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Abstract. ECSC-128 is a new stream cipher based on the intractability of the
Elliptic Curve discrete logarithm problem. The design of ECSC-128 is divided
into three important stages: Initialization Stage, Keystream Generation Stage,
and the Encryption Stage. The design goal of ECSC-128 is to come up with a
secure stream cipher for data encryption. ECSC-128 was designed based on
some hard mathematical problems instead of using simple logical operations. In
terms of performance and security, ECSC-128 was slower, but it provided high
level of security against all possible cryptanalysis attacks.
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1 Introduction

Data security is an issue that affects everyone in the world. The use of unsecured
channels for communication opens the door for more eavesdroppers and attackers to
attack our information. Therefore, current efforts tend to develop new methods and
protocols in order to provide secure communication over public and unsecured
communication channels. In this paper we are interested in one class of the
Symmetric Key cryptosystems, which is known as Stream cipher. The basic design is
derived from the One-Time-Pad cipher, which XOR a sequence stream of plaintext
with a keystream to generate a sequence of ciphertext. Currently, most of the stream
ciphers are based on some logical and mathematical operations (e.g. XOR, shift,
rotation, etc), while the others are based on the use of Linear Feedback Shift Registers
(LFSR). Both types of ciphers are proven to provide high performance stream ciphers
according to the results presented in [1], [2]. However, generally these ciphers are not
able to reach the required highest level of security [3], [4], [5]. Various attacks
managed to manifest the weaknesses of existing ciphers. Therefore, the direction of
using simple logic and mathematical operations has shown the imperfection of some
known stream ciphers.

* The authors would like to express their thanks to Universiti Sains Malaysia for supporting this
study.
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The idea behind our proposed stream cipher is based on the use of Elliptic Curve
Discrete Logarithm Problem (ECDLP). The ECDLP along with other two intractable
problems are considered the three most important pivots in current secure public-key
cryptosystems. The other two problems are the Integer Factorization Problem (IFP),
and the Discrete Logarithm Problem (DLP). The first use of ECDLP was in 1985 by
Koblitz [6] and Victor Miller [7] independently. They proposed a new cryptosystem
known as Elliptic Curve Cryptosystem (ECC), whose security depends on the discrete
logarithm problem over the points on an Elliptic Curve.

The general idea of ECDLP rests on the difficulty of finding integer k given points
kG and G, on Elliptic Curve E defined over a finite field with g elements (Fg), where
in common, ¢ is a large prime number or a field of characteristic two. In fact, the
reason of choosing ECDLP as a core for our proposed stream cipher rests on the
belief that ECDLP is harder than IFP and DLP [8]. The best known algorithm to solve
the ECDLP has exponential complexity compared to the algorithm used to solve I[FP
which has sub-exponential complexity [9], [10]. In addition, the National Security
Agency (NSA) announced Suit B at the RSA conference in 2005, which exclusively
uses ECC for Digital Signature and Key Exchange [11]. Therefore, ECDLP with no
doubt will enable our proposed stream cipher to reach the high level of security.

2 Related Work

Currently, many state-of-the-art stream ciphers seem to have appeared. The obvious
relation between current ciphers enabled us to classify them into two important
distinguishable categories. The first category is called the logical and bit
manipulation-based stream ciphers. This category includes those ciphers whose
construction design rests on some logical operations (Shift, XOR, etc), and uses some
other substitution techniques. Examples of ciphers that belong to this category are:
RC4 [12] and SEAL [2]. The second category includes all ciphers whose design rests
on the use of the LFSRs. This category is labeled as LFSR-based stream ciphers, and
it includes SNOW [13], LILI-128 [4], and other stream ciphers.

2.1 Logical and Bit-Manipulation-Based Stream Cipher

The concept of constructing a stream cipher aims to deliver a secure algorithm against
all kind of attacks. In 1987, Ron Rivest of RSA Security designed RC4 [12], which
later became the most widely used stream cipher. RC4, as any other stream ciphers,
generates a stream of bits (keystream) which will be XOR'ed with a stream of
plaintext bits to produce the ciphertext bits. Generating the keystream in RC4 requires
a permutation array S of all 256 possible byte using the RC4 Key Scheduling
Algorithm (KSA). At the present time, RC4 is not recommended for use in new
application. As appears in [14], several weaknesses of the KSA algorithm of RC4 can
be summarized in two points. The first weakness is the existence of massive classes of
weak keys. These classes enabled the attackers to determine a large number of bits of
KSA output by using a small part of the secret key. Thus, the initial outputs of the
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weak keys are disproportionally affected by a small portion of key bits. The second
weakness rests on a related key vulnerability. Therefore, RC4 falls off the standards
for secure cipher.

Another example that belongs to this category is SEAL. It was introduced by
Rogaway and Coppersmith as a fast software encryption algorithm [2]. The notion of
SEAL is based on a mapping of a 32-bit string n to an L-bit string under the control of
a 160-bit length secret key of. In general, the length of the output, L, is limited to 64
KB. A few years later, a cryptanalysis attack presented by Handschuh and Gilbert
[15] showed that an attack is capable of distinguishing SEAL from a random function

by using 230 computations. In addition, the attack has sufficient power to derive some
bits from SEAL secret tables.

2.2 LFSR-Based Stream Ciphers

A LFSR is a hardware device made up by registers, which is capable to hold one
value at a time [16]. The values are elements from a chosen field Fq (for binary field q

=2, or ¢ =2" for extension field of the binary field). The purpose of using LFSR was
to deliver a stream cipher with high performance property. In most cases, the
immediate output of LFSR is not acceptable as a keystream generator since the value
production process is done in linear fashion. The linearity of the operations makes the
direct output of LFSR easy to predict. Thus it requires a combination of other
techniques to reach a reasonable level of security.

SNOW and LILI-128 are two examples of stream ciphers based on the used of
LESRs. The design of SNOW rests on the combination between LFSR and a Finite
State Machine (FSM) with a recurrence defined over the Galois Field GF(232). It
accepts both 128-bit and 256-bit keys. The keystream is generated by combining the
values from LFSR with values in FSM in time #:

Z,=FSM,,, , ® LFSR,,, , @1

SNOW was broken by two attacks known as Guess-and-Determine (GD) attack
[5]. These two attacks utilize the relationships between internal values and
relationship employed to form the keystream symbols from the internal values. The
GD attack determines many internal values based on its guessing of some internal

values using the above relationship (Equation 2.1) with time complexity 0(2%59),

LILI-128 is another example of LFSR based stream ciphers designed by Dawson et
al [4]. The key length used in LILI-128 is 128 bits. It uses two binary LFSRs labeled
by LFSR, (39 bits), LFSR¢ (89 bits), and two functions to generate a pseudorandom

binary keystream sequence. The keystream generator includes two components: Clock
Controller and Data Generator. The clock controller uses LFSR to generate an
integer sequence which controls the clocking of the LFSR within the data generator
component. Time-Memory-Tradeoff attack has been used to attack the design of
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word (sub-keystream). These sub-keystream bits are XOR'ed with the plaintext bits
(one word of plaintext at a time) to generate a stream of ciphertext. The design of this
cipher is divided into three main stages: Initialization Stage (IS), Keystream
Generation Stage (KGS), and Encryption Stage (ES).

¢ Initialization Stage (IS):
At this stage, the input key A (128-bit) determines the initial value of point P; on the
curve E, and the initial value of the key k (128-bit length). The value of  is generated
by:

k=(A® V)<<r 349
where V is constant value, and r is variable value based on the second half of the bits

from A @ V. The symbol (<<) refers to the left shift operation by r position. The
generated key k will be later multiplied by point P | to produce new point P, on the

curve E. The Elliptic Curve E is formed by computing function (3.5) defined over Fp
(where p is a publicly known large irreducible polynomial).
Ey*=x +ax*+b (where a, b elements in Fp) 3.5)

Given the curve E and the value of A, the point generation on E is straightforward.
The process of generating P ; includes embedding A on E with the correct (x,y)

coordinates. The embedding process involves solving Equation (3.5) over an
irreducible (prime) polynomial field. The solution (as implemented in [18]) requires
two matrices (Tmatrix, Smarrix) and one vector (Trace_Vector). The Smatrix used to
compute the square root of a polynomial modulo irreducible polynomial. With the
assumption that the solution to Equation (3.5) exists, the Tmatrix is formed from the
set of basis vectors which are summed together. The Trace_Vector is used to
determine if the solution exists.

o Keystream Generation Stage (KGS):
The generated point P, from the previous stage (IS) is used as base point to generate a

keystream K of 320-bit length. The idea of generating K  is based on multiplying the
key k by the point P, in a process known as Point Multiplication. Point multiplication
is the idea behind the ECDLP. The rule of multiplying P 7 by k over Fgq is stated as
follow [19]:

Given point P; = (x,, y;) and integer k, then Py=kP; = (x,, y,) is new point on the
curve E generated by multiplying P 7 by itself k times.

The point multiplication process consists of a finite set of point additions and

doubling operations (kP =Py +P;+Pj+...+P 1)- Adding P, to itself (doubling
operation) computed in equation (3.6).
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X
@=x+—
y
X2=@2+@+b 3.6)
Y,= x+(@+1)x

The addition will be performed k times, and the success of the multiplication
operation means we have a new point P, with new coordinates (x,, y,) on E. The

procedure of generating K based on the points generated from the previous stage is
illustrated in Fig 1.

¢ Encryption Stage (ES):

The process of encrypting the input stream of plaintext involves some actions to
control the number of times we need to generate new keystreams. The length of the
keystream K generated from (KGS) is 320-bit. K is divided into ten words (32-bit

for each sub-keystream). Each sub-keystream is XOR'ed with 32-bit of plaintext (Pf)
to produce a stream of ciphertext (Cf). The encryption routine will check the status of
the unused bits of K to determine if the encryption process needs more keystream

bits. When the routine returns zero unused bits, new value for integer k will be
generated by adding 1 to the previous values k. In turn, k will be converted into new
point P; as discussed in the first stage (IS). Subsequently, the encryption routine will

invoke the keystream generator (in KGS) to generate new 320-bit keystream based on
the multiplication of the new values of P; and k. The generated keystream can be

XOR'ed with new plaintext bits to generate new stream of ciphertext. The structure of
Encryption Stage (ES) is portrayed in Fig 2.
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Given P, P, on E(Fp) and Input A

Compute k= (A D V)<< r
P;=embed (A)on E

P2 =k Pl onE

Transform P, into K,

Fig. 1. The Functionality of IS and KGS stages
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Fig. 2. The Design of the Encryption Stage (ES).

As described above, the Initialization Stage (IS) will control the keystream generator
in (KGS) by feeding it with the point P ; and the integer k. These two parameters will

be multiplied in (KGS) to create a new point P,, which forms the new keystream K

after transformation. The encryption process is controlled by the first two stages (IS
and KGS) in terms of generating new points and later generating new keystream to
perform the encryption on the given stream of plaintext. The overall structure of our
proposed stream cipher is divided into three related stages as appears in Fig 3.
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Fig. 3. Overall Design of ECSC-128.

3.2 The Implementation of ECSC-128

ECSC-128 is a word-oriented stream cipher. All operations are done on 32-bit word,
which makes ECSC-128 applicable for 32-bit platforms. Unlike other stream ciphers,
the key setup stage (IS) requires one XOR operation on one 128-bit variable which
can be executed in less than 1 ps on Pentium 4 2.00 GHz.

ECSC-128 encrypts 27108 byte/second for a given input key (128-bit) on Pentium
4 CPU (2.00 GHz). Compared to other stream ciphers, the encryption rate of ECSC-
128 is considered slow. The reason is the time that is required to calculate © when we
perform point addition operation. The calculation of © requires an inversion operation
over Fp, which is the most time consuming among EC operations. However, there is a
high possibility of increasing the speed of ECSC-128 by improving © calculation
which requires inversion operation. Point Multiplication on E is the core of ECSC-
128, since point multiplication is an ECDL problem in EC. For that reason, ECSC-
128 performance can be improved by making more efforts to enhance the operations
involved in calculating the value of ©.

4 Security Analysis

The cryptographic strength of ECSC-128 lies in the difficulty of solving the
intractability of ECDLP. In this section we analyze ECSC-128 in terms of the security
design properties as well as its strength against the cryptanalysis attacks.

4.1 Brute-Force Attack
ECSC-128 uses non-Supersingular curves instead of using supersingular curves. The

reason is that supersingular curves are prohibited by all standards as mentioned
previously. For a given curve E, the total number of points that satisfy equation E
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(which is known as the order of the curve #£) must contain big prime number. Hasse's
Theory [18] stated that the range of #E lies in the range:

2" 242" 41 <#E< "+ 2427 41 @.1)

where n is the number of bits in the field. For ECSC-128, n=160, and therefore the
range is between:

1.4615016373309029182036836237902 x 10”8
and

1.4615016373309029182036860416418 x 10*

The quantity of numbers in the range of the above equation is 2% -

295147905179352825856 x 107, Therefore, brute force search for the largest prime
within this range is infeasible, since matching such range to a particular curve is non-
trivial. From another perspective, the length of the input key for ECSC-128 is 128-
bit, which is secure against brute force search as well. The length of the key used in
ECSC-128 was chosen to achieve the expected security against brute force search
attack and to satisfy the required balance of the difficulty between the forward and the
inverse operations. The forward operation of ECSC-128 is the point multiplication
(PZ = kP 1) on E, which is fast enough compared to its inverse operation (retrieve k

given P, and P,). In general, the difficulty of the inverse operation against the key

length must be exponential for secure cryptographic primitives as portrayed in Fig 4
[20].

4 T

/

Inverse ,

Operation P ’
P Forward Operation
’ -V
” --
- - - -
.= = >
INCREASING KEY LENGTH

INCREASING DIFFICULTY

Fig. 4. Difficulty of forward, inverse operation
against key length

According to the intractability of ECDLP, applying brute force is infeasible.
Logically, finding k from P, = kP, means performing repeated addition operation

starting from P I 2P I until we find kP I3 Then, we double P 1 then we add P jto the
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doubled point 2P, to find 3P;, then 3P; to P, finding 4P and so on. This attack is

avoided in ECSC-128 by using a large prime field. This means that; the number of
possible values of k is large. Searching through the bearable values of k will take
hundreds of years using current available processors.

4.2 Baby-Step-Giant-Step Attack

The baby-step-giant-step algorithm is used to solve the discrete logarithm problem in
arbitrary groups [21]. Let r be the order of a point P (order(P): is the number of times
we can add the point to itself until we find the point at infinity) on E. This attack

requires a memory for «/; points and time complexity of O \/;l- ) [22], which is
infeasible due to the use of a large prime number n in ECSC-128.

4.3 Pollard's rho Attack

Pollard's rho is a collision-based algorithm which was first proposed by J. Pollard in
1978 [23]. It relies on finding collisions between elements of a cyclic group. Thus,
Pollard's algorithm can be applied to a group of points on E. The idea of Pollard's
attack is to reveal the solution to ECDLP by computing the trail of points on E. This
computation is known as a walk, and it is achieved by generating a sequence of points
using an iterating function. The success ratio of this attack is related to calculating the
square root of the size of the cyclic group. In fact, according to the time complexity of

Pollard's algorithm O(\/#E ) , ECSC-128 is secured against this attack. However,

ECSC-128 uses a large enough value of #E (see section 3), which make Pollards rho
attack infeasible.

5 Conclusion

In this paper we present a new stream cipher (ECSC-128) based on the
intractability of the Elliptic Curve discrete logarithm problem (ECDLP). ECSC-128 is
divided into three main stages: Initialization Stage (IS), Keystream Generation Stage
(KGS), and the Encryption Stage (ES). Complete descriptions of ECSC-128 stages,
implementation, and an overview of possible attacks have been discussed. ECSC-128
has changed the current direction of stream ciphers from using simple logic and
mathematical operations into a new direction of using complex mathematical
problems that are computationally infeasible.
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