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A MODIFIED MULTI-STEP CROSSOVER FUSION (MSXF) IN SOLVING 
SOME DETERMINISTIC JOB SHOP SCHEDULING PROBLEM (JSSP) 

 

Abstract 

This thesis addresses the job shop scheduling problem (JSSP) with the 

objective of minimising the makespan value. In this study, stochastic sampling method 

mainly used in simulated annealing (SA) is implemented in population based approach 

framework called genetic algorithm (GA) to solve JSSP. A special crossover called 

multi-step crossover fusion (MSXF) with intuition of generating a child from the path re-

linking technique is employed. MSXF is an extended version of local search. It utilizes 

a neighbourhood structure and a distance measure in its procedure. By using this type 

of crossover, a solution or child is generated between both parents using the search 

path joining parent solutions. In this study, two modifications have been made with 

intention to increase the effectiveness of the algorithm in producing good solutions.  

 

The first modification is the changing in the structure of neighbourhood from 

active critical block neighbourhood (ACBN) proposed by Yamada and Nakano (1997) 

to the structure of neighbourhood proposed by Nowicki and Smutnicki which has been 

used by Gaspero (2003). Since there is a suggestion that the greedy initial solution 

often results in better quality solution, therefore, the implementation of pairwise 

interchange in GA framework is hoped to help with the early convergence. It is evident 

from the results that the implementing MSXF with pairwise interchange does increase 

the quality of solution. The experimental study has shown that, under our selected 

parameters based on the experimental study, the structure of neighbourhood proposed 

by Nowicki and Smutnicki with additional pairwise interchange performs better than 

ACBN. 
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SUATU PENGUBAHSUAIAN KOMBINASI PERSILANGAN MULTI-
LANGKAH (MSXF) DALAM MENYELESAIKAN BEBERAPA MASALAH 

PENSKEDULAN KERJA KEDAIAN (JSSP) BERKETENTUAN  
 

Abstrak 

Tesis ini membincangkan masalah penskedulan kerja kedaian (JSSP) dengan 

objektif untuk meminimumkan masa operasi.  Dalam kajian ini, prosedur pensampelan 

stokastik yang biasanya digunakan dalam simulasi penyejukkan (SA) 

diimplimentasikan dalam pendekatan rangka kerja berasaskan populasi dalam 

algoritma genetik (GA) bagi menyelesaikan JSSP. Suatu operator persilangan yang 

dikenali sebagai kombinasi persilangan multi-langkah (MSXF) bertujuan untuk 

menghasilkan anak atau individu baru daripada teknik paut-semula laluan digunakan. 

MSXF adalah teknik yang dikembangkan dari teknik pencarian setempat. Dengan 

menggunakan MSXF, suatu penyelesaian ataupun anak dihasilkan dengan 

menghubung ibu bapa menggunakan penyelesaian pencarian laluan hubungan ibu dan 

bapa. Dalam kajian ini, dua modifikasi telah dibuat dengan tujuan untuk meningkatkan 

kualiti penyelesaian.  

  

Pengubahsuaian yang pertama adalah melibatkan struktur kejiranan yang 

digunakan di dalam kombinasi persilangan multi-langkah. Struktur yang dicadangkan 

oleh Nowicki dan Smutnicki serta di implementasi oleh Gaspero (2003) telah 

digunakan untuk menggantikan struktur yang dicadangkan oleh Yamada dan Nakano 

(1997). Oleh sebab terdapat cadangan yang menyatakan bahawa penyelesaian awal 

yang tamak biasanya akan menghasilkan penyelesaian yang lebih berkualiti, maka 

pertukaran pasangan demi pasangan diharapkan dapat membantu dalam penumpuan 

awal kepada penyelesaian terbaik. Keputusan membuktikan bahawa implementasi 

kombinasi persilangan multi-langkah dengan pertukaran pasangan dapat 

meningkatkan kualiti penyelesaian. Keputusan kajian juga telah menunjukkan bahawa 

dengan menggunakan parameter yang telah dipilih berdasarkan kajian experimentasi, 
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struktur yang dicadangkan oleh Nowicki dan Smutnicki dengan implementasi 

pertukaran pasangan mencapai keputusan yang lebih baik berbanding ACBN.  



 1

CHAPTER 1 

INTRODUCTION 

 

1.1 Background of the Study 

In the modern competitive environment in manufacturing and service industries, 

the effective sequencing and scheduling has become an essential for survival in the 

marketplace. Companies have to produce their product untimely as opposed to due 

date. Otherwise, it will impinge upon reputation of a business. At the same time, the 

activities and operations need to be scheduled with the intention that the available 

resources will be used in an efficient manner.  As a result, there is a great good 

scheduling algorithm and heuristics are invented. 

 

Basically, scheduling is the allocation of shared resources over time to 

competing activities (Baker, 1974). The terminology of scheduling theory usually takes 

place in the processing, manufacturing industries, production, transportation, 

distribution, and in information processing and communication. Scheduling problem is 

solved by using the mathematical techniques or heuristic methods to allocate limited 

resources to the processing of tasks. This allocation of resources is important since a 

proper allocation enables the companies to optimise their objectives and achieve their 

goals. The familiar scheduling problems are the bus schedules, the university time-

table and the construction work.  

 

The classified field of scheduling problem is fascinating area of study and 

research with continue interest even in recent times. Recently, researches have been 

focusing on investigating machines scheduling problems in manufacturing and service 

environment where jobs represent activities and machines represent resources. In this 

environment, each process can process one job at a time. If it is a low volume system, 
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it is known as job shop scheduling problem. In this type of environment, products are 

made to order. Usually, these orders differ from terms of processing requirements, 

material needs, processing time, processing sequence and setup times.  

 

Most of the prevailing practical scheduling problems exist in stochastic and 

dynamic environment. Stochastic is a problem where some of the variables are 

uncertain while dynamic problem is when jobs arrive randomly. On the other hand, the 

problems with ready time is known and fixed are called problems static and for problem 

where all the parameter such as processing times are known and fixed is called 

deterministic problems (French, 1982). In spite of this, it is quite impossible to predict 

exactly when jobs will become available for processing. Additionally, the understanding 

of scheduling problems where there is no uncertainty involved will help us towards the 

solution of stochastic and dynamic problems. Therefore, in this work, we will study and 

limit our discussion in static and deterministic environment. 

 

 The main objective in solving the job shop scheduling problem is to find the 

sequence for each operation on each machine that optimises the objective function. 

The most common objective function that has been used in scheduling the job shop 

problem is minimisation of makespan value or the time to complete all jobs. It has been 

the principal criterion for academic research and is able to capture the fundamental 

computational difficulty which exists unconditionally in determining an optimal schedule 

(Jain and Meeran, 1999).  

 

 From the theory, we know that the cost of processing may depend crucially 

upon the choice of schedule. If we were not able to find the best schedule within 

reasonable time, we should use the knowledge to find the schedule which may at least 

be expected to perform better. During the 1960s, the way of solving scheduling 

problems has been shifted from the exact solution to an enumerative algorithm. 
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However, this technique is failed to find the feasible solution for many problems and 

very limited of used (Jain and Meeran, 1999).  Only by the end of 1980s the researcher 

started to solve the problem by using approximation and heuristic methods. Since then, 

more innovative algorithms were formulated such as shifting bottleneck (Adam et. al, 

1988), tabu search (Glover, 1994), simulated annealing (Lorenco, 1995) and genetic 

algorithms (Nakano and Yamada, 1991), (Yamada and Nakano, 1997) and (Mathur, 

1999).      

 

 Adam et al. (Adam et. al, 1988) proposed shifting bottleneck to find the 

reasonably efficient schedule for job shop problems. This method iteratively identifies a 

bottleneck machines and optimise its job sequence. In 1990s, Fred Glover (Glover, 

1994) proposed a deterministic local search but implementing the recording of previous 

solution to prevent cycling and to promote diversified coverage of the search space. On 

the other hand, simulated annealing solves the job shop problems based on the 

analogy with the physical process of annealing.    

 

Different from other approximation procedures, genetic algorithms (GAs) can be 

uniquely characterized by their population based search strategy and their operators; 

selection, crossover and mutation (Yamada, 2003). Compared to other procedures, 

genetic algorithms search from a population point, not a single point. If we are 

searching from a single point, our system will possibly easy to get trapped at the local 

optima (Michalewicz, 1999). In addition, while working with genetic algorithm, we do not 

need too much information and it also can be easily adapted to our problem. Due to 

these factors, this study is dedicated to job shop scheduling problem using genetic 

algorithm framework. 

 

Genetic algorithm maintains a population of individuals at each iteration. Each 

of this individual represents a potential solution to the problem. Each solution evaluated 
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to give some measure of its “fitness”. Then, by selecting the fittest individuals will form 

a new population for the next iteration. In the reproduction process, some selected 

members endure amendment by means of crossover and mutation, to form new 

solution. Crossover operator combines some parts from two individuals to form a new 

individual. On the other hand, mutation operator creates a new individual just by 

making some changes in a single individual.  

   

 In order to solve combinatorial problems such as job shop scheduling problems, 

we usually find it is difficult to construct an efficient crossover operator that recombines 

solution. The exchanging of genes between parents may violate the constraint of the 

problem, generating many infeasible solutions. In addition, genetic algorithm is not well 

suited for fine tuning structures which are very close to optimal solution. The general 

remedy is by incorporating local search methods such as neighbourhood search in the 

genetic algorithm framework (Yamada, 2003).   

   

Yamada and Reeves (Yamada and Reeves, 1998) have been studying in 

merging the stochastic sampling method essentially used in simulated annealing and 

the best descend method elaborate in tabu search and implement them in genetic 

algorithm framework. This proposed method is called multi-step crossover fusion 

(MSXF). The multi-step crossover fusion (MSXF) usually used to solve a combinatorial 

problem. It utilizes a neighbourhood structure and distance in the search space. 

Traditionally, crossover combines some parts from two individuals to form new 

individual. Unlike other traditional crossover operators, MSXF is more based on search 

oriented. It generates descendents along the path connecting two parents. MSXF is 

especially useful while being implemented with local search since it exploits a good 

starting point for the subsequent local search. Apparently, the structure of 

neighbourhood is very important while working with MSXF since local search always 
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known consuming large amount of time. Stand for that reason; reducing the size of 

neighbourhood possibly could decrease the amount of computational time.         

 

1.2 Problem Statement 

 The previous study of implementing multi-step crossover fusion in genetic 

algorithm framework did not focus on the size of problems and how it is related to the 

selected parameters. As we already known, application of GA may involve many 

parameters including the chosen of population size, the selection operators, the 

probability of implementing crossover and the important of mutation operator. Basically, 

the quality of solution using genetic algorithm relies on the choice of the best 

parameters in order to prevent premature convergence and to ensure the diversity in 

the search space (Essafi et. al, 2007). Based on this fact, in this study, we try to study 

the behaviour some of these parameters in varies size of problems.   

 

Before we apply the local search to our problem, we have to define a 

neighbourhood structure on the set of feasible solution. Basically, the set of neighbours 

of a solution is defined as a set of solutions which differ only by small changes (Hurink, 

1998). Defining the neighbourhood structure is very important since it will determine the 

way in which we navigate through the solution space and it also determines the 

computational time of finding the best solution. According to Hurink (Hurink, 1998), the 

computational time for finding the best or an improving neighbour is proportional to the 

size of the neighbourhood. In spite of this, large neighbourhood gives more possibilities 

to change the current solution and raises the possibility of reaching high quality 

solution. In practice, only computational tests have to show the alternative leads to 

better result. Therefore, we compared two different kind structure of neighbourhood 

namely the active critical block neighbourhood (ACBN) and the structure proposed by 

Nowicki and Smutnick to be implement in the MSXF.         
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The multi-step crossover fusion (MSXF) in genetic algorithm framework is 

implemented to the different size of benchmark problems. The sizes of problems 

represent the small, medium and large size of problem. These problems are chosen 

because the best solution found for each problem is already known. This will help us to 

measure up the ability of this algorithm. 

    

1.3 Objectives of the Study 

The objectives of the study are; 

 

• To study the performance of implementing modified MSXF in GA framework to 

job shop scheduling problem for small, intermediate and large size of problems.  

• To study the influence of parameters and find the suitable set of parameters 

which is applicable in the MSXF-GA. The parameters discussed are; 

 Size of population. 

 Selection criteria for MSXF-GA. Three selection procedures will be 

compared. They are roulette wheel selection, tournament selection 

and uniform selection.  

 Mutation operator. We want to study the important of mutation 

operator in the algorithm.  

 T value in the Metropolis Acceptance Criterion. 

• To compare; 

 The performance of MSXF-GA with conventional GA, basic 

dispatching rules and shifting bottleneck without backtracking 

procedure.  

 The performance of Multi-Step Crossover Fusion (MSXF) with 

Generalised Order Crossover (GOX) and Partially Preservative 

Crossover (PPX) in GA framework.  
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 The performance of different neighbourhood structures while 

implementing MSXF in GA framework to job shop scheduling 

problems. 

 The effectiveness of implementing an additional pairwise 

interchange in the GA framework. 

 

1.4 Significant of the Study 

 This thesis is devoted mainly to study the performance of multi-step crossover 

fusion in genetic algorithm framework in deterministic and static job shop problems. 

Different sizes of problem were used as the testing problems so that the conclusion of 

its performance can be derived for variety of problem sizes.  

 

This study is hoped to provide the insight of implementing the multi step 

crossover fusion in genetic algorithm framework. Whilst, the simple study on structure 

of neighbourhood is hoped to act as starting point for more practically relevant and 

effective structure of neighbourhood. 

 

1.5 Outline of the Thesis 

 This thesis focuses on the solving the deterministic and static job shop 

scheduling problems using the multi-step crossover fusion (MSXF) in genetic algorithm 

(GA) framework.   

 

In Chapter 2, the basic concepts such as notations, formulation and 

representation of job shop scheduling problem are described. Followed this is the 

literature of the previous work devoted to the same problems. This chapter helps us to 

determine the focus problem and the algorithms and procedures ever built for the 

problem. 
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 In Chapter 3, the methodology of implementing multi-step crossover fusion 

(MSXF) in genetic algorithm framework is explained. This chapter describes the 

procedures used and other partially procedures which need to perform along with the 

MSXF in the framework. 

 

 Chapter 4 consists experiments on some selected parameters. The relation of 

the selected parameter and the problems is shown regarded in finding the best to 

perform in the framework. Then, these selected parameters are applied to large size 

problem to measure the performance of the algorithm. In addition, comparison with 

other crossovers techniques were also been experimented. 

  

 In Chapter 5, we compare the multi-step crossover fusion (MSXF) with 

conventional genetic algorithm, shifting bottleneck procedure, some basic dispatching 

rules and simulated annealing.    

 

 Chapter 6 is a simple study on the comparison of the neighbourhood structure 

proposed by Nowicki and Smutnicki compared to active critical block neighbourhood 

(ACBN). Since the size of the neighbourhood sometimes affecting the computational 

time, therefore, this chapter is hoped to get an overview of the problem arises 

regarding the structure of neighbourhood. As an addition, we introduce the additional 

pairwise interchange to increase the quality of solution. 

 

 Finally, in Chapter 7, the study of this thesis is summarised and the future 

exploration are suggested.             
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CHAPTER 2 

LITERATURE REVIEW 

 

2.0 Introduction 

In order to understand the problems as well as the methods available related to 

job shop scheduling problems, we have reviewed some of literature related to the 

problem in the past and recent publication. However, most of the literature in this area 

refers to the Job Shop Scheduling Problem (JSSP) and uses the terminology of 

manufacturing such as, job, machine, operation, routing and processing time. The 

developments of the idea in solving this problem by other researchers are briefly 

presented in this chapter. We reviewed the literature in three different sections. The 

first section we discussed some background of job shop scheduling problem. In the 

second section, the methods available for the problems are discussed. Finally, in the 

final section, we focussed on the work dedicated to genetic algorithms.   

   

2.1 Background of Job Shop Scheduling Problem (JSSP) 

 In practice, scheduling problems are complex problems. According to Conway 

et al. (1967), scheduling a job shop process is the task of assigning each operation to a 

specific position on the time scale of the specified machine. Alternatively, scheduling 

can be regarded as the task of constructing an ordering of the operations associated 

with each machine. A job shop problem consists of n  number of jobs J , { }i n
iJ 1=  which 

are needed to be processed on m  number of machine M , { }k
m
kM 1= . Each job iJ  

consists in number of operations, O , that must be processed on each machine kM  in 

specific route or order. iqkO  is the q -th operation for job i , iJ , which should be 

processed on machine k , kM , for an uninterrupted processing time period iqkp  and 

pre-emptive of operation are not allowed. Once the machine started to process an 
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operation, it must be complete before another operation started on that same machine. 

Each machine can process only one job at a time and each job can be processed by 

only one machine at a time. Each job must be processed until it complete. The set-up 

time for each machine and the time to shift the job between machines are neglected. In 

addition, the machines are assumed to be available throughout the scheduling period 

and no breakdown occurred.       

       

Traditionally, scheduling problems have been viewed as problems in 

optimisation subject to constraints. The theory of scheduling also includes a variety of 

techniques that are useful in solving scheduling problems. The selection of an 

appropriate technique depends on the complexity of the problem, the nature of the 

model, and the choice of a criterion as well as other factors. According to Baker (1974), 

while classifying the major scheduling models, it is necessary to characterise the 

configuration of resources and the behaviour of the tasks. For example, if the set of 

tasks available for scheduling does not change over time, the system is called static. 

On the other hand, the system which new tasks arise over time is called dynamic. In 

addition, he also stated that traditionally, static models have been proven more 

tractable than dynamic models and have been subjected to more extensive study. 

Other classifications that have been made are deterministic problem and stochastic 

problem. Deterministic problem is a problem with all the parameters such as 

processing time, are known and fixed and the problems which the processing time is 

uncertain are called stochastic. All practical scheduling problems are dynamic and 

stochastic since it is impossible to predict exactly when the jobs are arrived or when the 

breakdown of machine are occurred. Even though most of the problems fall in dynamic 

and stochastic types, but still most of the research are done for static and deterministic. 

According to French (1982), there are problems in which any randomness is quite 

clearly insignificant. For example, the uncertainty in the various quantities is several 

orders of magnitude less than the quantities themselves. He also added that study of 
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dynamic and stochastic problems cannot be done until we have understood the static 

and deterministic problems. 

  

2.2 Problem Notations and Assumptions 

Before we proceed to review previous works on this study, we shall indicate in 

general a few of criteria which we will use later. Table 2.1 shows the notations subject 

to the job shop scheduling problem;  

 

Table 2.1: Notations  

iJ  Job i. ( n,....,i 21= ) 

kM  Machine k  ( m,...,,k 21= )  

iqkO  q -th operation for job i , iJ , which should be processed on machine k , kM . 

iqks  Starting time for iqkO .  

iqkr  Ready time for iqkO . 

iqkp  Processing times for iqkO . 

iqkC  The completion time (makespan) of iqkO . iqkiqkiqk psC +=    

iF  Flow time of job. The time that iJ  spend in the workshop. iii rCF −= . 

iC  is completion time of iJ . 
mn ×  n  number of jobs need to be processed on m  number of machines 

 where ,...,n 21=  and ,...,m 21=  
 

For further analysis, we have to make some assumptions about the structure of our 

scheduling problem. Therefore, the assumptions we made are;  

 

1. Each job is an entity. Although the job is combination of set of operations 

(tasks), however processing two operations of the same job simultaneously 

are not allowed. 

2. Pre-emptive are not allowed. When the machine started to process an 

operation, it must be complete before another operation started on that same 

machine. 

3. No cancellation. Each job must be processed until it complete. 
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4. Set-up times are not considered. The time to shift jobs between machines and 

the time setting for each machine after the job last processed are not 

considered.  

5. There is only one machine for each type of process.  

6. Machines may be idle. 

7. Machine may process only one operation at a time. 

8. Machines never breakdown and are available throughout the scheduling 

period.  

9. The technological constraints are known in advance and are immutable. 

10. There is no randomness. In particular; 

 

a. The number of jobs are known and fixed. 

b. The number of machines are known and fixed. 

c. The processing times (duration times) are known and fixed. 

 

Assumption 8th and assumption 10th confine attention to non-random problems that is 

problem with all the numerical quantities are known and fixed in advance. There is no 

uncertainty.  

 

French (1982) classified scheduling problem is the four field 

notation D/C/B/A . A  can be defined as the number of jobs, B  is the number of 

machines, C  is the flow pattern within the shop and D  is the performance measure for 

the problem. However, this descriptive technique is suitable only for the basic problem.  

Stating the performance measure for the problem is always conflicting. According to 

French (1982), there are at least 27 scheduling goals. However, Jain and Meeran 

(1999) suggested that minimisation of the makespan value is widely used in academic 

and industrial practice. Makespan is the time when the last operation leaves the 



 13

workspace and can be noted as maxC . Consequently, according to them, it has been 

the principal criterion for academic research and able to capture the fundamental 

computational difficulty. It is also suggested that a solution for maxC  is likely to perform 

well on average with respect to the other criteria. Makespan can be formulated as 

equation 2.1. 

 

         ( ) ( )( )Mk,Ji:psmaxminCmin iqkiqk
schedulesfeasible

max ∈∈∀+=                    (2.1) 

 

where iqks  is starting time for operation iqkO  and iqkp  is processing time for 

operation iqkO . Studies for static and deterministic job-shop scheduling problems with 

minimising the makespan value have been done by Adams et al. (1988), Nakano and 

Yamada (1991), Bierwirth (1995), Schmidt (2001) and Yamada (2003).   

 

2.3 Problem Formulation and Representation of JSSP 

Job shop problem can be represented in matrix form such as Nakano (1991). 

Consider a job shop problem with n  jobs that have to be processed on m  machines. 

Operation ( )k,j  refer to job j  that must be performed on machine k . Each job has 

their processing times and denoted by iqkp . Each job has to be processed by a given 

machines order which are called technological sequence. This technological sequence 

of machines can be different to each job and the order of jobs to be processed on a 

machine can also be different to each machine. The predefined technological 

sequence of each job can be given collectively by matrix { }jkT  which rT jk =  

corresponds to the k -th operation, jkrO , of job j  on machine r . On the other 

hand, { }jrp  corresponds to the processing time for operation jkrO . An example of 33×  

job shop problem including the machine sequence for each job and processing time for 
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each operation are given in Table 2.1.  Figure 2.1 represents the machines’ sequence 

for each job in matrix form. The matrix’s rows represent the jobs while the columns 

represent the machine’s sequence for each job. Figure 2.2 represent processing time 

for each operation in matrix forms. The matrix’s rows represent the jobs while the 

columns represent the machines. 

 

Table 2.2: Machines Sequence and Processing Time for 33×  Job Shop Problem 

Job Machines(processing time) 
1 1(60) 2(30) 3(02) 
2 2(75) 3(03) 1(25) 
3 3(05) 2(15) 1(10) 

 

           { }
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

123
132
321

jkT    { }
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

51510
37525
23060

jrp  

                    

 

2.3.1 Disjunctive Graph 

Another way to represents the job shop problem that also found to be useful is 

provided by Kan (1976) using the concept of disjunctive graph. Consider a set of n  

jobs to be processed on m  machines. Let disjunctive graph, G  with a set of nodes N  

and two sets of arcs A  and B . The nodes N  represent the set of operations’ node as 

well as two dummy nodes at the beginning (source node,U ) and the end (sink node,V ) 

of schedule. The weight of each node is the processing time for each operation. The 

source node and the sink node have zero processing time. 

 

The conjunctive (solid) arcs A  represent the routes of each job including arcs 

connecting the source node to the first operation node and the last operation to the sink 

node. These conjunctive arcs represent the technological precedence. For example, 

Figure 2.1: Machines Sequence Figure 2.2: Processing Sequence
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arc ( ) ( )l,jk,j →  means that job j  has to be processed on machine k  before being 

processed on machine l . In other words, operation ( )k,j  precedes operation ( )l,j . In 

addition, there are n  number of conjunctive arcs emanating from source node, U , to 

the first operations of each job and n  number of conjunctive arcs coming from the final 

operations of each job to the sink node, V .  

 

The disjunctive (broken) arcs B  refer to operation that belong to the different 

job but have to be processed on the same machine. These arcs form m  cliques of 

double arcs. Based on the graph theory, clique is a term that refers to a graph which 

any two nodes are connected to one another. In this case, all operations in the same 

clique have to be processed on the same machine. The arcs’ length represent the 

processing time for each operation. We denote this graph with ( )B,A,NG = .  Figure 2.3 

shows the disjunctive graph representation for problem in Table 2.1. 

 

 

 
 

Figure 2.3: Disjunctive Graph for 3 Jobs and 3 Machines Problems 
 

 

U 

11O  12O  13O  

22O  23O  21O  

31O  33O  

V  

                                    Machine sequence order for each job 
 
                                    Job sequence order for each machine (schedule) 
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Another term that is important in scheduling a job shop problem is generating a 

feasible schedule. So far, we have introduced the technological constraint where a job 

should be processed on each machine in specific order. According to French (1982) 

schedules which compatible with this condition are called feasible. Otherwise the 

schedule is known to be infeasible. Obviously, a solution to scheduling problem must 

be feasible. The easiest way to explain the concept of feasible schedule is from the 

graph. Assume that we have select one disjunctive (broken) arc from each pair of 

clique that resulting directed graph is acyclic. If there is a cycle within a clique, it is 

impossible to find a feasible sequence of the operations on the corresponding machine. 

For example, let jhO  and jiO  denote the operations that belong to job j  and let kiO  

and khO  denote the two consecutive operations that belong to job k . If, a given 

schedule is operation jiO  is processed before operation kiO  on machine i  and 

operation khO  precedes operation jhO  on machine h , then the graph will look like 

Figure 2.4. Such a schedule is physically impossible.   

 

 

Figure 2.4: A Cycle within a Disjunctive Graph  

 

A selection will determine the sequence of operations which perform on that 

particular machine. Now, denote that D  is the subset of the selected disjunctive arcs 

jiO  

kiO  khO

jhO  

Job sequence order for each machine (schedule) 

Machine sequence order for each job 
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and graph ( )DG  is correspond to a feasible schedule if and only if ( )DG  contains no 

directed cycles. The longest path in ( )DG  from node source U  to the node sink V  is 

called the makespan of a feasible schedule. It consist a set of operations which start at 

time 0 and finishes at the time of makespan.  For example, assuming each operation 

has processing time equal to one and Figure 2.5 shows the feasible solution created. 

Two example of the longest path are VOOOOOU →→→→→→ 3233131211  

and VOOOOOU →→→→→→ 3233131222 .  

 

 

Figure 2.5: Disjunctive Graph Represents a Feasible Schedule   
 

Finding an optimal feasible schedule is equivalent to the finding an orientation 

of disjunctive arcs that will minimise the longest path in the graph. To compute the 

starting time jkmS  and completion time jkmC  for each operation, we introduced jkmC  to 

represent time k -th operation of job j  complete it process on machine m . We also 

introduced ready time mqr  of machine m  where q  is the job order on machine m .  

U  22O  

31O  

11O  

23O  

33O  

12O  

32O  

21O  

13O  

V

                              Machine sequence order for each job 
 
                              Job sequence order for each machine (schedule) 
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Indeed, for each operation, we have, 

 

                     jkmjkmjkm pSC +=  (2.2)

 
where 

                    ( ) ( ){ }11 −− qmmkj r,Cmax         if 1>q,k       

=jmkS          { })q(mr,max 10 −                 if 11 => k,q

                    { }01 ,Cmax m)k(j −               if 11 >= k,q  

                     0                                    if 11 == k,q  

 

 

 (2.3)

 

Equation 2.2 computes the completing time for jkmO  by summing the starting 

time, jkmS , and the processing time, jkmp , of jkmO . In addition, equation 2.3 computes 

the starting time for job j  on machine m .  As we can see, the starting time is 

depending on the maximum value between the completion time of the previous 

operation for job j  , m)k(jC 1− , and the completing time of previous operation on machine 

m , )q(mr 1− .  

 

 Creating an initial feasible solution can be obtained by the following steps. First, 

consider each job in arbitrary order. Then put its operation on the appropriate machine 

following the technological sequence. This will give a feasible solution which its 

makespan is not really good. Fortemps and Hapke (1997) suggested that the current 

scheduled can be modified in order to improve the makespan value. Note that only 

disjunctive arcs can be reverted since the conjunctive arcs represent technological 

constraints.  In order to get other feasible schedule with a better makespan value, the 

orientation of some disjunctive arcs are need to be reversed. For example, referring to 

Figure 2.5, if the operation 13O  and 33O  are reverted, this will lead from the sub-

sequence 331323 OOO →→  to 133323 OOO →→ . However, according to Fortemps 
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and Hapke, (1997) not all disjunctive arcs can be reverted without introducing cycle if 

there already exist in another path. Suppose that if 32O  is reverted to 22O , from 

original VOOOOOU →→→→→→ 3233132322 . After inversion, there will exist a 

cycle 223233132322 OOOOOOU →→→→→→ . By considering the example before, 

only arc from 32O  to 22O  can be reverted. This type of arcs is called ‘only arc’. 

 

 Testing weather an arc is ‘only arc’ or not, is time consuming because the 

search needs to cover the whole graph. To make the search more effective, the search 

is limited to the critical arcs. Critical arcs are defined as arcs on the longest path and 

related to machine constraints. Obviously, if an arc ba →  on the longest path, no 

other path may exist from a  to b , otherwise the longest path will go through other path 

so the weight of additional node will take into account. In addition, if other ‘only arcs’ 

which are not critical arcs is reverted, it would not reduce the makespan because the 

previous longest path will remain in the new solution and the new makespan will be 

greater or equal to the previous one.  In addition, any exchange of two adjacent 

operations on a critical path will never lead to an infeasible schedule. This fact is shown 

by Yamada (2003) and also known as feasibility property.  

 

Theorem 2.1: (feasibility for adjacent exchange) 

Let S  be a consistent complete selection and ( )SP  be a critical path in S . Consider a 

pair of adjacent critical operation ( )v,u  on a same machine on ( )SP . For example, 

there is an arc selected from u  to v . Then a complete selection uvS  obtained from S  

by reversing the direction of the arc between u  and v  is always acyclic (thus the 

corresponding schedule is always feasible). 
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Proof: Assume the contrary, and then the exchange introduces a cycle in uvS . This 

means that there is a path v,uP  from u  to v  in uvS , and this v,uP  also exist in S . 

( )SP  can be represented as ( ) ( ),...,*w,v,u,...,SP 0=  and ( ),...,*w,P,..., v,u0  is also a 

path from source to sink in S  but clearly longer than ( )SP . This contradicts the 

assumption of the theorem that ( )SP  is a critical path of S .         

 

 Finally, from Figure 2.5, we can see that the makespan is 5 and the longest 

path is VOOOOOU →→→→→→ 3233131211 . If we reverse arc 3313 OO →  which 

is also the critical arcs to 1333 OO → , we will get the new feasible schedule 

VOOOOU →→→→→ 13333111  with makespan 4 which is also the optimal solution 

to the problem. Optimal solution is shown in Figure 2.6. 

 

 

Figure 2.6: Disjunctive Graph Represents a Feasible Schedule 
(After Reversing an Arc) 

 

                                 Machine sequence order for each job 
 
                                 Job sequence order for each machine (schedule) 

U  22O  

31O  

11O  

23O  

33O  

12O  

32O  

21O  

13O  

V  
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2.3.2 Gantt Chart 

 Apart from the disjunctive graph, another representation for solution to job shop 

scheduling problem by rearranging blocks representing the given set of operations. The 

chart is named Gantt chart. Developed by Henry L. Gantt in 1910 to represent the 

project schedule, nowadays Gantt chart is widely used to represent the solution of job 

shop scheduling problem. According to Conway et al. (1967), Gantt chart is 

constructed with a horizontal axis and horizontal bars. Horizontal axis represents the 

total time span for each operation while the horizontal bars or blocks represent the 

operations. The length of each block is proportional to the processing time required to 

perform the operation. The operation blocks are arranged in rows in accordance with 

the machine it should be processed on and the sequence ordered constructed by the 

solution methods. Figure 2.7 showed the example of Gantt chart.   

 

      
Machine1 11O  31O  21O    
      
Machine2 22O  12O   32O   
      
Machine3  23O  33O  13O   

                             Time         0          1          2           3            4              

Figure 2.7: Example of Gantt Chart for 33×  size of Problem 

 

2.4 Solving Methods for JSSP 

In 1976, Kan (1976) showed that complete enumeration is not suitable even for 

a small job shop problems. Each permutation gives the processing sequence of jobs on 

a particular machine. In addition, French (1982) stated that since each of the 

permutations may be different from the rest, it follows that the total number of 

schedules is ( )m!n  where n  is number of jobs and m  is number of machines. However, 

because of the technological constraints, some of these schedules may be infeasible. 
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Thus, the number of schedules to be consider is less than ( )m!n . French (1982) also 

noted that job shop scheduling problems are NP-hard and could not be solved in 

polynomial time.  

 

2.4.1 Integer Programming 

The general job shop problem can be modelled as an integer programming 

problem. In 1959, Wagner modelled general job shop scheduling problems in integer 

programming formulation. His approach suitable for B/A/m/n  problems and 

represent some variables in 10 −  form in his constraints. In his model, Wagner 

represented the variable constraint 1=ikX  if iJ  is scheduled in the k -th position. 

Otherwise, 0=ikX . Meanwhile, in 1960, Manne introduced Manne’s model. In his 

model, Manne introduced real variable rS  to represent the starting time of operation r . 

He also used 10 −  representation in his constraints.  Manne’s model of formulation is 

closely reflects the disjunctive graph structure. Both approaches are viewed by Kan 

(1976).  

 

However, Conway et al. (1967) have shown that computational experience with 

the models using general 10 −  methods is very time consuming. According to Pinedo 

and Chao (1999), the most common formulation used for job shop scheduling problems 

was proposed by Roy and Sussmann in 1964, known as disjunctive programming 

formulation. The following formulation described disjunctive programming in term of 

mathematical formulation due to Roy and Sussmann in 1964. Denote that ijy  is the 

starting time of operation ( )j,i .  
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Minimize    maxC      

 

Subject to 

jkjkjl pyy ≥−  for all ( ) ( ) Al,jk,j ∈→  (2.4)

jkjkmax pyC ≥−  for all ( ) Nk,j ∈     (2.5)

hkhkjk pyy ≥−  or   jkjkhk pyy ≥−  for all ( )k,h  and ( )k,j , m,...,,j 21=  (2.6)

0≥jky  for all ( ) Nk,j ∈  (2.7)

 

The first constraint ensure that operation ( )l,j  cannot start before 

operation ( )k,j  is completed. Subsequently, the second constraint defined the value of 

makespan should be large or equal to the completion time of each operation. The third 

set of constraints is the disjunctive constraints. They ensure that some ordering exists 

among operations of different jobs that have to be processed on the same machine.  

 

2.4.2 Enumeration Methods 

 Though, a scheduling problem can be formulated as a disjunctive programming; 

it does not imply the availability of a standard solution procedure will work satisfactorily. 

The number of constraints will increase as the size of the problem increased. 

Minimising the makespan in a job shop is a hard problem since according to Yamada 

and Nakano (1997), Problem MT10 sized 1010×  which formulated by Muth and 

Thompson remained unsolved for over 20 years. Therefore, the solution procedures 

are either based on enumeration or heuristics techniques.  

 

 Enumeration methods consider all the possible schedules and then eliminate 

the non-optimal schedules from the list, leaving those optimal. According to Pinedo and 

Chao (1999), the most widely known use in scheduling is branch and bound method. 
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To apply branch and bound, we must have a partitioning of feasible region for a 

problem to create smaller sub-problem (branching) and a lower bound on an instance 

of optimisation problem (bounding). One of the branching procedures that always been 

used is by limiting the branch to a specific class of schedules.    

 

Bierwirth and Mattfeld (1999) in their paper did some study on classes of 

schedules. The classes are semi-active schedules, active schedules and non-delay 

schedules. Semi-active schedules will ensure that each operation will be start as soon 

as possible while obeying the technological sequence and the processing sequence.  

On the other hand, active schedule is a schedule with no operation can be started 

earlier without delaying some other operation or violating the technological constraint. 

The active schedules form a subclass of the semi-active. In non-delay schedules, a 

machine do not allowed to be idle if it could start processing some operation. According 

to them, concerning the minimisation of maxC  and F , it is well known that at least one 

of the optimal schedules is an active one.  

 

 
             

Figure 2.8: Venn Diagram for the Semi-Active, Active and Non-Delay  
Classes of Schedules 

 

According to Yamada (2003), based on study by B. Giffler and G. L. Thompson 

in 1960, they suggested that it is not necessary to search for an optimal schedule over 

all possible schedules, but it is enough to search over a subset of feasible schedules. 
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