₅₀ > 1000 µM). Tambahan pula kebolehan kedua-dua NSAIDs dalam merencat pertumbuhan sel-sel mungkin tidak akan dikaitkan dengan ekspresi COX-2. Bukti dari assay M30 CytoDEATH mengusulkan bahawa mod utama kematian sel adalah disebabkan kedua-dua NSAIDs adalah apoptosis yang bergantung pada caspase. Bukti ini seterusnya disokong oleh analisis blot Western yang menunjukkan bahawa cetusan berlaku melalui laluan yang bergantung pada caspase-9, manakala analisis PCR masa-sebenar (REAL-time) menunjukkan bahawa kedua-dua NSAIDs kelihatan memodulat ekspresi gen melalui pelbagai sasaran molekul yang berbeza dalam laluan atau laluan-laluan yang bergantung atau tidak bergantung pada COX-2 dan bergantung kepada jenis kanser kolorektal ini sel (CRC). Walaubagaimanapun perubahan pada TCF-4 dan ekspresi mRNA PPARy adalah agak penting kepada kedua-dua NSAIDs untuk mencetus apoptosis. Oleh itu laluan-laluan isyarat Wnt dan PPARy mungkin terlibat sebagai perantara apoptosis yang dicetus oleh kedua-dua NSAIDs dalam sel-sel CRC. Sebagai tambahan, PPARo pula didapati sebagai satu lagi sasaran molekul yang penting untuk apoptosis sel CRC cetusan-indometasin. Kesimpulannya, kajian ini mungkin dapat memberi maklumat tambahan dan bukti pelbagai mekasisme-mekanisme dan tindakan-tindakan NSAIDs dalam sel CRC manusia, yang mungkin

iii

berguna untuk memilih drug apoptotic yang berkesan terhadap jenis CRC yang spesifik. Seperti yang telah kami dan penyelidik-penyelidik lain telah tunjukkan, kedua-dua NSAIDs mempunyai aktiviti-aktiviti anti-CRC dan berpotensi sebagai agen anti-CRC. Kajian-kajian lanjut mengenai kesan kedua-dua NSAIDs pada sel-sel CRC tetap penting kerana mereka boleh dibangunkan sebagai agen kemoterapeutik untuk CRC manusia.

Chapter 1

Introduction

1.1 Introduction of NSAIDs

Non-steroidal anti-inflammatory drugs (NSAIDs) were first introduced in the 1900s, and have subsequently been widely used to treat inflammation, mild-to-moderate pain and fever (Vane and Botting, 1998). Although they have been used for more than two decades and their safety has constantly been reviewed, they have only recently been proposed as anti-cancer agents (Vane and Botting, 1998). NSAIDs work mainly by inhibiting cyclooxygenase (COX) and preventing the formation of prostaglandins (PGs) (Smith and Goh, 1996; Badawi et al., 2000; Han et al., 2001). There are two isoforms of COX which are known as COX-1 and COX-2 (Sheng et al., 1997; Badawi et al., 2000). COX-1 is continuously secreted within the stomach and duodenum where it helps maintain healthy stomach lining, normal kidney function and the clotting action of blood platelets (Sheng et al., 1997). In contrast, the COX-2 enzyme is primarily found at sites of inflammation (Sheng et al., 1997). It is induced by inflammatory stimuli such as interleukin-1, and is suppressed by glucocorticoids (Sheng et al., 1997).

Blocking of COX-2 is effective in relieving pain and inflammation, inhibiting of COX-1 often produces unacceptable whereas gastrointestinal side effects such as diarrhea, bloating, heartburn, stomach upset and ulcers (Vane and Botting, 1998). Various conventional NSAIDs such aspirin, diclofenac, ibuprofen, as indomethacin, naprosyn and piroxicam are being used as anti-cancer agents (Soh and Weinstein, 2003). These NSAIDs inhibit both COX-1 and COX-2 to differing degrees in terms of the relative specificity ratio (IC₅₀; Figure 1.1) (Mitchell *et al.*, 1994; Bishop-Bailey *et al.*, 1997; Bishop-Bailey and Warner, 2003).

The lower ratio value reflects the more potent activity of NSAIDs against COX-2 inhibition. Thus, SC58125 (celecoxib derivative) and celecoxib appear to be more selectively involved in COX-2 inhibition activity than naproxen and flurbiprofen (Figure 1.1). Besides indicating the selectivity of NSAIDs in COX-2 inhibition, ratio IC₅₀ adequately explains the variations in the side effects of NSAIDs at their anti-inflammatory doses (Vane and Botting, 1998). Selective COX-2 inhibition activity will have potent anti-inflammatory activity with fewer side effects on the stomach and kidney (Henry, 2003; Langman, 2003; Wolfe, 2003), whereas non-selective COX-2 inhibitors such as aspirin, piroxicam, ibuprofen and indomethacin which have a higher potency against COX-1 than against COX-2 inhibition activity, were found to produce high gastrointestinal toxicity and cause the most damage to the stomach at inflammatory doses (Lanza *et al.*, 1989; Rodriguez *et al.*, 1994).

1.2 The non-selective COX inhibitors

The ability of NSAIDs to decrease the COX-1/COX-2 expression has allowed consideration of NSAIDs as potential anti-cancer agents for cancer treatment including human colorectal cancer (CRC) treatment (Vane and Botting, 1998). COX-2 expression has been shown to be upregulated in human CRC when compared with normal adjacent colonic mucosa (Na and Surh, 2003). Inhibition of the COX-2 expression is important because over expression of COX-2 provides tumor cells with growth and survival advantages including resistance to apoptosis, and increased invasiveness or angiogenesis (Mohammed *et al.*, 1999; Cianchi *et al.*, 2001; Yamada *et al.*, 2001; Na and Surh, 2003).

Thus, targeting the inhibition of COX-2 is regarded as an affective and promising strategy for cancer prevention and treatment (Han *et al.*, 2001; Na and Surh, 2003). Indeed, the expression of COX-2 is stimulated by growth factors and tumor promoters, and it is often selectively expressed in tumors cells including CRC cells (Eberhart *et al.*, 1994; Sano *et al.*, 1995; Han *et al.*, 2001). Thus, the expression of COX-2 is believe that plays an important role in cancer, and is often correlated with tumorigenesis. This correlation was supported by the finding that in two mutated adenomatous polyposis coli (*APC*) background mice where the COX-2^{-/-} mice developed fewer intestinal polyps than the COX-2^{+/+} mice (Oshima *et al.*, 1996; Han *et al.*, 2001). Many epidemiologic and clinical studies have revealed that regular ingestion of NSAIDs such as aspirin, sulindac and indomethacin can reduce the risk of developing several malignant tumors including CRC (Giardiello *et al.*, 1995; Giovannucci *et al.*, 1995; Boolbol *et al.*, 1996). Based on the evidences above, it is logical to choose a selective COX-2 inhibitor that is as effective as non-selective inhibitors and could prevent PGs formation in inflamed areas without interfering with the activity in stomach and kidney (Vane and Botting, 1998). However, COX-2 appears to have multiple functions and has been shown to be important in ovulation and vasoprotection, and is essential for normal kidney development (Dahl, 1999). Indeed, both COX-1 and COX-2 are expressed in inflamed joints, so it is important that mixed COX inhibition is required for the maximal anti-inflammatory effects (Dahl, 1999).

1.3 Evaluation of NSAIDs as PPARγ ligands

Non-selective COX inhibitors are regarded as effective and promising anti-cancer agents for cancer prevention or treatment. However, the fact that NSAIDs retain the anti-proliferative activity in a variety of cells that do not express COX-2 would argue against the relevance of COX-2 inhibition as a target for NSAIDs in cancer cells (Hanif *et al.*, 1996; Zhang *et al.*, 1999; Chapple *et al.*, 2000; Smith *et al.*, 2000; Han *et al.*, 2001; Hull *et al.*, 2003). Indeed, the concentration of NSAIDs required to induce cell death was several orders of magnitude

higher than that required to inhibit the activity of COX (Mitchell *et al.*, 1993; Han *et al.*, 2001). For example, the IC₅₀ ratio of indomethacin to inhibit COX-1 and COX-2 in intact cells were reported to be 28 nM and 1.7 μ M, respectively (Mitchell *et al.*, 1993), whereas the concentration of indomethacin used to induce cell death in the same cells was 500 μ M (Zhang *et al.*, 1999). Therefore, the anti-proliferative activity of NSAIDs would seem to occur *via* COX-independent mechanisms (Hull *et al.*, 2003; Soh and Weinstein, 2003).

One possible mechanism was suggested to be *via* the peroxisome proliferators-activated receptor-gamma (PPAR_γ), a ligand-activated transcription factor pathway (Smith et al., 2000; Hull et al., 2003; Soh and Weinstein, 2003). According to Lehmann et al. (1997), several NSAIDs including ibuprofen and indomethacin, can interact directly and specifically bind with PPAR γ ligand binding domain (LBD). Upon ligand binding, PPAR γ becomes activated and heterodimerises with retinoid X receptor (RXR) (Figure 1.2) (Boitier et al., 2003). The co-repressors will then dissociate from the complex which leads to an active PPARy/RXR complex that binds to the gene regulatory sites on DNA termed PPAR response elements (PPRE). There is also evidence of the involvement of co-activator proteins that enhance the activity of the PPARy/RXR complex. Binding of the PPAR γ /RXR complex to PPRE increases the transcription of numerous genes including genes involve in tumorigenesis (Boitier et al., 2003). The ability of NSAIDs to bind to PPAR γ has been previously assessed in a competition-binding assay using [³H] BRL49653 and bacterially expressed PPAR γ LBD (Lehmann *et al.,* 1997). Though not all NSAIDs activate PPAR γ through direct interactions with the receptor, the fact that NSAIDs bind and thereby activate PPAR γ activity, subsequently define them as the PPAR γ ligands (Lehmann *et al.,* 1997).

Interestingly, ibuprofen and indomethacin used in this study are non-selective COX inhibitors and direct PPAR_{γ} ligands. Activation of PPAR_{γ} by ibuprofen and indomethacin was the strongest of any of the NSAIDs that were evaluated in CRC (Nixon *et al.*, 2003). Furthermore, both NSAIDs may activate more than one PPAR subtypes. For example, ibuprofen activates PPARdelta (PPAR δ) and PPAR_{γ} (Kojo *et al.*, 2003), whereas indomethacin shows agonistic activity for PPARalpha (PPAR α) and PPAR_{γ} (Lehmann *et al.*, 1997) or PPAR_{γ} alone based on two different studies (Kojo *et al.*, 2003). As dual ligands have been proven to be more effective at preventing colorectal carcinogenesis, ibuprofen and indomethacin are therefore potential anti-cancer agents for human CRC.

1.4 The role of PPARγ ligands in cancer

The mechanisms of anti-cancer effect by the PPAR γ ligands have, however, not been fully elucidated. In general, activation of PPAR γ by its ligand is associated with cancer prevention (Brockman *et al.*, 1998; Sarraf *et al.*, 1998; Kitamura *et al.*, 1999). The PPAR γ ligands have antiproliferative and pro-differentiation effects in slowing the proliferation of tumor cells including breast (Elstner *et al.*, 1998; Rubin *et al.*, 2000), colon (Sarraf *et al.*, 1998), prostate (Kubota *et al.*, 1998; Hisatake *et al.*, 2000; Shappell *et al.*, 2001), gastric (Takahashi *et al.*, 1999) and pancreatic (Motomura *et al.*, 2000) cancer cells.

In support of the former findings, the thiazolidinediones (TZD) group of PPAR γ ligands has been shown to inhibit proliferation of breast, prostate and colon cells (Elstner et al., 1998; Kubota et al., 1998; Sarraf et al., 1998). In contrast, the ligands promote the development of colon tumors in transgenic mice in which one copy of the gene encoding the APC is knocked out, predisposing them to colon cancer (Lefebvre et al., 1998). However, another study demonstrated that treatment of patients with liposarcomas with a PPAR γ ligand results in anti-neoplastic prodifferentiation which may decrease the proliferative rate of the cancer cells and slow the progression of the disease (Demetri et al., 1999). There are also observations that PPAR γ ligands induce growth arrest and the synthesis of differentiation markers in human CRC cells (Kitamura *et al.*, 1999). Furthermore, PPAR γ ligands have been shown to be potent inhibitors of angiogenesis, a process necessary for solid-tumor growth and metastasis (Xin *et al.,* 1999). Although much of the evidence suggests that activation of PPAR γ by its ligands could promote the suppression of tumor growth and inhibit carcinogenesis, the precise mechanisms involved remain unclear.

PPAR γ ligands have been shown to exert their anti-cancer cell proliferation through the induction of apoptosis (Yang and Frucht, 2001; Clay *et al.*, 2002). Although the precise role of PPAR γ in cancer cells is still debatable, accumulating evidence has reported that PPAR γ ligands inhibiting cancer cell growth *via* apoptosis (Yang and Frucht, 2001; Clay *et al.*, 2002; Na and Surh, 2003). The apoptosis pathway is currently the key mechanism by which anti-cancer agents kill tumor cells. The ability of PPAR γ ligands to decrease COX-2 expression and initiate apoptosis has made them to be considered as potential therapeutic agents for cancer treatment (Yang and Frucht, 2001; Debatin, 2004). Therefore, identification of the molecular pathways induced by PPAR γ ligands will be of both basic and clinical importance.

1.5 Apoptosis

Apoptosis, first reported in 1964, is also known as programmed cell death (Gewies, 2003). It is the physiological process by which unwanted cells are eliminated during development and other normal biological processes (Gewies, 2003). Moreover, cytotoxic T-lymphocytes (CTLs) kill virus-infected cells are also *via* the induction of apoptosis (Roberts, 2000). Currently, understanding of the apoptosis plays an important role in the study of physiological processes, particularly those involved in cancer research (Roberts, 2000). For example, the mutation of the *p*53 gene produces defective proteins that are often found in

cancer cells which contribute to resistance to apoptosis (Debatin, 2004). Moreover, immunotherapy of tumors requires target cells with an apoptosis-sensitive phenotype (Debatin, 2004).

Apoptosis is of major importance in the pathogenesis of several diseases including cancer, AIDS and neurological disorders such as Alzheimer's and Parkinson's diseases (Roberts, 2000). It is believed that defects in the apoptotic pathways represent hallmarks of tumorigenesis (Okada and Mak, 2004). Recent research on new cancer therapies has therefore focused on devising ways to overcome this resistance and to trigger apoptosis of cancer cells (Okada and Mak, 2004).

1.6 Morphological features of necrosis and apoptosis

In the cell death process, necrosis occurs when cells are exposed to a serious physical or chemical insult (Gewies, 2003). The necrotic mode of cell death, in which cells suffer a major insult, results in a loss of membrane integrity, swelling and cell rupture (Figure 1.3). During necrosis, the cellular contents are released uncontrolled into the environment which results in damage to surrounding cells and a strong inflammatory response in the corresponding tissue (Gewies, 2003).

In contrast to necrosis, apoptosis is characterised by typical morphological and biochemical hallmarks including cell shrinkage, nuclear DNA fragmentation and membrane blebbing (Debatin, 2004). The morphological changes such as cell shrinkage and deformation results in the cells loss of contact with neighboring cells and chromatin condensation (Figure 1.3). The chromatin is then localised at the nuclear membrane, the plasma membrane undergoes blebbing and finally the cell is fragmented into compact membrane-enclosed structures termed apoptotic bodies. The apoptotic bodies contain cytosol, condensed chromatin and organelles. They are removed from the tissue by phagocytosis or secondary necrosis without causing an inflammatory response.

1.7 The putative mechanisms of PPARγ ligand-induced apoptosis

As described above, treatment with PPAR γ ligands has been widely implicated to reduce the cancer cell growth rate and induce cell terminal differentiation of a number of human cancers including CRC *via* induction of apoptosis (Yang and Frucht, 2001; Boitier *et al.*, 2003). According to Goke *et al.* (2000), the induction of apoptosis by PPAR γ ligands is increased by co-stimulation with tumor necrosis factor (TNF)related apoptosis-inducing ligand (TRAIL), a member of the TNF family. Furthermore, inhibition of cell growth observed in human breast cancer cells treated *in vitro* with PPAR γ ligands is accompanied with a marked increase in apoptosis and a profound decrease of Bcl-2 gene expression (Elstner *et al.*, 1998). In addition, troglitazone-induced apoptosis has been demonstrated to be associated with caspase-dependent and independent mechanisms (Yoshizawa *et al.*, 2002). More importantly, Yoshida *et al.* (2003) recently proposed the mechanisms concerning PPAR γ ligand-induced apoptosis would be occurring *via* a) perturbation of mitochondrial membrane permeability; b) binding of death receptor to its ligand; and c) phosphatidylinositol-3-kinase (PI3)-serine/threonine kinase (Akt)-apoptosis protease activating factor-1 (Apaf-1) system (down-regulation of survival signaling pathway) (Figure 1.4).

1.7.1 Mitochondrial-dependent apoptosis

PPAR_Y ligands mainly induce apoptosis *via* perturbation of inner mitochondria membrane permeability (Yoshida *et al.*, 2003). This mitochondrial-dependent apoptosis was termed intrinsic apoptosis where signals from various stimuli disturb the membrane permeability of the mitochondria and subsequently release the apoptogenic factor such as cytochrome *c* into the cytoplasm (Yoshida *et al.*, 2003). During intrinsic apoptosis, anti-apoptotic proteins such as B-cell lymphoma 2 (Bcl-2) and the pro-apoptotic protein such as Bcl-2 associated X protein (Bax) are induced to oligomerise and migrate from the cytoplasm to the mitochondria escort by various BH3-Only-Protrein (Debatin, 2004). Once the protein is inserted into the outer mitochondria membrane, it induces cytochrome *c* release by the creation or alteration of the mitochondria membrane pores (Debatin, 2004).

In the cytoplasm, cytochrome *c* combines with Apaf-1 and procaspase-9 to form a complex termed apoptosome, in the presence of adenosine 5'-triphosphate (ATP) to activate caspase-9 (Figure 1.5) (Roberts, 2000; Gewies, 2003; Debatin, 2004). Caspase-9 subsequently activates downstream executor caspases such as caspase-3, -6 and -7 (Roberts, 2000). Activation of caspase-3 and the subsequent degradative events are probably triggered to initiate the apoptosis (Roberts, 2000; Yoshida *et al.*, 2003; Debatin, 2004). In most PPAR_Y ligands induced apoptosis cases, caspase-3 is the final molecule where activation of caspase-3 will then causes DNA fragmentation (Yoshida *et al.*, 2003).

However, the mitochondrial pathway must not always associated with caspase activation (Debatin, 2004). The mechanism varies depending on the release of apoptogenic factor such as cytochrome c, Smac/Diablo or apoptosis inducing factor (AIF) (Figure 1.5) (Debatin, 2004). The release of cytochrome *c* triggers caspase-9 activation through the formation of cytochrome c/Apaf-1/caspase-9 in the presence of ATP to form an active apoptosome complex as described above (Roberts, 2000; Gewies, 2003; Debatin, 2004). Thus, the release of cytochrome c from mitochondria always reflects the mitochondrial→caspase-9→executor caspase activation→apoptosis (Cai et al., 2002; Debatin, 2004). The Smac/Diablo promotes caspase activation by neutralising the inhibitory effects of inhibitors of apoptosis proteins (IAPs) and this may also imply the same caspase activation pathway (Debatin, 2004).

However, AIF causes DNA condensation or initiate apoptosis without activating any caspases (Debatin, 2004).

1.7.1.1 Caspase activation in apoptosis

Caspase(s) with the generic name *c* denotes a cysteine protease and *aspase* refers to the aspartate specific cleaving ability of these enzymes (Gewies, 2003). The individual members are then numbered according to their chronological order of publication (Robert, 2000). Caspase activation is recently demonstrated as central importance (hallmark) in the apoptosis signaling network as well as DNA fragmentation, which is activated in most cases of apoptotic cell death (Roberts, 2000; Gewies, 2003; Debatin, 2004). To date, 14 different members of the caspase have been described in mammals with caspase-11 and -12 only identified in mouse (Gewies, 2003). In broad terms, there are two groups of caspases; initiator caspase (such as -2, -8, -9, and -10) and executor caspase (such as -3, -6 and -7) (Table 1.1) (Roberts, 2000; Gewies, 2003; Debatin, 2004).

In the cell, caspases are synthesised as inactive zymogens. The inactive form of initiator caspase (e.g caspase-8) has longer domain than inactive form of executor caspase (e.g caspase-3) (Figure 1.6 A) (Gewies, 2003). The inactive form of caspase is so-called pro-caspase which at the N-terminus carry a pro-domain followed by a large and a

small subunit. The large and the small subunits are sometimes separated by a linker peptide. Upon maturation, the pro-caspase is proteolytically processed between the large and small subunit where the domain is removed resulting in forming a heterotetramer consisting of two small and two large subunits. The heterotetramer is an active form of caspase. The disappearance of pro-caspase bands in Western blot analysis reflects processing of the zymogen to generate the active form of the specific caspase (Gewies, 2003; Cheah and Azimahtol, 2004). After the initiator pro-caspase is cleaved and activated, it subsequently actives the corresponding downstream executor pro-caspase molecules to become active caspase which in turn initiating the apoptosis (Figure 1.6 B) (Gewies, 2003).

The expression level of individual caspase may have an impact on their overall activity, since deficient expression level may simply impair caspase activation (Debatin, 2004). For example, MCF-7 breast carcinoma cells completely lack caspase-3 expression due to a frame shift mutation within exon 3 of the caspase-3 gene (Janicke *et al.*, 1998). These cells can be sensitised to treatment with cytotoxic drugs by transfection of pro-caspase-3. Alternatively, caspase-8 expression was found to be frequently inactivated by hypermethylation of regulatory sequences of the caspase-8 gene in a number of different tumor cells derived from neuroblastoma, malignant brain tumors, Ewing tumors and small-cell lung carcinoma (Teitz *et al.*, 2000; Fulda *et al.*, 2001). Importantly, restoration of caspase-8 expression by gene transfer or demethylation treatment sensitised resistant tumor cells to death receptor-induced or drug-induced apoptosis (Fulda *et al.*, 2001). In contrast, gene knockout experiments targeting caspase-9 and -3 resulted in mortality as a result of severe defects in brain development (Kuida, 1998). Moreover, caspase-8-deficient embryos died after day 12 (Varfolomeev, 1998). This and the observation indicating that cell lines derived from such knockout experiments are resistant to distinct apoptosis stimuli underlines the importance of caspases as pro-apoptotic mediator (Gewies, 2003). Indeed, it has been recognised that caspases play an important role in the apoptotic signaling machinery (Earnshaw, 1999).

Given the important role of caspases as the final effectors molecule of apoptosis, the ability of anti-cancer agents such as PPAR γ ligands to trigger caspase activation appears to be a critical determinant of sensitivity or resistance to cytotoxic therapies (Debatin, 2004). Indeed, caspases are useful biomarkers for apoptosis, as outlined below (Roberts, 2000). As a consequence, determination of caspase activation in various forms of cell death including PPAR γ ligand-induced apoptosis may be an important factor in cancer chemotherapies (Debatin, 2004).

1.7.2 Death receptor-ligand apoptosis

The death receptor-ligand system is so called extrinsic apoptosis because the apoptosis signal is initiated by the death receptor at cell surface (Goke *et al.*, 2000; Gewies, 2003; Debatin, 2004). The death receptor belongs to the TNF gene superfamily and generally has several functions other than initiating apoptosis (Debatin, 2004). The best-characterised death receptors are CD95 (or Fas), TNF receptor-1 (TNF-R1) and TRAIL receptor (Goke *et al.*, 2000; Roberts, 2000). The PPAR γ ligand-induced death receptor apoptosis is at all times associated with the TNF receptor family (Goke *et al.*, 2000).

1.7.2.1 Signaling by CD95/Fas

According to Ashkenazi and Dixit (1998), there are three main roles of CD95 signaling:

- mediate killing of cells by T-cells e.g. CTL-mediated killing of virusinfected cells;
- mediate deletion of activated T-cells at the end of an immune response;
- mediate destruction of inflammatory and immune cells in immuneprivileged sites.