
A Framework for Dynamic Updating in Component-based Software Systems

Saleh Alhazbi
Computer Science Dept.

Qatar University
Doha -Qatar

salhazbi@qu.edu.qa

Abstract
This paper presents DPICS framework for
composing component-based sofii,vare system that
can be modified at runtime. It is based on messqge-
pattern interaction between system,s components,
which facilitates adding, removing, or replacing a
component while the whole system is running.

Keywords: component-based systems, dynamic
updating, message-based interaction, protocol.

l. Introduction

Lately, component-based development (CBD) is
being increasingly adopted as a mainstream
approach to software systems development. In
CBD, software system is build by integrating pre-
built, pre-tested components where these
components might be developed locally or
Commercial-o$the-shelf (COTS).
Component-based software systems, like any
software, need to be updated over time for different
reasons such as fixing bugs, upgrading its
components, or adapting the system in response to
its environment's changes. Traditionally, software
modifications require shutting down the system,
update the system, and restarting it. This approach
is not suitable for critical systems lhat reqlre 241
7/365 availability, such as banking or
telecommunications systems, or systems that are
critical-mission systems such as air-traffic
controllers. Therefore, such systems require
dynamic updating which means update software at
run-time without service interruption. Generally
updating software systems includes adding,
deleting or replacing one or more of its components
while the whole system is running. Dynamic
updating has the same meaning with online
evolution, on-the-fly adaptation, and software hot
swapping. Because the component-based systems
seem to have highly modularity, as a result of
component-based design, they are relatively well
suited for dynamic updating. The main goal of
dynamic updating in component-based software
systems is similar in concept to updating the
hardware component while the system is running.

Aman Jantan
School Of Computer Science,

Universiti Sains Malaysia
I 1800, Penang, Malaysia

aman@ cs. usm.my

However, the key difference that the
component may not be the same as the
component regarding the functional
performance [1].
Building dynamically updateable software systems
is not a new area of research. There are many
approaches range from redundant hardware to
software-based ones. Hardware-based technique
has been used with critical systems since a long
time. In hardwarebased solution, there is a
redundant unit that works as a backup. When there
is a need for upgrading the system, the backup unit
handles the requests as an alternative to the other
one; the system can be upgraded n the original unit
while the backup unit is running. When upgrading
is finished, the system running is switched back to
the original unit. On the other hand, there are also
many softwarebased approaches for building
software systems that can be updated at runtime,
those approaches can be categorized according to
the unit of updating: procedure, class, and
component. We presented a review for such
approaches in l2]. In this paper, we present our
frame work for building dynamic protocol-based
interaction component-based system@PlCS) that
can be modified at runtime.

2. Background

In this section we briefly clmify the definition of
the term component, and discuss different patterns
of components interactions.

2.1. components

Generally, a software component is an independent
software unit that can be used to build bigger
systems and usually it is a black box with a well
defined interface. More formally SzrTperski [3]
defines a software component from a structural
perspective as "a unit of composition with
contactually specified interfaces and explicitly
context dependencies only. A software component
can be deployed independently and is subject to
composition by third parties." Brown[4] defines a

new
old
and

51

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Repository@USM

https://core.ac.uk/display/11932909?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Flgur t

component as "an independently deliverable piece

of functionality providing access to the services

through interfaces." The definitions of components

emphasize on plug and play concept so that

software can be composed with components like
hardware.

2.2. Component Interactions

In component-based software systems, the

functionalities are not performed within one

component; it is done by interacting, cooperating
between system's components. Usually, a group of
components depend on each other to perform a

complex functionality of the system t5l.
Dependencies between components can be defined

as the reliance of a component on other(s) to

support a specific functionality or configuration.
Assembling a system composed of reusable

components can be achieved through different
patterns to speci$ components communications
style. These patterns include consumer-produces,

component glue, and message-based through

component bus [6]. From architecture prospective'

interaction between components can be achieved
either implicitly or via connectors [7]. Connectors
are architectural building blocks used to model

interactions among components and rules that
govern those interactions. Unlike components,

connectors might not correspond to compilation
units in implemented systems t8l. Explicit
connectors also make the bindings between
components more loosely coupled; as a result, it
increases reusability and reduces dependencies

among components which supports faster and

better component evolution [9].
In message-based interaction style, components

communicate with each other by sending and

receiving messages. The components of the

systems are hooked together to one special

component which represents the bus for routing the

messages between the components (Figure 1).

However, such a style needs to define an

interaction protocol that not only specify interface

required for components to interact, but also

specifies all des, formats, and procedures that

have been agreed upon between components [10].

3. DPICS Framework

In this section, we present the architecture of our
framework DPICS that facilitates updating systems'

components during run-time. Our framework is

based on message interaction style between

components, where this interaction is governed by
predefined protocol. Components send/receive
messages through a soft bus to provide the

frrnctionalities of the system. Additionally, each

component is hooked to the soft bus through a

connector to facilitate message exchanges. A
permanent component in the framework called
Update Manager (IJM) is responsible for updating a

component in the system during run-time. Figure 2

depicts DPICS architecture.

3.1. DPICS Components

In our framework, components are the locus of
computation. They are service providers and
consumers. They cooperate to provide system's
firnctionalities. Any tow components can only
communicate if they are syntactically compatible.
Compatibility can be described as the ability of two
objects to work properly together if connected, i.e.

that all exchanged messages and data between them
are understood by each other t111. In our
framework, each component has an xml-based
description file that describes its interface; this
description includes services provided/required by
the component and sigrrature of each service.
Moreover, description file contains the attributes of
the component that represent its state. Figure 3

illustrates an example of xml file to describe a
component Search-Com that provides a service
BinarySearch which returns an integer and has an
integer parameter. This component requires a

service sort that takes an array of integers as

argument, and returns an aftay of integers (sorted).

3.2 Connectors

Connectors in our framework are not computation
parts of the system, they just facilitate components
interaction. Each component in DPICS
communicates with other components in the system

52

through a connector which hooks the component up
to the bus. Each connector represents the gateway
between the component and the bus. We have two
types of connectors Out-port and In-port, Out-port
connector masks the services provided by the
component, therefore this connector has the same
methods as the component behind it. The task of
this type is interpret incoming messages

Figure 2

according to the protocol and call the actual service
from the component. Those connectors have the
ability to buffer incoming messages when the
component is busy. On the other hand, out-port
connector represents the gateway for the service
required by the component, its task is to set-up
outgoing messages according to the protocol.
Besides those tasks, both types adapt incompatible
messages.

3.3 Interaction Protocol

Basically, a protocol is a convention or standard
that controls or enables the connection,
communication, and data tansfer between two
computing endpoints. In its simplest forrn, a
protocol can be defined as the rules governing the
s)mtax, semantics, and synchronization of
communication U2). The purpose of DpICS
protocol is to specify communication style, format,
and rules between system components.
Components communicate each other asking for
services or providing results. This interaction in
DPICS is message-based where we assume there is
no duplicated or loses messages.

3.3.l Messages
Our protocol defines three qpes of messages:
Request message @Q), Response message (RS),
and Failure message (FM). Every message contains
two parts: a message part (such as service required,
service arguments), and a control part (such as
message ID, message type).
l) Request message (RQ): this message is sent
from a component to another asking for one of its
provided services. The message is six tuple <
Message type, Receiver ID, Service, no of
arguments, arguments, sender>

component>
lname> Search_Com </name>
<provide>

lservice)
< nam e> B inary S e ar c h < /name>
<return>int</return>
<arg>int</arg>

</semice>
</provide>
<required>

<service)
<name>Sort1/name>
<return>int I J </return>
<arg>int[J</arg>

</required>
<state>

<data>
1 n ame) arr ay In t < /n am e>
<fitpe>int [J</type>
< s et> s etArraylnt < /s e t>
< g e t> ge t Arr ay Int < / ge t>

</data>
<state>

</component>

Figure 3

Response Message(RS): this message is sent as a
successful response to a previous reques! it carries
the result back to the sender of the request. This
message format is five tuple <Message type,
Receiver ID, Result, Sender>, even thought the
service might not returns any result, an RS message
should send back to the requester component. RS
considered as acknowledgment message of
finishing the process.
Failure Message (FM): this message is sent as a
unsuccessful response to a previous request.
Mainly this message is sent back to a component
because of runtime error. This message is four nrple
<Message type, Receiver, Error, Sender>.

3.3.2 Procedure Rules
The procedure rules of our protocol are described
as follows:

o During runtime, each component has three
states: idlg busy, and frozen.

o The message interaction in DPICS is
synchronous, which means when a
component sends a request message, it
enters to busy state waiting for RS or FM.

o When a component receives an RM while
it is in busy or frozen states, the message
is buffered.

o RM messages are buffered as first-in first-
ou(FIFO).

to

T
+

53

4. Dynamic Updating in DPICS

In this section, we describe how our framework
facilitates updating the system at runtime. This

modification includes adding a new component,
disconnecting a component, or replacing a
component with a new version.

4.1 Adding a New Component

To add a new component to the running system,

UM first checks that requted services by this new
component are available in the system. Then the

component is instantiated, assigred a new unique
ID, and the component is hooked to the soft bus

through connectors. Adding a new component
might not be useful for the overall functionality of
the system unless there is another component that

uses its services which might require replacing

another component.

4.2 Removing a Component

Removing a component form a running system is

staightforward and only requires LIM
disconnecting that component from the soft bus.

Only idle components can be removed from the

system in order to keep system running
consistent$. When removing a component, it is

assumed that we only remove components that are

no longer used by any of the components in the

system.

43 Replacing a Component

When a component C wanted to be updated,

Update Manager (UM) first checks the

compatibility with the new version. Actually we
have two t)?es of component updating:
implementation, interface. In implementation
update, the interface of the new version does not

change and this would not affect other components

in the system. In interface updating, the

compatibility with other dependant components in
the system will be broken which requires a

different connector to adapt the new interface.
After compatibility affirmation, UM checks the

status of the component. If the component is busy,
upgrade will not be initiated because that would
intemrpt some processing which might affect
system safety. If the component is in idle states, a

message is sent to transfer the component into
frozen state. While the component in frozen state,

all incoming message to that components are

buffered. During that, the new component is
connected to the bus with a state as frozen' In order
to keep system consistency, state of old component
is transferred to the new version, new version starts

its task by responding to all buffered messages if

there are any where its state changed to busy until it
finishes all buffered messages, its state become
idle.

4.4 State Transfer

In order to keep the application consistent, the state

ofold component should be fiansferred to new one.
We mean by state of a component the values of its
instance variables. The relationship between the old
version and the new one determined at by the
prograrnmer as it is not trivial to map instance
variables of old class to those in new one. UM uses

the xml description file to speciff component state

variables and how to set/get them. Although there

are tools that help to build such function, it can not
be fully automated. For example if the old class

represents the tiangle by three points and the new
one represents it as two lines and an angle, one can

never expect a software tool to find this
relationship fully automatically[1 3].

5. Related work

In this paper, we presented our framework DPICS
for building dynamic updateable component-based
system which provides clear separation of concerns
between the functionality of the system and the
problem of being dynamically updateable. This
separation is achieved through the connectors and

the soft bus of the system, where the connectors are

responsible of interpreting in and out messages of
the components which represent the computational
part of the system. SOFA/DCUP [14, 15] is related
to our work where a component is divided into a

permanent part and a replaceable part. The
permanent part contains a Component
Manager(CM) and wrappers of the component. The
replaceable part contains a Component Builder
(CB), functional objects, and subcomponents of the
component. The application in SOFA/DCUP is a
tree-like hierarchy of nested components, therefore
if there is an update for a component in the top
level, it requires all the application to be

redeployed. On the confary, our framework does

not require components to be developed with
evolution in mind.
The concept of using soft bus to connect system's
components is discussed by Cheng [16] as an
important role facilitates hardware reconfiguration
and upgradeability and could be used similarly with
software. C2 architecture style [17, 18] is similar to
our framework, where components in the system

are completely unaware of each other as they
communicate through asynchronous messages

exchanged by connectors. The difference with our
framework is that we have one more level of
separation by using the soft bus to connect the
connectors rather than direct links between
connectors. This allows for dynamic component

u

interface updating which requires connector
modifring.

6. Conclusion and Fufure work.

This paper proposes a framework for developing
component-based system that can be modified at
runtime (DPICS). The main concept in our
framework is to separate the computation part of
the system from interaction by using connectors
that exchange messages through another
component represent the soft bus for the system.
The messages interaction is administatid by
predefined protocol that specifies message format,
types, and rules. The future work in our framework
includes investigating performance overhead that
might result of using indirect connection
(connectors + bus) between components.

References

l. Deepak G. Online Software Version Change
.PhD thesis, Departrnent of Computer Science
and Engineering, Indian Institute of
Technology, Kanpur, November I 994.
Alhazbi S., and Jantan A. , Hot Swapping in
Component-Based Software Systems: State of
the Art, Asian Journal of Information
Technology (AnT) 5(7):7 67 -77 1,2006
C.S4perski, Component Software: Beyond
Object-Oriented Programming, Addison-
Wesley,1999
Alan W. Brwan. "Background information on
CBD", SIGPC,I8(l), August 1997.
Vieira M. , et al. "Describing Dependency at
Component Access Point", Proc. of Work-shop
on Component-based Software Engineering (at
ICSE 2001), Toronto, Canada, May 2001.
P.Eskelin, "Component Interaction patterns',,
on line Proc,6th Annual Conference on the
pattern languages of programs(plop99) 1 999.
Balek, D., and Plasil, F. Software connectors
and their role in component deployment. In
Proceedings of the IFIp TC6 / WG6.l Third
International Working Conference on New
Developments in Distributed Applications and
Interoperable Systems (2001), Kluwer, B.V.,
pp.6e{8a}.

1997 Symposium on Software Reusabilitv
(SSR'97), pages 190-198, Boston, MA, May
t7-19,1997

8. Nenad M. and Richard N. Taylor. A
framework for classifzing and comparing
architecture description languages. In M.
Jazayen and H. Schauer, editors, Proceedings
of the Sixth European Software Engineering
Conference (ESEC/FSE 97), pages 6V76.
Springer-Verlag, 1997 .

9. Tansalarak N. and Claypool K., CoCo:
Composition Model and Composition Model
Implementation In the 7th International
Conference on Enterprise Information
Systems. (May 24-28, 2005)

10. Holzmann G. , Design and Validation of
Computer Protocols, Prentice Hall in
November 1990

ll. Vallecillo A, Herandez J, and Troya J.,
Componant Interoperability, Tech. Rep. ITI-
2000-37, Dept. de lenguajes Ciencias de la
computaci6n, University of M6laga" July 2000.

12. http://en.wikipedia.org
13. Yves V. and Yolande 8., Component state

mapping for runtime evolution, June, 2005, In
Proceedings of the 2005 Intemational
Conference on Programming Languages and
Compilers pg. 230-236 (Las Vegas, Nevada,
usA)

14. Plasil, F., Balek, D., Janecek, &
"DCUP:Dynamic Component Updating in
JavalCORBA Environment", ech. Report No.
97110, Dep. Of SW Engineering, Charles
University, Pragae, 1997.

15. F. Plasil , D. Balelg R Janecek'SOFA/DCUP.
Architecture for Component Trading and
Dynamic Updating", in the procesdings of
ICCDS'98, Annapolis, Maryland, USA, IEEE
CS Press, May 1998.

16. Cheng J., "Soft System Bus as a Future
Software Technology," Proc. 8th International
Symposium on Future Software Technology,
Xi'an, China, SEA, October 2004.

17. Taylor R. , Medvidovic N., Anderson K., E. J.
Whitehead, Jr., J. E. Robbins, K. A. Nies, P.
Oretzy, and D.L. Dubrow. A Component- and
Message-Based Architectural Style for GUI
Software. IEEE Transactions on Software
Engineering, vol. 22, no. 6, pages 390-406
(June 1996)

18. Medvidovic N. , Oreizy P., and Taylor R.,
"Reuse of Oflthe-Shelf Components in C2-
Style Architectures." In Proceedings of the

2.

3.

4.

5.

7.

t9.

55

