
Dependencies Management in Dynamically updateable
Component-Based Systems

Saleh Alhazbi
Computer Science Dept.

Qatar University
Doha -Qatar

salhazbi@qu.edu.qa

Abstract
Component-based software systems achieve their functionalities through interaction between
their components. Analyzing the dependencies between systems'componints is an essential taskin system reconfigur_ation. This paper discusses dependencies analysis significance when
updating component-based system dynamically. It presents a service-based matrix model and
nested graph as approaches to capture components' dependencies; it discusses using
dependencies analysis for safe dynamic updating in component-based software sysrems.

Keywords
component-based software, dependencies analysis, dynamic updating.

1. Introduction
Component-based

.sgftw_are systems are those built by assembling pre-exiting components,
which provides high flexibility and reusability. Thi major *oit- with component-based
development (CBD) is component integrating rather than writing code and developing
everything from scratch. In conventional software development, the Joncept of complexity i;
related to the difficulty to analyze source code, modiff, and maintain its modules. Howiver,

-this

concept is different in CB systems because the maintenance and reconfiguration only involves
replacing, adding, and deleting components rather than source code changes. firerefore, in CB
systems, the complexity resides in the dependencies among components, which is captured by
the system architecture_F]. In this paper, we discuss managittg .ornporrrrrts'dependencies in our
framework (Dynamic Protocol-basedComponent-based S6dare- DPICS) [2i, which supports
building software srystems by wiring software components. In DpICS, th; hrnctionality bi tfr.
system is accomplished through protocol-based interaction between components routed by soft
bus. DPICS aims to support updating the system during runtime. Traditionally software
modifications requiie shutting down the system, update tle system, and ,.rtartiog it. This
approach is not suitable for critical systems that requlre 241 7/365 availability, such * Uuotittg
or telecommunications systems, or systems that are critical-mission systems such as air-traffic
controllers. Therefore, such systems require dynamic updating whictr means modifting the
system at run-time without service intemrption. In component-bised software systems, Ay"u*i.
updating includes adding, removing, and replacing a component on the fly. Updating tireiystem
dynamically requires exploring the effects oi this modification on the rest of ,yrt"rrr',
components in order not to lead the system to inconsistent state.
Dependency between components can be defined as the reliance of a component on othe(s) to
suppoft a specific functionality; therefore, we consider dependency uj bina.y relationship
between two components: antecedent, and dependent [] . Antecedent is the frLe componem
that has an effect on the dependent one if lt is removed or modified, on the othei hand,

Aman Jantan
School Of Computer Science,

Universiti Sains Malaysia
I 1800, Penang, Malaysia

arnauoi@ cs. usm.my

dependent component is the one that related to its antecedents where changes in them might lead

dependent to malfunction or fail (see figure .1).

Figure .1 Dependency Relationship

Formally, Larsson and Cmkovic [] define a relation) called "depend on", where

C1)Ci **r that component C; is the dependent and it requires correct operation of O, (the_

antecedent) in order to function correctly. For a component-based system that has a set of
components S, the set of all dependencies is defined as

D:{(Ci, Cj): Ci ,Cj € SA Ci>Cj}
According to this, the ctrrent configuration is set of all component and their dependencies

Con=(SrD)

The rest of this paper is organized as follows: section 2 presents the importance of dependencies

analysis when upOuti"g component-based software dynamically. Section 3 discusses approaches

to capture dependencies between system's components. Section 4 illustrates how to apply

dependencies analysis when updating the system dynamically. Section 5 presents related work

and conclusion is given in section 6.

2. Requirements for Dependency Analysis
Dependences analysis is fundamental task for understanding, maintaining, and updating

roli*.. systems [,]. Traditionally, dependence analysis was based on investigating the source

program to frnA dependencies such control and data flow relationships among progftIm variables

anA nrnctions in order to optimize compilation process [7t. In component-based system,

dependency management is essential part of system configuration [6,8]. Moreover, updating

,yrtr- at runtime-lacks the test phase when developing software which makes such updating

more risky, thus analyzing dependencies between components is necessary in order to safely

keep the system running continuously and not crash the system. In this section, we discuss the

significance of analyzing the dependencies when dynamically updating the system.

2.1When adding a new ComPonent:
Before the new component can be added to the system, it is needed to understand its

relationships with other components and its roles as dependent and antecedent. As dependent

component, components that would provide services to this new one should be recognized and

cne&eA if they are already among systems' components or needed to be loaded. As antecedent,

the added component will offer new services to others components; this might require creating

new depend.tr"i"r or might require adding or replacing other components that could be

dependents on this one. More specifically, when adding a new component, dependency analysis

should answer the following questions

QI) If there are components in the system need also to be updated in order to benefit of
the services provided by this new one (antecedent role), what is the order of updating

those comPonents safelY ?

e2) What are the new dependencies (direct and indirect) if this new component will
depend on pre-existed ones (dependent role)?

500

Formally, we can define the configuration of the system after adding a new component safely as

g6nr:(S,rDt)

The difference between original configuration Con and the new one Con'isthe new componen6
and new dependencies which can be defined foramll as following

The new component Cn".e Sa and Si=gjj,

The new dependency is the set Dorn n (C,"*C): Cr".) C] v {(C,C,n): C) Cr"J

2.2 When deteting an existing components:
Before deleting a component from the system, dependencies management is necessary to
understand the effect of removing that component. Removing u.ornponint might not only f,ave
effect on its direct dependents but might affect others transitively, which pquit6 tracing these
dependencies from a component to other. Such management oi dependenry is importint for
system safety as removing a required component might lead the syJtem to irash which is not
accepted with continuous-ly running systems. When removing a component from the system,
dependency analysis should answer the following questions:

Q3) What are the components in the system that will get affected by removing this
component directly or transitively7

Q4) ll/hat is the order of updating the dependents on removed one ?

Formally, the deleted component C," ou"d € 56 and Spg-1 gr

Dr"^rr"d: {(C, C r"^ou"il t C) Cr"^or"4}

2.3 When replacing a component:
Dependency analysis is required when replacing a component with a new version in order to
evaluate the effect of this modification and take the proper action. The action depends on the
relation between old component and new version. Regarding the effect on its dependents,
replacing a component with a new version can be categoriled inio trvo types:

1. Implementation updating: In this case, the new version has the same interface as old one.
Therefore, it has no effect on its dependents as it still provides the same services with
same interfaces.

2. Interface updSting: in this type, the new version has different interfaces comparing to
old one's. This includes adding, deleting, orland modifring an interface(s). Adiing iew
service while continuing provide old ones would not affect other old component. But in
order to benefit from the extra services provided by the new version, either other
components required to be updated or another new component(s) might be added to use
them. Modifuing and missing services in the new version will affect Jomponents depend
on those services, thus dependencies analysis should answer the followingquestions:

Q5) Wat are the components in the system that will get affected by replacing this
component directly or transitively?

Q6) If this replacement requires updating other components, what is the order of those

updates?

Formally, modiffing a component can be viewed as series of deleting and adding new

component. so generally Cnoailiea e S as the set of components doesn't changed

D modrJi"F Dr"^ou"d W Dn"*

3. Dependency Representation
Managing and analyzing dependency efficiently requires a good modeling to represent the

dependencies among the components. This representation should offer answers for the questions

ab^ove when updating the system. Commonly, direct graph and adjacency matrix is used to

represent the dependencies between components [9, 8,10].

The Component Direct Dependency Graph(CDDG) :(S,D) is a direct gfaph where S is a finite

nonempty set vertices represent system's components, and D is set of edges between two

vertices such that (a,b) e D means a) b, and D E(S X S)

Figure 2 Component Direct Dependency Graph

Figure 2 describes the direct dependency where
D:{(A,B), (B,A), (8, D), (C,D), (C, B), (8, B), (E'D)}

To represent components' dependencies using adjacency matrix, a matrix M n " n is used, where

each iomponent is represented by a column and a row. If Component Ci depends on C; then MD

;;1 , and in general

(
I lF cicj
1 'p,,F0
{herwise

According to this the previous dependency described in fig,re 3.1 can be represented

adjacent matrix as depicted in figure 3

Figure 3 Adjacent Matrix representation for direct
component dependencies

502

using

Obviously, CDDG and adjacent matrix above only describe direct dependency between
components. On the other hand, updating a component can affect others transitively, for
example in Figure 3.2, A depends on B, and B on its turn depends on D, thus updating A might
affect B and consequently might affect A. In order to derive indirect decencies, a-transitlve
closure is calculated to produce component dependency graph (CDG), Figure 3.4, which has the
same components, it includes direct and indirect dependencies.

Figure 4 Component Dependency Graph

In figure 4, when calculating transitive closure, self dependency is excluded as the component is
the module of updating and our concern here is the intei-components dependencies.
Correspondingly, indirect dependency can be represented in a matrix by calculating the
fansitivity using Warshall's algorithm showed in Figure 5. The algorithm uses the matrix
represents direct dependencies MD nrn to produce the matrix MA,, n

For l- (=i 4=n do
for 1 (=r <=n do
if MD [r, i] =1 then

for 1 <=k <=n do
if lc<>r then

tvlA [r, k] : = MD [r, k] or MD [i, k]

Figure 5 warshall's algodthm to calculate the uansitive closure.

Figure 6 shows the matini MA whichrepresents direct and indirect component dependencies.

Figure 6 Adjacent Matrix direct and
dependencies

503

indirect component

3.2 Service Level of DePendencies

Normally, when a component depends on another it relies on some but not all of its services

[ll]. According to this, during dynamic updating, modifuing an antecedent component not

tt."l5ury to result in inconsistencies with its dependents. For example, in FigureT, Cl depends

on C3 where its service S11 requires S31 in order to accomplish its frrnctionality.C2 depends

also on C3 where its service 32l requires S32 from C3.

C1

Figure 7 Service kvel Dependencies

Considering only component level dependency, If C3 got updated; both Cz and C: are considered

to be affectrd, *hi.h might not be completely true. Assume that service S;r in the new version

of Cs has no changes comparing to that in old version, and S:z has changed, then only

component C, frl be affected with this replacement. Therefore, component level of dependency

is not enough to trace effects of component updating. On the other hand, service level of
dependency witt help understand more detail about the consequence of component modification.

Moreover, service dependency can be used to discover all true direct and indirect components

dependencies. For example, in Figure 3.8 service Sll in component Cl depends on service S2l

in Component C2, and C2 depends on C3 where C2 has a service, S22, which depends on

service Sf t io C3. Taking into account only component level of dependency, Cr would depend

on C3 indirectly, but with more details through service dependency, C1 does not depend on C3.

Figure 8 Service kvel Indirect Dependency

But what if service S2l depends onS22 (intra-component dependencies) in Figure 8 ? Likewise

what if service 53l depends on S32 in Figure 7. As a result of that, with service dependencies,

intra-component dependencies (dependencies between component's services) play a rule when

calculating components dependencies.

33 Service Level Dependencies Representation
Using graph and adjacent matrix are sufftcient to model dependencies in component-based

system as componeni level, but that is not enough to trace component dependencies accurately.

ri"n.., instead of using simple gaph to represent component dependencies, nested graph is used

to model dependencies at service level, which gives more details of components relationships.

504

e,

c1

The Service Level Dependency Graph (SLDG):(C,S,A) is a nested graph where C is a finite
nonempty set vertices represent system's components, S is a finite nonempty set of inner
vertices represent component's services, and A is set of edges between two- vertices(inner
vertices) suchthat (s,,s) e Dmeanss;)s7; wheres,,{ e (Civ c)andD

=(sxs).

Figure 9 Service Level Dependency Graph

Figure 9 is another description of the example presented in Figure .2. To compute the transitive
closure, an adjacency matrix is required to capture such graph. Similarly, with component
dependencies, two dimensional matrix S^ r ^

is used to represJntiervices dependencies, wlere z
is the number of all services in all components. Likewise matrix in Figure. j, Srr:l if serwice X
depends on service I/. Figure 3.10 depicts a matrix that represent services dependencies
described in Figure 9,

Figure l0 Adjacent Matrix representation for direct service-based dependencies
505

The transitive closure also can be calculated using Warshall's algorithm described in figure 5.

Figure 11 depicts the matrix resulted of computing transitive closure, which rePresents the direct

and inditect service dependencies.

0 0 0 1 0 I 0 1 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

U 0 0 U U u 0

1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

U U U U U U 0

U 0 0 U u U u U U 0

0 0 0 0 0 0 0 0 0 0

U tl U I 0 I 0 I U

Figure 11 Adjacent Matrix representation for direct and indirect service-based

dependencies

Now from the matrix in figure l l, we can map the service back to its components so we can

have clear pichpe about real direct dependencies between components, for example, from figure

3.11, we can frnd that services belongs to component E has neither direct nor indirect

dependencies with services in component A, so updating A will have no effect on E, which is

against figure 6 indication.

4. Applyrng Dependencies Analysis during Dynamic Updating
When i iomponent is updated dynamically, its dependencies with other components in the

system should be checked in order to keep the system running without fail. Adjacent matrix

representation of service-based dependencies is a good computational approach to answer the

questions above raised when adding, removing, or modiffing a component.

4.1 When adding a new comPonent:
Adding a new component to the system has no effect on existing components'dependencies but

this requires replacing some of old components in order to use the new one. To answer question

l, regarding the ordei of components updating , first the new component should be added fnst

then-starting update the components that will benefit of this new one (its dependents) [12].
Replacing thori co-ponents requires analysis dependencies related to component replacement

which discussed in 43. The adjacent matrix will be modified in order to reflect the changes in

dependencies structure, new rows and columns are added to represent the direct dependencies

added between the new componenfs services and other components. Also, using Warshall's

algorithm, the matrix will be changed when computing new indirect dependencies added with

the new component (question 2).

4.2 When removing an existing component:
Removing a component while system is running might lead the system to inconsistent state and

result in Jrashing the system. In order to find all affect components by removing component C,

506

we search for non-zero elements in columns corresponding to its services in figure 11. The no-
zero elements indicate direct or indirect service dependencies, therefore, the components of
those services are dependants on C. Consequently, those components will be affected when
removing C (Question 3).
In order to keep the system running safely when removing a component, the dependents of that
components need to be updated before removing the component. The goal of updating its
dependents is either to delete those services were depending on services of d.l.t.d one or to
modiff them so they mask the changes. For example in figure 9, if component D would be
removed from the system, then according to matrix in flrgure I l, either component B replaced
and modified services Bl,B3 so they can mask this updati and not depend on Dl,D2 anymore,
or remove those service from B which in its turn requires updating its dependents befoie that.
Note in figure 9, we have circular dependency. In this case, both componetrts should be updated
together[12] (question 4).

4.3 When replacing an existing componentl
The effect of replacing a component dynamically depends on the relation between new version
of the component and old one. If the new component still provides the same services as the old
version, then no dependents will be affected by this updating.
If there are services removed in the new version, then from adjacent matrix in figure I l, in the
columns represent those service, non-zero elements indicates dependent services which means
their components will be affected (question 5).
If the component has extra service comparing to old version, then this new component should be
replaced first, then updating its direct depends in order to use its new servicis, and this also

Tight require again updating the dependents in the second level, this tracing can be found from
direct matrix in figure l0 (question 6).
If the component has some services missing, this case is like the one when removing a
component, either to update its dependents in some level to mask such modification or to delete
those depended services from all components (updating) starting from outer level (components
that have no dependents) toward the components.(questlon 6).

5. Related Work
Many research tackled dependencies analysis in component-based systems from different
aspects. In our work[l], dependencies analysis was used to measure the iomplexity of system's
architecture which indicates the effort needed to maintain the system. Li in [7], used adlacent
matrix model to capture components' dependencies and applied to system rnuitrtro*.e, tJsting,
and evolution. Li used matrix-based model only for co-ponettt level of dependencies which-as
we discussed above- not describe the dependencies accurately. In [mr.rarka], the authors focused
on type safety when updating a class dynamically and investigated different cases when
updating two depending components, their focus was mostly on the dirrct dependencies.

6. Conclusion
Updating component-based system dl,namically requires analyzrng dependencies between
components in order to inspect affected components and take the ptoper action so the system
continues running consistently. Service-based matrix representation is-an appropriate mobel to
capture components' dependencies; computationally, this matrix can be used to analysis
dependencies when a component is added, re-oloed or replaced and according to that, other
components might require adaptation in a specific order.

507

2.

3.

4.

Reference

1. S.Alhazbi, Measuring the complexity of component-based system architecture, in Proc. of
the lst IEEE Intl. Conference on Information and Communication Technologies: From

Theory to Applications (ICTTA-04), Damascus, Syria, April2004, IEEE Computer Society.

S. Alirazbi ,A. Jantan , A Framework for Dynamic Updating in Component-based Software

Systems, Accepted for Conference on Information Technology Research & Application

(CITRA) 2007, April 2007 ,selangor- Malaysia.
p. Hasselmeyer,Managing Dynamic Service Dependencies,l2th International Workshop on

Distributed Systems: Operations & Management (DSOM 2001), Nancy, France, October

2001.
M. Larsson and I. Cmkovic. Confrguration management for component-based systems. In
proceedins of the Tenth lnternational Workshop on Software Configuration Management,

Toronto, Canada, May 2001.

5. J. Zhao. Using Dependence Analysis to Support Software Architectue Understanding, New

Technologies on Computer Software, pages 135-142, September 1997.

6. J.A. Stafford and A.L. Wolf. Architecture-Level Dependence Analysis in Support of
Software Maintenance. In Proceedings of the Third International Software Architecture

Workshop, pages 129-l32,November 1998'

7. S. Horwitz, T. Reps, D. Binkley . Interprocedural slicing using dependence graphs. ACM

Transactions on Programming Languages and Systems 12, 1 (January 1990), pp.26-60.

8. B. Li , "Managing Dependences in Component-Based Systems Based on Matrix Mode",

Net. Obj ectdays(NODE) 2003 conference, Septembet,2003, ErfiIrt, Germany.
g. y. Cui and K. Nahrstedt. Qos-aware dependency management for component-based

systems. In International Symposium on High Performance Distributed Computing 2001.

San Francisco, CA, August 2001.

10. M. Larsson, Applying Configuration Management Techniques to Component-Based System,

MRTC Report, IT Licentiate thesis, 2000'07, Uppsala University
ll.N. Tansalirak and K. Claypool. CGC: An Architecture to support Better and Faster

Component Evolution In Second International Workshop on Unanticipated Software

Evolution, Warsaw, Poland, April 5-6, 2003

12. Y.Murarka,U. Bellur, R. Joshi, Safety Analysis for Dynamic Update of Object Oriented
programs APSEC-2006, l3th Asia Pacific Software Engineering Conference, Bangalore,

December 2006.

508

