
High Performance Network Worm Detection Engine using Memory Efficient
Circular Buffer

Muhammad Fermi Pashaft, Ahmad Manasrahtt, aod Saravanesh Supramaniamtt, Rahmat

tNationatAn,,":;ffii*iil;';:Xi;-\:X]{rorsainsMaraysia
Level 6, School of Computer Sciences Building, University of Sains Malaysia

I1800 Penang, Malaysia
ff Research and Development Division, iNetmon Sdn. Bhd.
Suite 242, Kompleks Eurekn, University of Sains Malaysia

11800 Penang, Malaysia
{r a hm at, s ur e s } @nav 6. or g, {fenni, ahmad, s arav an e s h} @i netmo n. c o m

Abstract

This paper presents the implementation of a
memory efficient circular bufer to ensure a high
performance network worm detection engine. A worm
detection engine's primary function is to detect the
existence of worms in a particular network. The
method of worm identification may vary depending on
the engine. However, all approaches to worrn
detection share the same need to receive and process
vast amounts of data in their quest for woftns This
demands the existence of a bulfer to store the data as it
is being processed in order to avoid bottlenecks,
memory overloading, and eventually packet loss. This
paper proposes the implementation of a highly efficient
circular buffer technologt to support a high
performance network worm detection engine. It is
demonstrated, through expeiments, that our proposed
circular buffer technologt is better compare to
conventional memory bulfers due to its ability to work
in parallel and rotate incoming and outgoing data
througlt an affay ofJile buffer locations.

l.Introduction

Recently, wonns have emerged as a serious threat
to networks worldwide. Worms are basically computer
programs which posses the ability to self-replicate and
send multiple copies of themselves to all nodes
inhabiting a network. They mainly spread by
exploiting inherent vulnerabilities in our operating
systems. Realizing this state of affairs, many worm
detection engines have been conceptualized to combat

this rise in worm atiacks. They function by analyzing
the traffic on a network, specifically the content of
packets being sent and received. Due to the heavy
processing load involved, these engines require a
memory buffer to store data on the packets as they are
being captured and subsequently analyzed.

The main focus of this paper is the implementation
of our proposed circular buffer technology to enhance
the capability of the worm detection engine. A circular
buffer is an eflcient method of temporary storage
allocation which entails the rotation of data through an
array ofbuffer positions. [n a circular buffer, the data
writer advances one step every time new data is
entered into the buffer. Once the end of the buffer is
reached, this process is restarted once again from the
beginning of the buffer. Data reading is done in the
exact same manner.

A circular buffer holds several advantages whan
compared to a conventional buffer. Firstly, it ensures
approximately constant-time insertion and removal of
data values. In addition, it also avoids the producer-
consumer conundrum by enabling the packet analyzer
to read up the packets from the circular file buffer in a
smooth and efficient manner. This process is done
concurrently with the insertion of data by the packet
capturing engine. Careful calibration is done to ensure
that the buffer writing process is done marginally
faster than the packet analysis to avoid buffer
overflow. All these will help to ensure a highly
efficient worm detection engine.

t05

219



Two High Level Circular Buffer (HLCB)
algorithm, which splits the packet capturing and

analysis modules, are also proposed to ensure optimal

buffer efficiency and to control our proposed circular
buffer technology. The details of this circular buffer
technology will be presented at Section 3'

Looking at other point of view, our proposed

circular buffer technology is totally software based and

no special hardware required. Most of work done in
the field trying to implement efficient buffering is by

implementing hardware based buffering [l][3] or by

implement the buffering at kernel level [2][7] which is
defrnitely will be a good and fast solution but

expensive.

2. Worm l)etection Engine Architecture

Before expounding on the worm detection engine

architecture we have to firstly understand the inherent

nature of worm attacks. Worms differ from viruses, in

a way that they do not require an attachment to an

existing pro$am. Instead, they cause harm by a variety
of ways including bandwidth consumption, whereas

viruses affect files on a computer. Worms, destructive

or otherwise, leave behind unique signatures on the

packets that they are transmitted upon. These eclectic

signatures act as beacons to signal the existence of
wonns in the vicinity. It is part of the individual packet

payload. Potential signatures can be as wide ranging as

file attachment names, file extensions, email subjects,

email content and key words amongst others.

Therefore, the core principle behind any worm

detection engine is an effective and rapid identification
of these tell tale signs to identify wonns before they

spread. And this is what we applied to our worm
detection engine. Our worm detection engine will
constantly listen to incoming/outgoing packets from
the network in an active or passive manner.

Subsequently, it will match these packets to an

inherent database of defined worm signatures. The

examples of detectable payloads by our worm engine

are shown in Figure l.

',$tvtDiDHr. i'

hrrfihNl9$llinm

"nrtmmr:ri''lbrrfrk ]llvsro {fri:rn

"ryyietrrc ftom rhlx&r/'
k*if,le ltlysrmo Wt:m

"llCoolftog*['
hccfrla pntt Pi* Ir.is

"ffi1115fimnt&ux"
ft*eible llk&rnlYon r:

Figure l: Detectable Payloads

The most impor|ant features of our worm detection
engine include the ability to:-
o Detect viruses on-demand
. Log the results of virus detection endeavors and

inform the user of possible worm activity
o Perform vital administrative functions within a

stipulated period.
o Suggest a solution on how to remove the worm.

Figure 2 visualize the architecture of our worm
detection engine. The underlying structure of our
worm detection engine includes a packet reader

module, a wonn parser and a wonn alert module. The
first module, packet reader, primary functions is

passively listening to the sheam of all incoming and

outgoing packets.

Once this is doneo it filters and parses packets as

they arrive. Being a passive monitoring tool this
module ensures that network packets can be captured

without any repercussions to network resources in
terms of lag or additional bandwidth. The second

component to this engine is the worm pa$er. True to
its name, it parses all the captured packets Aom the

packet reader module. It reads through the sheam of
data in each packet and scans for potential worm
sipatures. This is done by cross referencing it to an

extensive worm database. In the event that a potential

worm is discovered this module sends a message to
the worm alert module. This module reacts by sending

out an alert onscreen to inform the user that a

suspected worm has been identified.

t06

220



Figure 2: Worm Detection Engine Architectlre

3. Memory Efficient Circular Buffer

Here we propose new memory effrcient circular
buffer technology. The circular buffer is desigrred in a
way that it will avoid packet loss. We also propose
new High Level Circular Buffer (HLCB) algorithm
used to control our circular buffer technology. The
algorithm will split the activity of capturing packets
and, analyzing packets into two sepaxate processes.
That is, instead of using threads, which is more likely
to be error prone and cannot run concurently, thl
proposed circular buffer algorithm uses different
operating system process to do the task. Hence, the
issues of racing threads, where the capture thread and
the analyzer thread race each other to gain spot at the
CPU, can be avoided. Figure 3 depicts the architectr.re
of the proposed circular buffer.

Figure 3: High performance file-based circular
buffer technolory architecture

Since the proposed circular buffer technology use
two different processes to allow fast processing, the
proposed HLCB algorithm is divided into two parts,
HLCBI and HLCB2. The first one is designed to
control the first process which is part of the packet
capturing process, and the second one is specifically
designed to enable second process to read up the
packets from the circular file buffer smoothly avoiding
the producer-consumer problem. Both HLCB
algorithms are presented in the following subsection.

r07

221



3.1 HLCBI Algorithm

Below is the algorithm of HLCBI on the first process:
Start

sEart 1- sec Eimez.
rniEiaTize Ehe 70 fi]es.
IniEiaTize acEive-fi7e-poinEer to L.

GeE packel from CaPtureEngine-
If m is Erue

Dutup the pa'ckeE into mBuffer and set
m to false.

ETse
Dump Ehe packet into sButfer and aet m

to true.

Every 7 Eec,
Try Tocking the fife Pointed bY
acEive'f i7e-Pointet.
If fiTe is J.ocked bY other Process

wait and keeP trying, and keep
reading Packets

If m is faTse
Dump mBuffer into the Tocked fiTe'

EIse
DumP sBuffet inEo the Tocked fiTe'

UnTock the fiTe upon finish writing.
Increaae active- f i7e'pointer by 7.

End

3.2 HLCB2 Algorithm

Below is the algorithm of HLCB2 on the second

process:
SEart

Start 7 sec timet.
IniEiaTize active'fi7e-pointer to J'

Evety L sec,
Try Tocking the fiTe Pointed bY
active - f i7e-Pointer .

If file is Tocked bY other Process
Wait and keeP trYing.

ETse
Open the fiTe and read the content
into Reader.

UnTock the fiTe upon finish reading'
Increase active-fi7e-pointet by 7.

End

4. Experiments and Results

The experiments were carried out to compare the

perfonnance of our proposed circular buffer

technology with the cornmon memory based buffering
techniques. The following environment settings are

used during the testing.
. x86 processor 2.4GHz
. IGB RAM
r Windows XP SP2
. 10/100 Base Ethemet connected

with link speed of 100MbPs.

For the pwpose of this experiment, we implement a

commonly known memory buffer. To make the

comparison fair, we also design the memory buffer to

be circular. This memory buffer implementation is

using multi-threading to do the read and write into the

buffer. Hence, the capture engine thread will capture

packet from the network and write it into the memory

buffer and the reading threads will read the packets

from the memory buffer once available.

Technically speaking, memory buffer slrould be

faster opposed to our proposed file based circular
buffer technology. But the results presented on Table I
and Table 2 clearly shows that our proposed circular
buffer technology outperformed the memory buffer
implementation. Our circular buffer technology can

maintain packet capturing and analyzing at much

higher speed without loosing any single packets. In
worm detection, loosing even just I packet meaning

can degrade the detection accuracy as it is possible that

the loosed packet was the one that contain wo[n'

WKWK
115829 40.71 S8% 5%

f41819 9906 37% 5995

LAN mlxxmrKm
The following discussions are best to further explain

the results:

I.-FEI'FTI
I.q

InrlaqrINGIIu@
@
@
@
@into

@

108

"b% 'l

Table 2: Memory Buffer

222



. During low traffic (500pps), the performance of
memory buffer is equivalent or better in terms of
CPU usage since writing to memory is faster and
requires no CPU power compare to writing to frle.
This is also due to the fact that at this speed, the
threads still can run one after another effectively.

. Memory buffer performance starts to degrade
when the traffic is above l500pps. The threads
starts to race to gain place at the CpU to be
executed which in tum causing the cpu to
increase and the memory usage is also increasing
since the reading threads has lower priority and
slow in reading the packets and therefore the
capture threads filling the buffer fast. Because of
tiis, the system starts to loose packets.

. During high traffrc (3500pps) we can see that our
proposed circular buffer technology can cope and
work faster and therefore maintaining a high
performance of our worm detection engine. At this
speed, the memory buffer implementation loose
63% of the packets transmitted in the network
because the buffer is already ftll and yet the
reading thread don't have enough chances to be
executed by the CPU to read the packets from the
buffer.

5. Conclusion

In this paper we have presented a novel file based
circular buffer technology to support a high
performance worm detection engine. This circular
buffer technology is controlled by two high level
circular buffer algorithms named. We have shown that
using a file as opposed to memory buffer is not
necessarily slower. The trade off is well paid since at
high speed network processing power and the ability to
run concurrently and in parallel but a bit slow on
writing to file buffer are much needed than the ability
to write faster to memory buffer but had to share the
CPU benveen the threads.

Lastly we conclude that an effective wonn
detection engine must consider two important factors.
Firstly, the engine has to be fast enough to detect any
potential worm in a network before it has the time and
space to cause significant damage. This is where our
circular buffer technology greatly contributes as if we
loose packets is almost the same with we loose a worm
and let it slipping through the network undetected.
Secondly, the worm database used has to be constantly
updated to enable it to stay one step ahead ofthe latest
worm varieties.

References

[l] S. Iyer, R. R. Kompella, and N. McKeown, "Techniques
for fast packet buffers," In. Proceedings. of GBN 2001,
Anchorage,200l.

[2] L. Deri, "Improving Passive Packet Capture: Beyond
Device Polling" in Proceedings of SANE 2004, October,
20M.

t3l H. Y. Cho and W.H.Mangione-Smith, "Fast
Reconfiguring Deep Packet Filter for l+ Gigabit Network"
in Proceedings of the l3th Annual IEEE symposium on
FCCM 2005.

[4] U. Nordqvist and D. Liu, "Power Optimized packet
Buffering in a Protocol Processor" in hoceedings of IEEE
Intemational Conference on Electronics. Circuits and
Systems flCECS),2003.

[5] S. Barbagallo, M.Lobetti Bodoni, D.Medina, G.De
Blasio, M.Ferloni and D.Sciuto, "A Parametric Design of
Bui-in Self-Test FIFO Embedded Memory," in IEEE
Intemational Symposium on Defect and Fault Tolerance in
WSI Systems, 1996.

[6] F. Castaneda, E.C.Sezer, J.Xq *WORM vs. WORM:
Preliminary Study of an Active Counter-Attack Mechanism,'
in Proceedings of ACM Workshop on Rapid Malcode
(WORM'04), October" 2004.

[7] N.Weaver, D.Ellis, S.Staniford, and V.paxson, .oWorms

vs. perimeters: the case for hard-LANs" in proceedings of
l2th Annual IEEE Symposium on High performance
Interconnects, 2004.

[8] j-Protect, A worm detection and protection software by
iNetmon. http://www.inetworm.org

109

223


