

A MODIFIED MULTI-STEP CROSSOVER FUSION
(MSXF) IN SOLVING SOME DETERMINISTIC JOB

SHOP SCHEDULING PROBLEM (JSSP)

MAHANIM BINTI OMAR

UNIVERSITI SAINS MALAYSIA
2008

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository@USM

https://core.ac.uk/display/11933051?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 ii

ACKNOWLEDGEMENTS

In the name of Allah, I would like to praise Allah S.W.T. for the strength and

guidance He gives to me. The warmest and sincere thanks go to my supervisor Assoc.

Prof. Adam Baharum, whose encouragement and willing support guided me through

this end. Thanks also to my co-Supervisor, Dr. Yahaya Abu Hassan. I am also grateful

to Professor M. Ataharul Islam for his guidance and valuable suggestion and comment

throughout the work. My warmest thanks also go to School of Mathematical Sciences’

Dean, Assoc. Prof. Dr. Ahmad Izani, Deputy Dean of Graduate Students, Assoc. Prof.

Dr. Norhashidah Ali and all academic and non-academic staff at School of

Mathematical Sciences for their generosity in providing the good study environment

and facilities.

My appreciation also goes to all my friends and those who have in one way or

another helped, encouraged and motivating me during the progression of this thesis. I

would like to dedicate this work to my parents, Omar Othman and Mazenah Che Rus;

and my family for their endless support and encouragement.

Thank you.

 iii

 iii

ACKNOWLEDGEMENTS ii

TABLE OF CONTENTS iii

LIST OF TABLES vi

LIST OF FIGURES vii

LIST OF ALGORITHMS xi

LIST OF APPENDICES xii

ABSTRACT xiii

ABSTRAK xiv

CHAPTER 1 : INTRODUCTION

1.1 Background of the Study 1

1.2 Problem Statement 5

1.3 Objectives of the Study 6

1.4 Significant of the Study 7

1.5 Outline of the Thesis 7

CHAPTER 2 : LITERATURE REVIEW

2.0 Introduction 9

2.1 Background of Job Shop Scheduling Problem (JSSP) 9

2.2 Problem Notations and Assumptions 11

2.3 Problem Formulation and Representation of JSSP 13

 2.3.1 Disjunctive Graph 14

 2.3.2 Gantt Chart 21

2.4 Solving Methods for JSSP 21

 2.4.1 Integer Programming 22

 2.4.2 Enumeration Methods 23

 2.4.3 Basic Dispatching Rules 25

 2.4.4 Shifting Bottleneck 26

 2.4.5 Simulated Annealing 26

 2.4.6 Tabu Search 27

 2.4.7 Genetic Algorithms 27

 a. Representation 29

 b. Initial Population 30

 c. Selection 31

 d. Crossover 31

 e. Mutation 34

 iv

 f. Acceptance Criterion and Termination Condition 35

 2.4.8 Structure of Neighbourhood for JSSP 35

2.5 Conclusion 37

CHAPTER 3 : METHODOLOGY

3.0 Introduction 38

3.1 Multi-Step Crossover Fusion (MSXF) in Genetic Algorithm (GA)

Framework

39

3.2 Representation 41

3.3 Initial Population and Size of Population 41

3.4 Evaluation Function and Selection Operator 43

3.5 Multi-Step Crossover Fusion (MSXF) 45

3.6 Neighbourhood Structure for the JSSP 47

3.7 Disjunctive Graph (DG) Distance 52

3.8 Multi-Step Mutation Fusion (MSMF) 53

3.9 Neighbourhood Search 54

3.10 Pairwise Interchanges 55

3.11 Generating New Population and Termination Condition 55

3.12 Conclusion 56

CHAPTER 4 : MULTI-STEP CROSSOVER FUSION (MSXF) IN GENETIC

ALGORITHM (GA) FRAMEWORK WITH VARYING
 PARAMETERS
4.0 Introduction 57

4.1 Problem Data 58

4.2 Size of Population 60

4.3 Comparison between Selection Tools 73

4.4 The Influence of Mutation Operator 81

4.5 The Fixed T value of Metropolis Criterion 90

4.6 The Probability of Crossover 105

4.7 Comparison of MSXF, PPX AND GOX in GA Framework 115

4.8 Conclusion 116

 v

CHAPTER 5: COMPARISON OF MSXF-GA WITH OTHER METHODS
5.0 Introduction 119

5.1 Comparison with Conventional Genetic Algorithm 119

5.2 Comparison with Other Methods 121

5.3 Conclusion 123

CHAPTER 6 : COMPARISON OF TWO DIFFERENT STRUCTURE OF
 NEIGHBOURHOOD AND THE IMPORTANT OF ADDITIONAL
 ADJACENT PAIWISE INTERCHANGE

6.0 Introduction 124

6.1 Case 1: Modification on Structure of Neighbourhood 126

6.2 Case 2: Additional Adjacent Pairwise Interchange 129

6.3 Conclusion 131

CHAPTER 7 : CONCLUSION

7.0 Introduction 132

7.1 Conclusion 132

7.2 Suggestion for Future Research 133

BIBLIOGRAPHY

134

APPENDICES 140

Appendix 1 Input and Output Data 140

 vi

LIST OF TABLES

Page

2.1 Notations

11

2.2 Machines’ Sequence and Processing Time for 3 x 3 Job Shop
Problem

14

2.3 Basic Dispatching Rule

26

4.1 Parameter used in All Experiments 60

4.2 Representation of the Case 61

4.3 Results for different Size of Populations

61

4.4 Performance of MSXF-GA using different Selection Tools

74

4.5 Performance of MSXF-GA with and without the implementation
of Mutation Operator

82

4.6 Performance of MSXF-GA using different T value

92

4.7 An Example of cp value for different T value

102

4.8 Comparison of average and maximum differences for different
T value

103

4.9 Performance of MSXF using different Probability of Crossover

106

4.10 The Performance of PPX, GOX and MSXF

116

4.11 Parameter Tuning for each Problems

117

4.12 The Selected Parameters

118

4.13 The Performance of MSXF in GA Framework

118

5.1 The Comparison of MSXF-GA to Conventional Genetic
Algorithm

120

5.2 Comparison on other Methods

122

6.1 Comparison between ACBN and NS

128

6.2 Performance of ACBN and NS with Additional Pairwise
Interchange

130

 vii

LIST OF FIGURES

Page

2.1 Machines’ Sequence in Matrix form

14

2.2 Processing Time in Matrix Form

14

2.3 Disjunctive Graph for 3 Jobs and 3 Machines Problem

15

2.4 A Cycle within a Disjunctive Graph

16

2.5 Disjunctive Graph Represents a Feasible Schedule

17

2.6 Disjunctive Graph Represents a Feasible Schedule
(After Reversing an Arc)

20

2.7 Example of Gantt Chart for 33× size of Problem

21

2.8 Venn Diagram for the Semi-Active, Active and Non-Delay
Classes of Schedules

24

2.9 Example of GOX and GPMX

32

2.10 Example of PPX

33

3.1 A Job Sequence Matrix for Problem 3 x 3

41

3.2 The Original Schedule before Interchange 48

3.3 Schedule after Interchange 48

3.4 Solution for Problem 33× (before Swapping) 51

3.5 Solution for Problem 33× Problem (after Swapping) 51

3.6 DG distance between Two Schedules 52

4.1 Performance for different Size of Population

62

4.2 Evaluations for different Size of population

63

4.3 Performance of different Size of Population
(Problem ft06)

65

4.4 Performance of different Size of Population
(Problem la01)

66

4.5 Performance of different Size of Population
(Problem la02)

67

4.6 Performance of different Size of Population
(Problem la03)

68

 viii

4.7 Performance of different Size of Population
(Problem la06)

69

4.8 Performance of different Size of Population
(Problem la07)

70

4.9 Performance of different Size of Population
(Problem 15x5gen1)

71

4.10 Performance of different Size of Population
(Problem 15x5gen2)

72

4.11 Performance of different Selection Tools 75

4.12 Comparison of Performance for different Selection Tools
(Problem ft06)

76

4.13 Comparison of Performance for different Selection Tools
(Problem la01)

76

4.14 Comparison of Performance for different Selection Tools
(Problem la02)

77

4.15 Comparison of Performance for different Selection Tools
(Problem la03)

78

4.16 Comparison of Performance for different Selection Tools
(Problem la06)

78

4.17 Comparison of Performance for different Selection Tools
(Problem la07)

79

4.18 Comparison of Performance for different Selection Tools
(Problem 15x5gen1)

80

4.19 Comparison of Performance for different Selection Tools
(Problem 15x5gen2)

80

4.20 The Comparison of Performance for executing the algorithm
with and without Mutation Operator

83

4.21 Comparison of Performance for executing the Algorithm
without and with Mutation Operator (Problem ft06)

84

4.22 Comparison of Performance for executing the Algorithm
without and with Mutation Operator (Problem la01)

85

4.23 Comparison of Performance for executing the Algorithm
without and with Mutation Operator (Problem la02)

85

4.24 Comparison of Performance for executing the Algorithm
without and with Mutation Operator (Problem la03)

86

 ix

4.25 Comparison of Performance for executing the Algorithm
without and with Mutation Operator (Problem la06)

87

4.26 Comparison of Performance for executing the Algorithm
without and with Mutation Operator (Problem la07)

87

4.27 Comparison of Performance for executing the Algorithm
without and with Mutation Operator (Problem 15x5gen1)

88

4.28 Comparison of Performance for executing the Algorithm
without and with Mutation Operator (Problem 15x5gen2)

89

4.29 Performance of MSXF using different T value
(Number of evaluations versus Fitness Value)

91

4.30 Comparison of Performance among three different T value 93

4.31 Comparison of Performance for different T value
(Problem ft06)

94

4.32 Comparison of Performance for different T value
(Problem la01)

95

4.33 Comparison of Performance for different T value
(Problem la02)

96

4.34 Comparison of Performance for different T value
(Problem la03)

97

4.35 Comparison of Performance for different T value
(Problem la06)

98

4.36 Comparison of Performance for different T value
(Problem la07)

99

4.37 Comparison of Performance for different T value
(Problem 15x5gen1)

100

4.38 Comparison of Performance for different T value
(Problem 15x5gen2)

100

4.39 The Comparison of Performance using different Probability of
Crossover

107

4.40 Comparison of Performance for different Probability of
Crossover (Problem ft06)

109

4.41 Comparison of Performance for different Probability of
Crossover (Problem la01)

109

4.42 Comparison of Performance for different Probability of
Crossover (Problem la02)

110

 x

4.43 Comparison of Performance for different Probability of
Crossover (Problem la03)

111

4.44 Comparison of Performance for different Probability of
Crossover (Problem la06)

111

4.45 Comparison of Performance for different Probability of
Crossover (Problem la07)

112

4.46 Comparison of Performance for different Probability of
Crossover (Problem 15x5gen1)

113

4.47 Comparison of Performance for different Probability of
Crossover (Problem 15x5gen2)

114

 xi

LIST OF ALGORITHMS

Page

3.1 MSXF in GA Framework 40

3.2 Generating an Active Schedule

42

3.3 Multi-Step Crossover Fusion (MSXF) Procedure 46

3.4 Generating Actice CB Neighbourhood (ACBN) 50

3.5 Multi-Step Mutation Fusion (MSMF) Procedure 54

 xii

LIST OF APPENDICES

1.1 An Example of Solution for Problem ft06 140

1.2 An Example of Solution for Problem la01 141

1.3 An Example of Solution for Problem la02 142

1.4 An Example of Solution for Problem la03 143

1.5 An Example of Solution for Problem la06 145

1.6 An Example of Solution for Problem la07 147

1.7 An Example of Solution for Problem 15x5gen1 149

1.8 An Example of Solution for Problem 15x5gen2 151

1.9 An Example of Solution for Problem MT10 153

 xiii

A MODIFIED MULTI-STEP CROSSOVER FUSION (MSXF) IN SOLVING
SOME DETERMINISTIC JOB SHOP SCHEDULING PROBLEM (JSSP)

Abstract

This thesis addresses the job shop scheduling problem (JSSP) with the

objective of minimising the makespan value. In this study, stochastic sampling method

mainly used in simulated annealing (SA) is implemented in population based approach

framework called genetic algorithm (GA) to solve JSSP. A special crossover called

multi-step crossover fusion (MSXF) with intuition of generating a child from the path re-

linking technique is employed. MSXF is an extended version of local search. It utilizes

a neighbourhood structure and a distance measure in its procedure. By using this type

of crossover, a solution or child is generated between both parents using the search

path joining parent solutions. In this study, two modifications have been made with

intention to increase the effectiveness of the algorithm in producing good solutions.

The first modification is the changing in the structure of neighbourhood from

active critical block neighbourhood (ACBN) proposed by Yamada and Nakano (1997)

to the structure of neighbourhood proposed by Nowicki and Smutnicki which has been

used by Gaspero (2003). Since there is a suggestion that the greedy initial solution

often results in better quality solution, therefore, the implementation of pairwise

interchange in GA framework is hoped to help with the early convergence. It is evident

from the results that the implementing MSXF with pairwise interchange does increase

the quality of solution. The experimental study has shown that, under our selected

parameters based on the experimental study, the structure of neighbourhood proposed

by Nowicki and Smutnicki with additional pairwise interchange performs better than

ACBN.

 xiv

SUATU PENGUBAHSUAIAN KOMBINASI PERSILANGAN MULTI-
LANGKAH (MSXF) DALAM MENYELESAIKAN BEBERAPA MASALAH

PENSKEDULAN KERJA KEDAIAN (JSSP) BERKETENTUAN

Abstrak

Tesis ini membincangkan masalah penskedulan kerja kedaian (JSSP) dengan

objektif untuk meminimumkan masa operasi. Dalam kajian ini, prosedur pensampelan

stokastik yang biasanya digunakan dalam simulasi penyejukkan (SA)

diimplimentasikan dalam pendekatan rangka kerja berasaskan populasi dalam

algoritma genetik (GA) bagi menyelesaikan JSSP. Suatu operator persilangan yang

dikenali sebagai kombinasi persilangan multi-langkah (MSXF) bertujuan untuk

menghasilkan anak atau individu baru daripada teknik paut-semula laluan digunakan.

MSXF adalah teknik yang dikembangkan dari teknik pencarian setempat. Dengan

menggunakan MSXF, suatu penyelesaian ataupun anak dihasilkan dengan

menghubung ibu bapa menggunakan penyelesaian pencarian laluan hubungan ibu dan

bapa. Dalam kajian ini, dua modifikasi telah dibuat dengan tujuan untuk meningkatkan

kualiti penyelesaian.

Pengubahsuaian yang pertama adalah melibatkan struktur kejiranan yang

digunakan di dalam kombinasi persilangan multi-langkah. Struktur yang dicadangkan

oleh Nowicki dan Smutnicki serta di implementasi oleh Gaspero (2003) telah

digunakan untuk menggantikan struktur yang dicadangkan oleh Yamada dan Nakano

(1997). Oleh sebab terdapat cadangan yang menyatakan bahawa penyelesaian awal

yang tamak biasanya akan menghasilkan penyelesaian yang lebih berkualiti, maka

pertukaran pasangan demi pasangan diharapkan dapat membantu dalam penumpuan

awal kepada penyelesaian terbaik. Keputusan membuktikan bahawa implementasi

kombinasi persilangan multi-langkah dengan pertukaran pasangan dapat

meningkatkan kualiti penyelesaian. Keputusan kajian juga telah menunjukkan bahawa

dengan menggunakan parameter yang telah dipilih berdasarkan kajian experimentasi,

 xv

struktur yang dicadangkan oleh Nowicki dan Smutnicki dengan implementasi

pertukaran pasangan mencapai keputusan yang lebih baik berbanding ACBN.

 1

CHAPTER 1

INTRODUCTION

1.1 Background of the Study

In the modern competitive environment in manufacturing and service industries,

the effective sequencing and scheduling has become an essential for survival in the

marketplace. Companies have to produce their product untimely as opposed to due

date. Otherwise, it will impinge upon reputation of a business. At the same time, the

activities and operations need to be scheduled with the intention that the available

resources will be used in an efficient manner. As a result, there is a great good

scheduling algorithm and heuristics are invented.

Basically, scheduling is the allocation of shared resources over time to

competing activities (Baker, 1974). The terminology of scheduling theory usually takes

place in the processing, manufacturing industries, production, transportation,

distribution, and in information processing and communication. Scheduling problem is

solved by using the mathematical techniques or heuristic methods to allocate limited

resources to the processing of tasks. This allocation of resources is important since a

proper allocation enables the companies to optimise their objectives and achieve their

goals. The familiar scheduling problems are the bus schedules, the university time-

table and the construction work.

The classified field of scheduling problem is fascinating area of study and

research with continue interest even in recent times. Recently, researches have been

focusing on investigating machines scheduling problems in manufacturing and service

environment where jobs represent activities and machines represent resources. In this

environment, each process can process one job at a time. If it is a low volume system,

 2

it is known as job shop scheduling problem. In this type of environment, products are

made to order. Usually, these orders differ from terms of processing requirements,

material needs, processing time, processing sequence and setup times.

Most of the prevailing practical scheduling problems exist in stochastic and

dynamic environment. Stochastic is a problem where some of the variables are

uncertain while dynamic problem is when jobs arrive randomly. On the other hand, the

problems with ready time is known and fixed are called problems static and for problem

where all the parameter such as processing times are known and fixed is called

deterministic problems (French, 1982). In spite of this, it is quite impossible to predict

exactly when jobs will become available for processing. Additionally, the understanding

of scheduling problems where there is no uncertainty involved will help us towards the

solution of stochastic and dynamic problems. Therefore, in this work, we will study and

limit our discussion in static and deterministic environment.

 The main objective in solving the job shop scheduling problem is to find the

sequence for each operation on each machine that optimises the objective function.

The most common objective function that has been used in scheduling the job shop

problem is minimisation of makespan value or the time to complete all jobs. It has been

the principal criterion for academic research and is able to capture the fundamental

computational difficulty which exists unconditionally in determining an optimal schedule

(Jain and Meeran, 1999).

 From the theory, we know that the cost of processing may depend crucially

upon the choice of schedule. If we were not able to find the best schedule within

reasonable time, we should use the knowledge to find the schedule which may at least

be expected to perform better. During the 1960s, the way of solving scheduling

problems has been shifted from the exact solution to an enumerative algorithm.

 3

However, this technique is failed to find the feasible solution for many problems and

very limited of used (Jain and Meeran, 1999). Only by the end of 1980s the researcher

started to solve the problem by using approximation and heuristic methods. Since then,

more innovative algorithms were formulated such as shifting bottleneck (Adam et. al,

1988), tabu search (Glover, 1994), simulated annealing (Lorenco, 1995) and genetic

algorithms (Nakano and Yamada, 1991), (Yamada and Nakano, 1997) and (Mathur,

1999).

 Adam et al. (Adam et. al, 1988) proposed shifting bottleneck to find the

reasonably efficient schedule for job shop problems. This method iteratively identifies a

bottleneck machines and optimise its job sequence. In 1990s, Fred Glover (Glover,

1994) proposed a deterministic local search but implementing the recording of previous

solution to prevent cycling and to promote diversified coverage of the search space. On

the other hand, simulated annealing solves the job shop problems based on the

analogy with the physical process of annealing.

Different from other approximation procedures, genetic algorithms (GAs) can be

uniquely characterized by their population based search strategy and their operators;

selection, crossover and mutation (Yamada, 2003). Compared to other procedures,

genetic algorithms search from a population point, not a single point. If we are

searching from a single point, our system will possibly easy to get trapped at the local

optima (Michalewicz, 1999). In addition, while working with genetic algorithm, we do not

need too much information and it also can be easily adapted to our problem. Due to

these factors, this study is dedicated to job shop scheduling problem using genetic

algorithm framework.

Genetic algorithm maintains a population of individuals at each iteration. Each

of this individual represents a potential solution to the problem. Each solution evaluated

 4

to give some measure of its “fitness”. Then, by selecting the fittest individuals will form

a new population for the next iteration. In the reproduction process, some selected

members endure amendment by means of crossover and mutation, to form new

solution. Crossover operator combines some parts from two individuals to form a new

individual. On the other hand, mutation operator creates a new individual just by

making some changes in a single individual.

 In order to solve combinatorial problems such as job shop scheduling problems,

we usually find it is difficult to construct an efficient crossover operator that recombines

solution. The exchanging of genes between parents may violate the constraint of the

problem, generating many infeasible solutions. In addition, genetic algorithm is not well

suited for fine tuning structures which are very close to optimal solution. The general

remedy is by incorporating local search methods such as neighbourhood search in the

genetic algorithm framework (Yamada, 2003).

Yamada and Reeves (Yamada and Reeves, 1998) have been studying in

merging the stochastic sampling method essentially used in simulated annealing and

the best descend method elaborate in tabu search and implement them in genetic

algorithm framework. This proposed method is called multi-step crossover fusion

(MSXF). The multi-step crossover fusion (MSXF) usually used to solve a combinatorial

problem. It utilizes a neighbourhood structure and distance in the search space.

Traditionally, crossover combines some parts from two individuals to form new

individual. Unlike other traditional crossover operators, MSXF is more based on search

oriented. It generates descendents along the path connecting two parents. MSXF is

especially useful while being implemented with local search since it exploits a good

starting point for the subsequent local search. Apparently, the structure of

neighbourhood is very important while working with MSXF since local search always

 5

known consuming large amount of time. Stand for that reason; reducing the size of

neighbourhood possibly could decrease the amount of computational time.

1.2 Problem Statement

 The previous study of implementing multi-step crossover fusion in genetic

algorithm framework did not focus on the size of problems and how it is related to the

selected parameters. As we already known, application of GA may involve many

parameters including the chosen of population size, the selection operators, the

probability of implementing crossover and the important of mutation operator. Basically,

the quality of solution using genetic algorithm relies on the choice of the best

parameters in order to prevent premature convergence and to ensure the diversity in

the search space (Essafi et. al, 2007). Based on this fact, in this study, we try to study

the behaviour some of these parameters in varies size of problems.

Before we apply the local search to our problem, we have to define a

neighbourhood structure on the set of feasible solution. Basically, the set of neighbours

of a solution is defined as a set of solutions which differ only by small changes (Hurink,

1998). Defining the neighbourhood structure is very important since it will determine the

way in which we navigate through the solution space and it also determines the

computational time of finding the best solution. According to Hurink (Hurink, 1998), the

computational time for finding the best or an improving neighbour is proportional to the

size of the neighbourhood. In spite of this, large neighbourhood gives more possibilities

to change the current solution and raises the possibility of reaching high quality

solution. In practice, only computational tests have to show the alternative leads to

better result. Therefore, we compared two different kind structure of neighbourhood

namely the active critical block neighbourhood (ACBN) and the structure proposed by

Nowicki and Smutnick to be implement in the MSXF.

 6

The multi-step crossover fusion (MSXF) in genetic algorithm framework is

implemented to the different size of benchmark problems. The sizes of problems

represent the small, medium and large size of problem. These problems are chosen

because the best solution found for each problem is already known. This will help us to

measure up the ability of this algorithm.

1.3 Objectives of the Study

The objectives of the study are;

• To study the performance of implementing modified MSXF in GA framework to

job shop scheduling problem for small, intermediate and large size of problems.

• To study the influence of parameters and find the suitable set of parameters

which is applicable in the MSXF-GA. The parameters discussed are;

 Size of population.

 Selection criteria for MSXF-GA. Three selection procedures will be

compared. They are roulette wheel selection, tournament selection

and uniform selection.

 Mutation operator. We want to study the important of mutation

operator in the algorithm.

 T value in the Metropolis Acceptance Criterion.

• To compare;

 The performance of MSXF-GA with conventional GA, basic

dispatching rules and shifting bottleneck without backtracking

procedure.

 The performance of Multi-Step Crossover Fusion (MSXF) with

Generalised Order Crossover (GOX) and Partially Preservative

Crossover (PPX) in GA framework.

 7

 The performance of different neighbourhood structures while

implementing MSXF in GA framework to job shop scheduling

problems.

 The effectiveness of implementing an additional pairwise

interchange in the GA framework.

1.4 Significant of the Study

 This thesis is devoted mainly to study the performance of multi-step crossover

fusion in genetic algorithm framework in deterministic and static job shop problems.

Different sizes of problem were used as the testing problems so that the conclusion of

its performance can be derived for variety of problem sizes.

This study is hoped to provide the insight of implementing the multi step

crossover fusion in genetic algorithm framework. Whilst, the simple study on structure

of neighbourhood is hoped to act as starting point for more practically relevant and

effective structure of neighbourhood.

1.5 Outline of the Thesis

 This thesis focuses on the solving the deterministic and static job shop

scheduling problems using the multi-step crossover fusion (MSXF) in genetic algorithm

(GA) framework.

In Chapter 2, the basic concepts such as notations, formulation and

representation of job shop scheduling problem are described. Followed this is the

literature of the previous work devoted to the same problems. This chapter helps us to

determine the focus problem and the algorithms and procedures ever built for the

problem.

 8

 In Chapter 3, the methodology of implementing multi-step crossover fusion

(MSXF) in genetic algorithm framework is explained. This chapter describes the

procedures used and other partially procedures which need to perform along with the

MSXF in the framework.

 Chapter 4 consists experiments on some selected parameters. The relation of

the selected parameter and the problems is shown regarded in finding the best to

perform in the framework. Then, these selected parameters are applied to large size

problem to measure the performance of the algorithm. In addition, comparison with

other crossovers techniques were also been experimented.

 In Chapter 5, we compare the multi-step crossover fusion (MSXF) with

conventional genetic algorithm, shifting bottleneck procedure, some basic dispatching

rules and simulated annealing.

 Chapter 6 is a simple study on the comparison of the neighbourhood structure

proposed by Nowicki and Smutnicki compared to active critical block neighbourhood

(ACBN). Since the size of the neighbourhood sometimes affecting the computational

time, therefore, this chapter is hoped to get an overview of the problem arises

regarding the structure of neighbourhood. As an addition, we introduce the additional

pairwise interchange to increase the quality of solution.

 Finally, in Chapter 7, the study of this thesis is summarised and the future

exploration are suggested.

 9

CHAPTER 2

LITERATURE REVIEW

2.0 Introduction

In order to understand the problems as well as the methods available related to

job shop scheduling problems, we have reviewed some of literature related to the

problem in the past and recent publication. However, most of the literature in this area

refers to the Job Shop Scheduling Problem (JSSP) and uses the terminology of

manufacturing such as, job, machine, operation, routing and processing time. The

developments of the idea in solving this problem by other researchers are briefly

presented in this chapter. We reviewed the literature in three different sections. The

first section we discussed some background of job shop scheduling problem. In the

second section, the methods available for the problems are discussed. Finally, in the

final section, we focussed on the work dedicated to genetic algorithms.

2.1 Background of Job Shop Scheduling Problem (JSSP)

 In practice, scheduling problems are complex problems. According to Conway

et al. (1967), scheduling a job shop process is the task of assigning each operation to a

specific position on the time scale of the specified machine. Alternatively, scheduling

can be regarded as the task of constructing an ordering of the operations associated

with each machine. A job shop problem consists of n number of jobs J , { }i n
iJ 1= which

are needed to be processed on m number of machine M , { }k
m
kM 1= . Each job iJ

consists in number of operations, O , that must be processed on each machine kM in

specific route or order. iqkO is the q -th operation for job i , iJ , which should be

processed on machine k , kM , for an uninterrupted processing time period iqkp and

pre-emptive of operation are not allowed. Once the machine started to process an

 10

operation, it must be complete before another operation started on that same machine.

Each machine can process only one job at a time and each job can be processed by

only one machine at a time. Each job must be processed until it complete. The set-up

time for each machine and the time to shift the job between machines are neglected. In

addition, the machines are assumed to be available throughout the scheduling period

and no breakdown occurred.

Traditionally, scheduling problems have been viewed as problems in

optimisation subject to constraints. The theory of scheduling also includes a variety of

techniques that are useful in solving scheduling problems. The selection of an

appropriate technique depends on the complexity of the problem, the nature of the

model, and the choice of a criterion as well as other factors. According to Baker (1974),

while classifying the major scheduling models, it is necessary to characterise the

configuration of resources and the behaviour of the tasks. For example, if the set of

tasks available for scheduling does not change over time, the system is called static.

On the other hand, the system which new tasks arise over time is called dynamic. In

addition, he also stated that traditionally, static models have been proven more

tractable than dynamic models and have been subjected to more extensive study.

Other classifications that have been made are deterministic problem and stochastic

problem. Deterministic problem is a problem with all the parameters such as

processing time, are known and fixed and the problems which the processing time is

uncertain are called stochastic. All practical scheduling problems are dynamic and

stochastic since it is impossible to predict exactly when the jobs are arrived or when the

breakdown of machine are occurred. Even though most of the problems fall in dynamic

and stochastic types, but still most of the research are done for static and deterministic.

According to French (1982), there are problems in which any randomness is quite

clearly insignificant. For example, the uncertainty in the various quantities is several

orders of magnitude less than the quantities themselves. He also added that study of

 11

dynamic and stochastic problems cannot be done until we have understood the static

and deterministic problems.

2.2 Problem Notations and Assumptions

Before we proceed to review previous works on this study, we shall indicate in

general a few of criteria which we will use later. Table 2.1 shows the notations subject

to the job shop scheduling problem;

Table 2.1: Notations

iJ Job i. (n,....,i 21=)

kM Machine k (m,...,,k 21=)

iqkO q -th operation for job i , iJ , which should be processed on machine k , kM .

iqks Starting time for iqkO .

iqkr Ready time for iqkO .

iqkp Processing times for iqkO .

iqkC The completion time (makespan) of iqkO . iqkiqkiqk psC +=

iF Flow time of job. The time that iJ spend in the workshop. iii rCF −= .

iC is completion time of iJ .
mn × n number of jobs need to be processed on m number of machines

 where ,...,n 21= and ,...,m 21=

For further analysis, we have to make some assumptions about the structure of our

scheduling problem. Therefore, the assumptions we made are;

1. Each job is an entity. Although the job is combination of set of operations

(tasks), however processing two operations of the same job simultaneously

are not allowed.

2. Pre-emptive are not allowed. When the machine started to process an

operation, it must be complete before another operation started on that same

machine.

3. No cancellation. Each job must be processed until it complete.

 12

4. Set-up times are not considered. The time to shift jobs between machines and

the time setting for each machine after the job last processed are not

considered.

5. There is only one machine for each type of process.

6. Machines may be idle.

7. Machine may process only one operation at a time.

8. Machines never breakdown and are available throughout the scheduling

period.

9. The technological constraints are known in advance and are immutable.

10. There is no randomness. In particular;

a. The number of jobs are known and fixed.

b. The number of machines are known and fixed.

c. The processing times (duration times) are known and fixed.

Assumption 8th and assumption 10th confine attention to non-random problems that is

problem with all the numerical quantities are known and fixed in advance. There is no

uncertainty.

French (1982) classified scheduling problem is the four field

notation D/C/B/A . A can be defined as the number of jobs, B is the number of

machines, C is the flow pattern within the shop and D is the performance measure for

the problem. However, this descriptive technique is suitable only for the basic problem.

Stating the performance measure for the problem is always conflicting. According to

French (1982), there are at least 27 scheduling goals. However, Jain and Meeran

(1999) suggested that minimisation of the makespan value is widely used in academic

and industrial practice. Makespan is the time when the last operation leaves the

 13

workspace and can be noted as maxC . Consequently, according to them, it has been

the principal criterion for academic research and able to capture the fundamental

computational difficulty. It is also suggested that a solution for maxC is likely to perform

well on average with respect to the other criteria. Makespan can be formulated as

equation 2.1.

 () ()()Mk,Ji:psmaxminCmin iqkiqk
schedulesfeasible

max ∈∈∀+= (2.1)

where iqks is starting time for operation iqkO and iqkp is processing time for

operation iqkO . Studies for static and deterministic job-shop scheduling problems with

minimising the makespan value have been done by Adams et al. (1988), Nakano and

Yamada (1991), Bierwirth (1995), Schmidt (2001) and Yamada (2003).

2.3 Problem Formulation and Representation of JSSP

Job shop problem can be represented in matrix form such as Nakano (1991).

Consider a job shop problem with n jobs that have to be processed on m machines.

Operation ()k,j refer to job j that must be performed on machine k . Each job has

their processing times and denoted by iqkp . Each job has to be processed by a given

machines order which are called technological sequence. This technological sequence

of machines can be different to each job and the order of jobs to be processed on a

machine can also be different to each machine. The predefined technological

sequence of each job can be given collectively by matrix { }jkT which rT jk =

corresponds to the k -th operation, jkrO , of job j on machine r . On the other

hand, { }jrp corresponds to the processing time for operation jkrO . An example of 33×

job shop problem including the machine sequence for each job and processing time for

 14

each operation are given in Table 2.1. Figure 2.1 represents the machines’ sequence

for each job in matrix form. The matrix’s rows represent the jobs while the columns

represent the machine’s sequence for each job. Figure 2.2 represent processing time

for each operation in matrix forms. The matrix’s rows represent the jobs while the

columns represent the machines.

Table 2.2: Machines Sequence and Processing Time for 33× Job Shop Problem

Job Machines(processing time)
1 1(60) 2(30) 3(02)
2 2(75) 3(03) 1(25)
3 3(05) 2(15) 1(10)

 { }
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

123
132
321

jkT { }
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

51510
37525
23060

jrp

2.3.1 Disjunctive Graph

Another way to represents the job shop problem that also found to be useful is

provided by Kan (1976) using the concept of disjunctive graph. Consider a set of n

jobs to be processed on m machines. Let disjunctive graph, G with a set of nodes N

and two sets of arcs A and B . The nodes N represent the set of operations’ node as

well as two dummy nodes at the beginning (source node,U) and the end (sink node,V)

of schedule. The weight of each node is the processing time for each operation. The

source node and the sink node have zero processing time.

The conjunctive (solid) arcs A represent the routes of each job including arcs

connecting the source node to the first operation node and the last operation to the sink

node. These conjunctive arcs represent the technological precedence. For example,

Figure 2.1: Machines Sequence Figure 2.2: Processing Sequence

 15

arc () ()l,jk,j → means that job j has to be processed on machine k before being

processed on machine l . In other words, operation ()k,j precedes operation ()l,j . In

addition, there are n number of conjunctive arcs emanating from source node, U , to

the first operations of each job and n number of conjunctive arcs coming from the final

operations of each job to the sink node, V .

The disjunctive (broken) arcs B refer to operation that belong to the different

job but have to be processed on the same machine. These arcs form m cliques of

double arcs. Based on the graph theory, clique is a term that refers to a graph which

any two nodes are connected to one another. In this case, all operations in the same

clique have to be processed on the same machine. The arcs’ length represent the

processing time for each operation. We denote this graph with ()B,A,NG = . Figure 2.3

shows the disjunctive graph representation for problem in Table 2.1.

Figure 2.3: Disjunctive Graph for 3 Jobs and 3 Machines Problems

U

11O 12O 13O

22O 23O 21O

31O 33O

V

 Machine sequence order for each job

 Job sequence order for each machine (schedule)

 16

Another term that is important in scheduling a job shop problem is generating a

feasible schedule. So far, we have introduced the technological constraint where a job

should be processed on each machine in specific order. According to French (1982)

schedules which compatible with this condition are called feasible. Otherwise the

schedule is known to be infeasible. Obviously, a solution to scheduling problem must

be feasible. The easiest way to explain the concept of feasible schedule is from the

graph. Assume that we have select one disjunctive (broken) arc from each pair of

clique that resulting directed graph is acyclic. If there is a cycle within a clique, it is

impossible to find a feasible sequence of the operations on the corresponding machine.

For example, let jhO and jiO denote the operations that belong to job j and let kiO

and khO denote the two consecutive operations that belong to job k . If, a given

schedule is operation jiO is processed before operation kiO on machine i and

operation khO precedes operation jhO on machine h , then the graph will look like

Figure 2.4. Such a schedule is physically impossible.

Figure 2.4: A Cycle within a Disjunctive Graph

A selection will determine the sequence of operations which perform on that

particular machine. Now, denote that D is the subset of the selected disjunctive arcs

jiO

kiO khO

jhO

Job sequence order for each machine (schedule)

Machine sequence order for each job

 17

and graph ()DG is correspond to a feasible schedule if and only if ()DG contains no

directed cycles. The longest path in ()DG from node source U to the node sink V is

called the makespan of a feasible schedule. It consist a set of operations which start at

time 0 and finishes at the time of makespan. For example, assuming each operation

has processing time equal to one and Figure 2.5 shows the feasible solution created.

Two example of the longest path are VOOOOOU →→→→→→ 3233131211

and VOOOOOU →→→→→→ 3233131222 .

Figure 2.5: Disjunctive Graph Represents a Feasible Schedule

Finding an optimal feasible schedule is equivalent to the finding an orientation

of disjunctive arcs that will minimise the longest path in the graph. To compute the

starting time jkmS and completion time jkmC for each operation, we introduced jkmC to

represent time k -th operation of job j complete it process on machine m . We also

introduced ready time mqr of machine m where q is the job order on machine m .

U 22O

31O

11O

23O

33O

12O

32O

21O

13O

V

 Machine sequence order for each job

 Job sequence order for each machine (schedule)

 18

Indeed, for each operation, we have,

 jkmjkmjkm pSC += (2.2)

where

 () (){ }11 −− qmmkj r,Cmax if 1>q,k

=jmkS { })q(mr,max 10 − if 11 => k,q

 { }01 ,Cmax m)k(j − if 11 >= k,q

 0 if 11 == k,q

 (2.3)

Equation 2.2 computes the completing time for jkmO by summing the starting

time, jkmS , and the processing time, jkmp , of jkmO . In addition, equation 2.3 computes

the starting time for job j on machine m . As we can see, the starting time is

depending on the maximum value between the completion time of the previous

operation for job j , m)k(jC 1− , and the completing time of previous operation on machine

m ,)q(mr 1− .

 Creating an initial feasible solution can be obtained by the following steps. First,

consider each job in arbitrary order. Then put its operation on the appropriate machine

following the technological sequence. This will give a feasible solution which its

makespan is not really good. Fortemps and Hapke (1997) suggested that the current

scheduled can be modified in order to improve the makespan value. Note that only

disjunctive arcs can be reverted since the conjunctive arcs represent technological

constraints. In order to get other feasible schedule with a better makespan value, the

orientation of some disjunctive arcs are need to be reversed. For example, referring to

Figure 2.5, if the operation 13O and 33O are reverted, this will lead from the sub-

sequence 331323 OOO →→ to 133323 OOO →→ . However, according to Fortemps

 19

and Hapke, (1997) not all disjunctive arcs can be reverted without introducing cycle if

there already exist in another path. Suppose that if 32O is reverted to 22O , from

original VOOOOOU →→→→→→ 3233132322 . After inversion, there will exist a

cycle 223233132322 OOOOOOU →→→→→→ . By considering the example before,

only arc from 32O to 22O can be reverted. This type of arcs is called ‘only arc’.

 Testing weather an arc is ‘only arc’ or not, is time consuming because the

search needs to cover the whole graph. To make the search more effective, the search

is limited to the critical arcs. Critical arcs are defined as arcs on the longest path and

related to machine constraints. Obviously, if an arc ba → on the longest path, no

other path may exist from a to b , otherwise the longest path will go through other path

so the weight of additional node will take into account. In addition, if other ‘only arcs’

which are not critical arcs is reverted, it would not reduce the makespan because the

previous longest path will remain in the new solution and the new makespan will be

greater or equal to the previous one. In addition, any exchange of two adjacent

operations on a critical path will never lead to an infeasible schedule. This fact is shown

by Yamada (2003) and also known as feasibility property.

Theorem 2.1: (feasibility for adjacent exchange)

Let S be a consistent complete selection and ()SP be a critical path in S . Consider a

pair of adjacent critical operation ()v,u on a same machine on ()SP . For example,

there is an arc selected from u to v . Then a complete selection uvS obtained from S

by reversing the direction of the arc between u and v is always acyclic (thus the

corresponding schedule is always feasible).

 20

Proof: Assume the contrary, and then the exchange introduces a cycle in uvS . This

means that there is a path v,uP from u to v in uvS , and this v,uP also exist in S .

()SP can be represented as () (),...,*w,v,u,...,SP 0= and (),...,*w,P,..., v,u0 is also a

path from source to sink in S but clearly longer than ()SP . This contradicts the

assumption of the theorem that ()SP is a critical path of S .

 Finally, from Figure 2.5, we can see that the makespan is 5 and the longest

path is VOOOOOU →→→→→→ 3233131211 . If we reverse arc 3313 OO → which

is also the critical arcs to 1333 OO → , we will get the new feasible schedule

VOOOOU →→→→→ 13333111 with makespan 4 which is also the optimal solution

to the problem. Optimal solution is shown in Figure 2.6.

Figure 2.6: Disjunctive Graph Represents a Feasible Schedule
(After Reversing an Arc)

 Machine sequence order for each job

 Job sequence order for each machine (schedule)

U 22O

31O

11O

23O

33O

12O

32O

21O

13O

V

 21

2.3.2 Gantt Chart

 Apart from the disjunctive graph, another representation for solution to job shop

scheduling problem by rearranging blocks representing the given set of operations. The

chart is named Gantt chart. Developed by Henry L. Gantt in 1910 to represent the

project schedule, nowadays Gantt chart is widely used to represent the solution of job

shop scheduling problem. According to Conway et al. (1967), Gantt chart is

constructed with a horizontal axis and horizontal bars. Horizontal axis represents the

total time span for each operation while the horizontal bars or blocks represent the

operations. The length of each block is proportional to the processing time required to

perform the operation. The operation blocks are arranged in rows in accordance with

the machine it should be processed on and the sequence ordered constructed by the

solution methods. Figure 2.7 showed the example of Gantt chart.

Machine1 11O 31O 21O

Machine2 22O 12O 32O

Machine3 23O 33O 13O

 Time 0 1 2 3 4

Figure 2.7: Example of Gantt Chart for 33× size of Problem

2.4 Solving Methods for JSSP

In 1976, Kan (1976) showed that complete enumeration is not suitable even for

a small job shop problems. Each permutation gives the processing sequence of jobs on

a particular machine. In addition, French (1982) stated that since each of the

permutations may be different from the rest, it follows that the total number of

schedules is ()m!n where n is number of jobs and m is number of machines. However,

because of the technological constraints, some of these schedules may be infeasible.

 22

Thus, the number of schedules to be consider is less than ()m!n . French (1982) also

noted that job shop scheduling problems are NP-hard and could not be solved in

polynomial time.

2.4.1 Integer Programming

The general job shop problem can be modelled as an integer programming

problem. In 1959, Wagner modelled general job shop scheduling problems in integer

programming formulation. His approach suitable for B/A/m/n problems and

represent some variables in 10 − form in his constraints. In his model, Wagner

represented the variable constraint 1=ikX if iJ is scheduled in the k -th position.

Otherwise, 0=ikX . Meanwhile, in 1960, Manne introduced Manne’s model. In his

model, Manne introduced real variable rS to represent the starting time of operation r .

He also used 10 − representation in his constraints. Manne’s model of formulation is

closely reflects the disjunctive graph structure. Both approaches are viewed by Kan

(1976).

However, Conway et al. (1967) have shown that computational experience with

the models using general 10 − methods is very time consuming. According to Pinedo

and Chao (1999), the most common formulation used for job shop scheduling problems

was proposed by Roy and Sussmann in 1964, known as disjunctive programming

formulation. The following formulation described disjunctive programming in term of

mathematical formulation due to Roy and Sussmann in 1964. Denote that ijy is the

starting time of operation ()j,i .

 23

Minimize maxC

Subject to

jkjkjl pyy ≥− for all () () Al,jk,j ∈→ (2.4)

jkjkmax pyC ≥− for all () Nk,j ∈ (2.5)

hkhkjk pyy ≥− or jkjkhk pyy ≥− for all ()k,h and ()k,j , m,...,,j 21= (2.6)

0≥jky for all () Nk,j ∈ (2.7)

The first constraint ensure that operation ()l,j cannot start before

operation ()k,j is completed. Subsequently, the second constraint defined the value of

makespan should be large or equal to the completion time of each operation. The third

set of constraints is the disjunctive constraints. They ensure that some ordering exists

among operations of different jobs that have to be processed on the same machine.

2.4.2 Enumeration Methods

 Though, a scheduling problem can be formulated as a disjunctive programming;

it does not imply the availability of a standard solution procedure will work satisfactorily.

The number of constraints will increase as the size of the problem increased.

Minimising the makespan in a job shop is a hard problem since according to Yamada

and Nakano (1997), Problem MT10 sized 1010× which formulated by Muth and

Thompson remained unsolved for over 20 years. Therefore, the solution procedures

are either based on enumeration or heuristics techniques.

 Enumeration methods consider all the possible schedules and then eliminate

the non-optimal schedules from the list, leaving those optimal. According to Pinedo and

Chao (1999), the most widely known use in scheduling is branch and bound method.

 24

To apply branch and bound, we must have a partitioning of feasible region for a

problem to create smaller sub-problem (branching) and a lower bound on an instance

of optimisation problem (bounding). One of the branching procedures that always been

used is by limiting the branch to a specific class of schedules.

Bierwirth and Mattfeld (1999) in their paper did some study on classes of

schedules. The classes are semi-active schedules, active schedules and non-delay

schedules. Semi-active schedules will ensure that each operation will be start as soon

as possible while obeying the technological sequence and the processing sequence.

On the other hand, active schedule is a schedule with no operation can be started

earlier without delaying some other operation or violating the technological constraint.

The active schedules form a subclass of the semi-active. In non-delay schedules, a

machine do not allowed to be idle if it could start processing some operation. According

to them, concerning the minimisation of maxC and F , it is well known that at least one

of the optimal schedules is an active one.

Figure 2.8: Venn Diagram for the Semi-Active, Active and Non-Delay
Classes of Schedules

According to Yamada (2003), based on study by B. Giffler and G. L. Thompson

in 1960, they suggested that it is not necessary to search for an optimal schedule over

all possible schedules, but it is enough to search over a subset of feasible schedules.

	My Title Page (cover)
	ACKNOWLEDGEMENTS
	content
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ALGORITHMS
	LIST OF APPENDICES
	Abstract
	Abstrak
	CHAPTER 1 introduction
	Chapter 2 Literature Review
	CHAPTER 3 METHODOLOGY

