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RAWATAN PENURASAN NANO UNTUK PENYINGKIRAN RACUN 
SERANGGA: KAJIAN KES BAGI ATRAZIN DAN DIMETOAT 

 
ABSTRAK 

 
 
 

Tesis ini memfokuskan kepada penyingkiran racun serangga dari larutan akues 

menggunakan membran penurasan nano. Dua jenis racun serangga, atrazin dan 

dimetoat, telah dipilih untuk diuji. Empat jenis membran penurasan nano (NF90, 

NF200, NF270 and DK) telah diuji dengan menjalankan penurasan hujung mati teraduk 

menggunakan larutan racun serangga. Melalui kajian ini, ia didapati bahawa NF90 

menunjukkan prestasi penolakan yang terbaik, diikuti dengan NF200 dan DK. 

Sementara itu, walaupun NF270 menunjukkan prestasi hasil telapan yang tertinggi di 

antara empat membran yang diuji, ia menunjukkan prestasi penolakan yang paling 

lemah. Pada keseluruhannya, keempat-empat membran yang diuji dapat menolak 

atrazin dengan lebih baik daripada dimethoate secara konsisten. 

 

 Prestasi penolakan dapat ditingkatkan sebanyak lebih kurang 10% apabila 

penurasan dijalankan pada racun serangga yang dilarutkan dalam air paip atau air 

sungai. Pemantauan ini menunjukkan bahawa dalam kes sebenar di loji rawatan air, 

penolakan racun serangga yang lebih baik dapat dijangkakan. Akan tetapi, ini 

diperoleh dengan pengorbanan prestasi hasil telapan kerana hasil telapan yang lebih 

rendah dapat diperhatikan bagi penurasan air paip dan air sungai. 

 

Prestasi penolakan dan hasil telapan didapati menunjukkan kesan positif 

apabila tekanan operasi dan kadar adukan ditingkatkan. Akan tetapi, ia dikenalpasti 

bahawa peningkatan kepekatan suapan racun serangga telah mengurangkan prestasi 

penolakan dan hasil telapan. Sementara itu, meningkatkan pH larutan telah menaikkan 

prestasi penolakan bagi NF200, NF270 dan DK. Walau bagaimanapun, prestasi hasil 

telapan menurun. Kes yang berlainan dapat dipantau bagi NF90 yang mana ia 



 xvii

menunjukkan prestasi yang konsisten tanpa mengira keadaan pH larutan. Pengaruh 

bahan larut perduaan atrazin-dimetoat terhadap proses penolakan juga dikaji dan ia 

dikenalpasti mengurangkan sedikit prestasi penolakan membran penurasan nano. 

Sungguhpun begitu, prestasi telapan tidak terpengaruh oleh sistem perduaan tersebut. 

  

Keputusan ANOVA (analisis varians) daripada rekaan faktorial am 

menunjukkan bahawa secara amnya, kepekatan suapan racun serangga tidak 

memainkan peranan yang penting dalam prestasi penolakan dan hasil telapan racun 

serangga. Ia hanya didapati menunjukkan kesan yang ketara bagi prestasi penolakan 

atrazin. Faktor lain seperti jenis membran, tekanan operasi dan kadar adukan didapati 

memainkan peranan yang penting dalam prestasi penolakan dan hasil telapan racun 

serangga.    

 

Pengesahan data eksperimen untuk membran dengan prestasi yang terbaik, 

NF90, menggunakan model Spiegler-Kedem telah menunjukkan penganggaran data 

eksperimen yang baik. Penentuan pekali (R2) yang diperolehi untuk pemadanan data 

adalah 0.9871 bagi atrazin dan 0.9692 bagi dimetoat. 
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NANOFILTRATION TREATMENT FOR PESTICIDES REMOVAL:  
A CASE STUDY FOR ATRAZINE AND DIMETHOATE 

 
ABSTRACT 

 
 
 
This thesis focuses on the removal of pesticide from aqueous solution using 

nanofiltration membrane. Two pesticides, atrazine and dimethoate, were selected for 

study in this research. Four nanofiltration membranes (NF90, NF200, NF270 and DK) 

were subjected to a stirred dead-end filtration of the pesticide solution. It was found that 

NF90 showed the best rejection performance, followed by NF200 and DK. Meanwhile, 

although NF270 showed the highest permeate flux out of the four membranes tested, it 

showed the poorest rejection. In overall, for the four membranes tested, atrazine was 

consistently better rejected than dimethoate. 

 

The rejection performance was further enhanced by approximately 10% when 

filtration was done with the pesticide being dissolved in tap water or river water. This 

observation showed that in actual case of filtration in water treatment plant, better 

pesticide rejection performance could be expected. However, this was obtained at the 

expense of flux performance since lower permeate flux was observed for filtration of 

tap water and river water. 

 

Increasing operating pressure and stirring rate posed positive effects on both 

rejection and flux performance of nanofiltration membranes. However, increasing the 

feed pesticide concentration reduced the rejection and flux performance. Increasing 

initial pH of solution increased the rejection performance of NF200, NF270 and DK. 

Nevertheless, this was accompanied with reduced permeate flux. Exceptional case 

was observed for NF90 whereby it showed somewhat consistent performance 

regardless of the initial pH of solution. The effect of atrazine-dimethoate binary solutes 

on the rejection was also studied and it was found that the presence of binary solutes 



 xix

slightly reduced the rejection performance of the nanofiltration membranes. 

Nevertheless, the flux performance was observed not to be affected by the binary 

system. 

 

ANOVA (analysis of variance) results from general factorial design showed that 

generally, feed pesticides concentration did not play significant roles in rejection and 

flux performance of pesticides in the system. It was found to be significant only in the 

case of rejection performance of atrazine. Other factors such as type of membrane, 

operating pressure and stirring rate were found to play significant role in the rejection 

and flux performance of pesticides. 

 

Verification of experimental data for the best-performed membrane, NF90, 

using Spiegler-Kedem model showed that the model provided a good estimation of 

experimental data. The coefficient of determination (R2) obtained for the fitted data was 

0.9871 and 0.9692 for atrazine and dimethoate, respectively.  
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CHAPTER 1 

INTRODUCTION 

 

1.0    Research Overview 

 This chapter provides an overview of the research background. The scope 

covers from current scenario of pesticides usage in agriculture and how the pesticides 

found their way into the sources of drinking water. Then, the problem statement of this 

research is presented, followed by the objectives of this research as well as the scope 

of study and the organization of this thesis. 

 

1.1   Pesticides in Agriculture Sector 

Malaysia is actively involved in agriculture practice, planting oil palm, paddy, 

fruit, vegetables and others for both local consumption and export purposes. In order to 

achieve the objectives such as to maintain the quantity and quality of agriculture 

productions, pesticides are used in agriculture sector as a mean of pest control for 

sustainability of the industry.  

 

In Malaysia, the annual pesticides sales figure exceeds RM 300 million. It is 

estimated that annual crop losses in our country could exceed 30% without pesticides 

(MCPA, 2005). On the other hand, insects, weeds, fungi, viruses, parasites, birds and 

rodents consume or destroy approximately 48% of the world’s annual food production 

(Yedla and Dikshit, 2005).  

 

Crop losses could be translated into less food supply and subsequently resulted 

in surging of food price. It is inevitable that more pesticides will be utilized to cope with 

the demands by the increasing population as well as to fulfill the vision of our Prime 
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Minister, Datuk Seri Abdullah Ahmad Badawi, to transform agriculture sector into the 

main industry in Malaysia.   

 

Malaysian CropLife and Public Health Association (MCPA) (2005) defined 

pesticide as chemical or a biological product developed and used for pests control. In 

agriculture, “pests” include insects, diseases, weeds and other organisms like 

nematodes which can have a devastating effect on the quality and quantity of crops 

harvested for food, grain and fibre.  

 

Pesticides are also used in the public health sector to control vector borne 

diseases like malaria, dengue fever (both diseases spread by mosquitoes), river 

blindness disease (spread by snails), houseflies, cockroaches and termites that destroy 

building structures (MCPA, 2005). Ballantyne and Marrs (2004) stated that the word 

‘pesticides’ is used to cover substances that control organisms (insects, fungi, plants, 

slugs, snails, weeds, micro-organism, nematodes, etc) which destroy plant life and 

interfere with food chain, and which act as vectors to disease organism to man and 

animals. 

 

There are a variety of pesticides to be chosen from, be it fungicides, 

insecticides, herbicides, rodenticides, molluscides and nematicides. In Malaysia, there 

are over a thousand of pesticide products registered to Department of Agriculture 

(Department of Agriculture, 2005). It is estimated that about 70% of pesticides sold 

goes to the agriculture sector (MCPA, 2005). 
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1.2   Pesticides in Source of Drinking Water 

In Malaysia, little attention has been given to the presence of pesticides in the 

source of drinking water and its adverse effects on human health. These huge amount 

of pesticides used are the emerging contaminants in drinking water supplies.  

 

Overseas, public attention on the potential long-term consequences of 

pesticides on human health and environment has started since 1962 when Carson 

(1962) highlighted the matter in her book ‘Silent Spring’. In year 2003, test done by a 

well-known non-government organization on Coca-Cola and Pepsi in India revealed the 

presence of unacceptably high levels of pesticide residue. In one sample of Coca-Cola, 

the presence of lindane, a carcinogen, was 140 times higher than the allowable limit 

(Kapoor, 2006). As for our country, the presence of pesticides was acknowledged by 

Tan et al. (1995) to be present in almost all the river systems in Peninsular Malaysia. In 

June 2005, it was reported in The Star newspaper (Jessy, 2005) that uncontrolled 

agricultural activities at Cameron Highlands had contaminated the rivers so acute that 

even drinking water from the treatment plants was polluted.  

 

The effect of pesticides on the environment is very complex as undesirable 

transfers occur continually among different environmental sections. Pesticides that are 

sprayed in the air may eventually end up in soils or water. The atmosphere is an 

effective medium which can move airborne pesticides away from their application sites 

and redeposit them in far away locations (Majewski, 1991). On the other hand, 

pesticides applied directly to the soil may be washed off by rain into nearby bodies of 

surface water or percolate through the soil to lower soil layers and groundwater 

(Kamrin, 1997). Furthermore, it has been reported that pesticides metabolites have 

high potential of leaching in soil (Fava et al., 2005). However, it was noted that the 
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movement of pesticide in and through the soil is primary a function of water solubility of 

the pesticides and of the adsorption capacities of the soil type (Lichtenstein, 1972). 

 

Pesticides uses and transfers have already extended to urbanized catchments 

(Blanchoud et al., 2004). As a matter of fact, contamination of drinking water by 

pesticides can occur through carelessness and nonagriculture uses as well such as 

accidental major spill, application in lawns and golf courses and back-siphoning 

(Gustafson, 1993). The following are potential sources of pesticides that can lead to 

drinking water contamination listed by Gustafson (1993): 

i) Application near surface water bodies 

ii) Spray drift during major application 

iii) Small intentional spills 

iv) Lawns and golf courses 

v) Agriculture drainage wells 

vi) Point sources at storage facilities 

vii) Poorly constructed wells 

viii) Glasshouses and nurseries 

ix) Abandoned wells 

x) Back-siphoning 

xi) Application near sinkholes 

 

Beitz et al. (1994) has mapped out the multiple interaction between pesticides 

and ecosystem as shown in Figure 1.1. Meanwhile, Schnoor (1992) summarized the 

fate and transport of pesticides in the environment in Figure 1.2. The figures clearly 

show that pesticides would eventually end up becoming a possible threat to human’s 

health via atmosphere and water. Low-level residues of pesticides in water generally 

may not present acute toxicity problems, but chronic effects will likely be of concern 

(Carsel and Smith, 1987). This is because pesticides could have chronic effects such 
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Figure 1.1: Interactions between pesticides and ecosystems (Beitz et al., 1994). 
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from the source of drinking water. This is because pesticides will continue to be 

effective pest controls, but it is up to us to find ways to avoid many of the pesticides 

poisonings and contaminations that exist today. 

 

Figure 1.2: Pesticide fate and transport (Schnoor, 1992). 
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(Van der Bruggen et al., 1998). Besides that, chlorination, air stripping, coagulation, 

ozonation and advanced oxidation are also being used for treatment of pesticides from 

water (WHO, 2005). These methods however suffer from their own limitations and have 

limited successful applications in this area, leaving the vacuum to be filled by 

membrane technology. Although there could be fouling in membranes over the time, 

membrane processes are becoming increasingly widespread in water treatment 

applications due to its ability to achieve high removals of constituents such as 

dissolved solids, organic carbons, inorganic ions and organic compounds. 

 

1.4    Objectives of Research 

The objective of this research is to examine the performance of nanofiltration 

membranes in rejection of pesticides in aqueous solution. In order to achieve the main 

objective, the measurable objectives of this study are stated as follows: 

• To evaluate the separation performance for different pesticides, different water 

quality and different commercial nanofiltration membranes in lab scale 

operation.   

• To study the effect of experimental parameters namely operating pressure, 

pesticide concentration, stirring rate, pH of solution and binary solute mixture on 

rejection of pesticides and permeate flux. 

• To investigate the significance of experimental variables such as membrane, 

operating pressure, pesticides concentration and stirring rate and on rejection of 

pesticides and permeate flux by applying general factorial design. 

• To model the separation process and validate it using experimental data. 

 

1.5    Scope of Study 

This study focused on removal of atrazine and dimethoate from aqueous 

solution. Atrazine was selected as subject of study because this herbicide is commonly 
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used in the plantations around the world as well as in Malaysia (Chooi, 2005). 

Extensive amount of its usage has ranked it among the most common pesticides found 

in surface water and groundwater (Plakas et al., 2006). On the other hand, dimethoate 

is also widely used in Malaysia and it is being regulated in guidelines for drinking water 

by World Health Organization. Nevertheless, data on effectiveness of dimethoate 

rejection using membranes has not been found so far (WHO, 2005).   

 

Pesticides leaching would normally cause minute concentration of pesticides to 

be present in water and its chronic effect to the livings has been of more concern. 

Therefore, four polyamide nanofiltration membranes, NF90, NF200, NF270 and DK 

were examined for its performance in the pesticides rejection. Although the range of 

usual run-off case is in µg/L, the range of concentration used in this study is in mg/L as 

to consider in case of accidental spill of pesticides in water source. 

 

A comparative study of atrazine and dimethoate rejection and permeate flux 

with NF90, NF200, NF270 and DK nanofiltration membranes was first conducted to 

gain initial insight of the performance of each membrane. Deionized water was used as 

solvent throughout the experimental works in order to get an accurate measurement of 

performance for pure pesticide concentration in water. However, a sub-section of this 

research was dedicated to investigating the membrane performance in different water 

quality. This would provide clearer understanding on nanofiltration performance in the 

real case of water filtration. 

 

After that, a comprehensive study on the effect of experimental parameters 

towards the rejection and flux performance of atrazine and dimethoate with the 

nanofiltration membranes was carried out. Statistical tool was later applied to 

determine the significance of experimental variables. Finally, verification of 
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experimental data for the best-performed membrane was done by using Spiegler-

Kedem model. This model was selected because unlike other models which are either 

only valid for reverse osmosis or inorganic molecules, this model has been 

acknowledged to be valid for retention of organic molecules in nanofiltration (Van der 

Bruggen and Vandecasteele, 2002). 

 

1.6   Organization of the Thesis 

There are five chapters in this thesis. An overview on pesticides in agriculture 

sector and how pesticides could end up in source of drinking water are outlined in 

Chapter One. 

 

 Chapter Two presents a review of the literature. It is divided into five major 

sections. The first section gives a review about the current scenario of pesticides 

pollution in water. This is followed by explanation on pesticides which include their 

environmental fate and toxicology effect in section two. Detailed information on the 

pesticides chosen as subject of study, namely atrazine and dimethoate, is also 

presented in the section. Description on treatment technologies available for pesticides 

removal is provided in section three. Then, explanation on membrane filtration and 

nanofiltration process is given in section four. Section five focuses on the statistical 

approach used for factorial experimental design. A short summary on the literature 

review is presented in section six. 

 

Chapter Three covers the methodology for the experimental work done in this 

research. This chapter is divided into six sections. The first section presents the 

materials such as membranes and chemicals used in the experiments. The second 

section gives a general description experimental set-up while the third section provides 

brief explanation on the analysis equipment used in this study. On the other hand, the 
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fourth section is a general description of the experimental procedures. The fifth section 

provides brief description on the statistical analysis approach chosen for this research 

while the final section gives explanation on how the modeling work was done. 

 

 Chapter Four presents all the acquired results and discusses on the findings. It 

is grouped into four main sections. Section one presents the results and discussion on 

the comparison of performances between the membranes tested by monitoring their 

performances when using pure water, pesticide solution in pure water and pesticide 

solution in different water quality. Section two examines the effect of operating 

conditions to the performances of the nanofiltration membranes while section three 

presents the statistical analysis done based on the general factorial design in order to 

investigate the significance of several main operating conditions to the performances of 

the nanofiltration membranes tested and interaction between the factors as well as the 

final regression model obtained from ANOVA. In section four, the performance of the 

best-performed membrane is validated using Spiegler-Kedem model. 

 

Finally, Chapter Five gives the conclusion and some recommendations for 

future research. The conclusions are written according to the finding found in Chapter 

Four. Based on the conclusion, recommendations for future work are suggested.  
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CHAPTER 2 

LITERATURE REVIEW 

 

2.0 Introduction 

This chapter provides the literature review of the pesticides pollution in water in 

section one. Section two provides an overview of history and chemical classification of 

pesticides as well as information regarding atrazine and dimethoate. After that, review 

of treatment technology available for pesticides removal is presented, followed by 

review on nanofiltration process. Literature review on statistical tools used to analyzed 

data is presented in section five and finally, a short summary on this chapter is 

provided in section six.  

 

2.1 Pesticide 

Pesticide is a general term originated in the early days of its development. 

Initially, they were classified as contact poisons and stomach poisons. Later on, the 

classification was made based on their chemical composition and their application. 

Based on their application, pesticides can be classified into insecticides, acaricides, 

fungicides, bactericides, nematicides, rodenticides, molluscicides, weedicides, 

herbicides and soil fumigants. Until 1950’s, insecticides were the major contributor of 

pesticides production. However, since 1954 when phenoxyacetic acid, a highly 

valuable herbicide, was discovered, the importance of weed control in protecting 

agricultural products was noticed. Since then, herbicides have been dominating the 

production as well as the market over insecticides (Yedla and Dikshit, 2005). 

 

It was until 1962 when Rachel Carson’s Silent Spring appeared that people 

were made aware of the hidden costs of pesticides and their potential in causing 
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adverse effects on human health and the environment (Wilkinson, 1987). Human can 

be exposed to pesticides either through skin, oral consumption or respiration 

(Ballantyne and Marrs, 2004). In order to provide a better picture of the types of 

pesticides available, their impact to environments as well as toxicology effect, Table 2.1 

presents a general overview of several common groups of pesticides which are 

classified based on their chemical composition.  

 

2.1.1 Atrazine 

Atrazine (2-chloro-4-(ethylamino)-6-isopropylamino-s-triazine) is a type of 

triazine herbicide (Kamrin, 1997). It was discovered in 1952 by scientists from J.R. 

Geigy Ltd. in Switzerland. Its first application was done in 1954 and it was patented in 

1955 (Castelo-Grande et al., 2005). Since then, atrazine has become the most widely 

used herbicide in agricultural and forestry applications, with 70,000–90,000 tonnes 

applied annually in the world. Atrazine has high effectiveness in inhibiting the growth of 

target weeds including variety of plants and some species of algae by interfering with 

the normal function of photosynthesis (Graymore et al., 2001).  

 

Herbicide contamination of water environment is of considerable concern 

because of the potential health hazard towards humans and animals, necessitating 

stringent legislation on the purity of drinking water. Coincidentally, being one of the 

most frequently applied herbicides in the agricultural sector, atrazine has frequently 

been detected in fresh water at levels exceeding the permissible limits (Chingombe et 

al., 2006). This has led World Health Organization (WHO) to set guideline for drinking 

water and it allows a maximum of 0.002 mg/L of atrazine in drinking water (WHO, 

2005). Figure 2.1 shows the molecular structure of atrazine. 
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Table 2.1: Chemical classification system of pesticide. 

Category General information Environmental Impact Toxicology Effect 
Carbamates 

(Kamrin, 1997) 

-Members of this family are effective as 

insecticides, herbicides and fungicides, 

although they are most commonly used 

as insecticides. 

-Work on both target and non-target 

species through inhibition of enzyme 

acetyl cholinesterase, a substance that 

transmit a nerve impulse from a nerve 

cell to a specific receptor such as 

another nerve cell or a muscle cell. 

-Generally are non persistent in the 

environment.  

-Degrade through chemical hydrolysis 

and microbial processes and are unlikely 

to bioaccumulate in aquatic systems. 

-Chronic exposure may cause adverse effects on 

organs or acetylcholinesterase levels. 

Organochlorine 

pesticides 

-Insecticides composed primarily of 

carbon, hydrogen, and chlorine 

(Coming Clean, 2006). 

-Powerful pesticides obtained at 

relatively low cost (Mitchell, 1966).  

-The compound’s resistance to 

biochemical degradation, coupled with 

its solubility in fats (lipids), leads to 

bioaccumulation in living organisms. 

This has led to its banning or restriction 

for agriculture uses in many countries 

(Kamrin, 1997). 

-According to Beitz et al. (1994), a 

pesticide is considered as high persistent 

in soil and water if its half-life is more than 

1 month. Kamrin (1997) generalized that 

organochlorine pesticides possesses half-

life between 2 to 10 years after it is 

applied to soil. 

-May adversely affect fertility and reproduction at 

high doses and have carcinogenic effects at 

chronic exposure (Kamrin, 1997). 
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Table 2.1 Continued (a) 
Organophosphorus 

pesticides 

-Inhibit the enzyme acetyl 

cholinesterase (AChE) and thus over-

stimulate neurological activity in 

organism (Pope, 1999). 

-Have higher toxicity than 

organochlorine pesticides, but are 

widely used in the world to replace the 

organochlorine pesticides due to its 

short half-life (Derache, 1977). 

-Due to the magnitude of their 

application, they are frequently 

associated with toxicity to animals and 

and humans (Evgenidou et al., 2005)  

-Usually degrade within 2-4 weeks of 

application in soil (Ibrahim et al., 1998). 

-Lakes and streams may be susceptible 

to pesticide runoff if application occurs 

prior to rainfall (Kamrin, 1997)  

-The commercial products are categorized from 

extremely toxic to moderately toxic. They are 

efficiently absorbed by inhalation, ingestion and 

skin penetration (Yusof et al., 1995). 

-Although the degradation process usually leads 

to the formation of less harmful breakdown 

products, in some instances, it can produce 

more toxic products (Kamrin, 1997). Thus, the 

widespread uses of OPPs, coupled with the 

relative lack of reliable data on the risks of long-

term exposure to human health have raised 

concern (Yusof et al., 1995). 

Phenoxy and 

benzoic acid 

herbicides 

-One of the most controversial phenoxy 

compounds is 2,4,5-T. This compound 

was used extensively, together with 

2,4-D, in the formulation of Agent 

Orange during the Vietnam War 

(Sahabat Alam Malaysia, 1984). 

- 2,4,5-T has been banned in Malaysia, 

but 2,4-D is still being sold (Department 

of Agriculture, 2005). 

-Most of the phenoxy and benzoic acid 

herbicides are of low persistence in soil, 

lasting up to 2 weeks.  

-However, despite the relatively rapid 

breakdown, they tend to be mobile in soil 

and thus, have the ability to move from 

soil into surface water or groundwater 

(Kamrin, 1997). 

 

 

-Most phenoxy herbicides are moderately toxic 

while most benzoic acid herbicides are slightly 

toxic. 

-Phenoxy herbicides could cause liver and 

kidney damage as well as reproductive effects. 

Benzoic acid herbicides could have teratogenic 

effects at very high doses (Kamrin, 1997). 
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Table 2.1 Continued (b) 
Phyrethroids 

(Kamrin, 1997) 

-Have biological origins. 

 

-Phyrethroids concentration decrease 

rapidly in pond waters and in laboratories 

degradation studies due to sorption, 

suspended particles and plants. Microbial 

and photodegradation can also occur. 

-Categorized to be from slightly to moderately 

toxic. 

-Exposure to high doses can be fatal 

-Can cause liver effects. 

Triazine 

(Kamrin, 1997) 

-Herbicides which consist of a single 

ring structure with three nitrogen atoms. 

-Used against a wide variety of weed 

species by interfering with 

photosynthesis. 

-Triazines do not adsorb to soil particles 

and may leach through soil.  

-They are relatively stable in water (i.e. 

not easily hydrolyzed). 

-Triazine compounds are categorized from 

moderately toxic to slightly toxic. 

-It could cause disruption of metabolism of 

vitamins, adverse reproductive effects and liver 

damage with high doses.  
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Figure 2.1: Structure of atrazine. 
 

2.1.1(a) Environmental Impact  

Atrazine is a common soil and water pollutant as atrazine applied to cropland 

can be transported to groundwater by infiltration or to surface waters by water runoff 

(Nélieu et al., 2000; Barreiro et al., 2007). This is because it has the properties of high 

leaching potential, persistence in soil, slow hydrolysis and low vapor pressure (Boyd, 

2000). Atrazine also persists under cool, dry conditions, in a stable pH environment (Ta 

et al., 2006).  

 

Atrazine is soluble in water (28 mg/L, 20oC) and is moderately toxic to fish and 

highly toxic to aquatic invertebrates. It has half-life in soil and water of over 41 and 55 

days, respectively (Perez et al., 2006). 

 

2.1.1(b) Toxicology Effect  

Atrazine is a stable and low-biodegradable aromatic compound that can cause 

adverse effects on human health (Chu et al., 2007). It can exhibit phenomena called 

biomagnification, which means it has the ability to concentrate in animal tissues as it 

moves up in the food chain (Castelo-Grande et al., 2005). 

 

Atrazine is classified as possibly carcinogenic by the IARC (International 

Agency for Research on Cancer) and is related to ovary cancer. The simultaneous 

intake of nitrate and atrazine holds the risk of formation of the strongly genotoxic N-
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nitrosoatrazine. Chromosomal damage in human lymphocyst and an enhanced 

occurrence of non-Hogdkin’s lymphoma were reported even at very low concentration 

of 0.1 µg/L N-nitrosoatrazine (Zhang et al., 2004). Atrazine also has the power to 

increase the toxicity of arsenic in human cells (Gonzalez-Barreiro et al., 2006). 

 

2.1.2 Dimethoate  

Dimethoate (O, O – dimethyl S – methylcarbamoylmethyl phosphorodithioate) is 

an organophosphorus insecticide with a contact and systemic action. It was introduced 

in 1956 (Fischer et al., 1997). It is widely used against a broad range of insects and 

mites and is also used for indoor control of houseflies (Sharma et al., 2005). 

Dimethoate exerts its neurotoxicity by phosphorylation of the enzyme acetyl 

cholinesterase (AChE) in the central and peripheral nervous systems (Sivapiriya et al., 

2006).  

 

Dimethoate is a kind of high-effective pesticide that is extensively applied in 

agriculture. However, its residues have a negative effect on the environment and on 

the health of people because of its toxicity and stability (Zhang et al., 2007). Therefore, 

dimethoate is listed as one of the chemicals from agriculture activities in which 

guideline value has been established. Its value in drinking water must be ensured to be 

below 0.006 mg/L (WHO, 2005). Figure 2.2 shows the chemical structure of dimethoate. 

It is an aliphatic derivative of organophosphorus pesticides. 

 

                                            

Figure 2.2: Structure of dimethoate.  
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2.1.2(a) Environmental Impact  

The acute and lethal effects of dimethoate have been determined in several 

aquatic invertebrate species. Acetyl cholinesterase (AChE) inhibition causes an 

accumulation of acetylcholine at nerve synapses and disruption of nerve function 

(Lundebyel et al., 1997). 

 

Dimethoate is highly soluble in water (25 g/L, 21oC) and it adsorbs poorly to any 

of the soils (Kamrin, 1997; Hernandez-Soriano et al., 2006). Its high solubility in water 

has subjected it to considerable leaching as it can move rapidly through soils and end 

up in surface water or groundwater. It has half-life in soil and water of over 20 and 8 

days, respectively (Kamrin, 1997). 

 

2.1.2(b) Toxicology Effect  

Dimethoate is identified as moderately toxic compound in U.S. Environmental 

Protection Agency (Wilczek, 2005). . Dimethoate poisoning is usually associated with 

neuromuscular transmission block in both animals and humans (Sivapiriya et al., 2006). 

Doull (1989) reported that dimethoate could cause mutagenicity, fetotoxicity and 

reproductive effects. Thyroid impairment can also occur due to its toxicity (Mahjoubi-

Samet et al., 2005). 

 

 Shahar et al. (2005) reported that a patient developed overt parkinsonism 

presenting with a resting tremor, expressionless face and lack of blinking along with 

marked cogwheel rigidity after an accidental ingestion of a raw eggplant sprayed with 

dimethoate. According to a survey on acute poisoning with pesticides in the state of 

Mato Grosso do Sul, Brazil, dimethoate was also associated with the highest case 

fatality rate (CFR) compared to other insecticides and herbicides  (Recena et al., 2006). 

In another study done on 802 patients with chlorpyrifos, dimethoate, or fenthion 



 19

poisoning admitted to three hospitals in Sri Lanka, the proportion of dying was 

significantly higher with dimethoate and dimethoate-poisoned patients died sooner than 

those ingesting other pesticides (Eddleston et al., 2005).  

 

 More alarmingly, omethoate, the degradation product of dimethoate has been 

proven to be 10 times more toxic than its parent compound and it is more of a potential 

inhibitor to cholinesterase activity than dimethoate (Evgenidou, 2006). Moreover, the 

synergy effect of dimethoate-atrazine is more lethal than the effect of the individual 

pesticide since the toxicity of dimethoate was enhanced significantly when they are in 

binary combination (Anderson and Zhu, 2004). 

 

2.2 Pesticides Pollution in Water 

Pesticide pollution in water may arise from runoff and leaching. Only a part of 

the applied amount of a pesticide is bioactive while the rest is distributed in the 

environment. Certain remaining amounts attached to the soil are leached out, migrate 

into groundwater or are distributed by surface runoff. A certain quantity reaches the air 

and can diffuse over long distances. The diagrams of pesticides cycle can be referred 

in Figure 1.1 and Figure 1.2.  

 

Contamination of surface and ground waters by pesticides has been 

documented by several researchers in recent years. The findings are summarized in 

Table 2.2. In fact, accidents of pesticides’ spills had been recorded in United States in 

1969 and 1986. These two accidents were the cause for the development of chemical 

monitoring and acceleration of the sanitation programme and their implementation on 

the control of water quality (Van-Urk et al., 1993).  
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Table 2.2: Summary of cases of pesticides contamination in water. 

Reference Findings/Conclusions 

Gotz et al. (1998) 

 

Elevated amounts of some triazines pesticides and 

dimethoate were recorded in the River Elbe near Hamburg. 

El-Kabbany et al. 

(2000) 

 

The water monitoring study confirmed the presence of 

organophosphorus pesticides and carbamate pesticides in 

drainage water and canal water in El-Haram, Giza. 

Zhang et al. (2002) 

 

 

 

Total concentration for organophosphorus pesticides ranged 

from 134.8 to 354.6 ng/L and total concentration for 

organochlorine pesticides ranged from 115.4 to 414.7 ng/L 

was detected at Jiulong River Estuary, China. 

Gomez-Gutierrez et al. 

(2006) 

 

 

Concentrations ranged from 0.4 to 19.5 ng/L for the 

organochlorine compounds and up to 170 ng/L for the more 

polar pesticides were found from the samples from the Ebro 

River, Spain. 

Guzzella et al. (2006) 

 

 

 

 

The results of the two-year monitoring campaign allowed to 

conclude that atrazine, even though it was banned in Italy in 

1986, was still the main groundwater contaminant. It was 

present in 100% of the considered samples and 30% of 

them exceeded the allowable limit. 

Konstantinou et al. 

(2006) 

 

 

 

 

 

 

 

 

 

Pesticides which were mostly detected were herbicides, 

organophosphorus insecticides as well as the banned 

organochlorines insecticides due to their persistence in the 

aquatic environment. Rivers were found to be more polluted 

than lakes. The detected concentrations of most pesticides 

followed a seasonal variation, with maximum values 

occurring during the late spring and summer period followed 

by a decrease during winter. Nationwide, in many cases, the 

reported concentrations ranged in low ppb levels. However, 

elevated concentrations were recorded in areas of high 

pesticide use and intense agricultural practices. 

Lapworth and Gooddy 

(2006) 

 

 

 

Diuron was observed in 90% of groundwaters sampled 

between year 2003 and 2004. Longer-term (1989-2005) 

monitoring showed that pollution of the aquifer by atrazine, 

simazine, and more recently diuron, shows a positive 

correlation with periods of high groundwater levels. 
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Table 2.2 Continued. 

Morvan et al. (2006) 

 

 

 

 

 

Five years after the ending of atrazine application which was 

used since the sixties, atrazine and its degradation product, 

deethylatrazine were still systematically quantified at the 

outlet of the watershed with concentrations from 0.07 to 0.43 

μg/L for atrazine, and between 0.14 and 1.16 μg/L for 

deethylatrazine. 

Blanchoud et al. (2007) 

 

 

 

The obtained data showed a similar contribution by urban 

pesticides in the Marne River, France due to runoff over 

impervious surfaces as compared to agricultural pesticides 

used on cultivated soils (about 11 tons/year in both cases). 

Moore et al. (2007) 

 

 

 

 

 

Both surface water and sediment phases of the three  

Mississippi Delta oxbow lakes examined had greater levels 

of current-use pesticide contamination than other previously 

studied watersheds due to more intensive cultivation and the 

concomitantly greater amounts of pesticide run-off from 

adjacent agricultural fields. 

 

The implementation on the control of water quality is important because 

different type of pesticides have different decaying period. Pesticides such as 

organophosphorus pesticides have half-life between several weeks to a few months 

while organochlorine pesticides can accumulate in the environment and in livings for 

years. The persistence and fate of pesticides is also dependent to a multitude of 

environmental factors such as soil types, temperature, light, moisture, microorganism, 

etc. It is for these reasons that no absolute half-life can be attributed to any pesticides 

(Lichtenstein, 1972). A study by Halimah et al. (2005) showed that a double increment 

from recommended pesticides dosage increases the day of detection after treatment 

from one day to five days.  In a study carried out in Mississippi soybean fields, it was 

found that the downstream of the Yazoo River was contaminated with methaxychlor 

and endosulfan even after 3 weeks and 3.5 km far from the application site (Yedla and 

Dikshit, 2005). 
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 During runoff events, residues of pesticides find way into coastal waters, rivers, 

estuaries and mangroves and were reported to be responsible for many massive fish 

kills (Yedla and Dikshit, 2005). Even after degradation, the breakdown products of 

pesticides can be less, more or similar in toxicity when compared to the parent 

chemical. This scenario inadvertently affects the aquatic livings by enhancing or 

decreasing populations, inhibiting or stimulating respiration or inhibiting the growth of 

the aquatic livings (Sumasundaram and Coats, 1990). If this situation is left unattended, 

it will eventually lead to ecological chaos. Besides, more humans are falling victim to 

the man-made poisons (Sahabat Alam Malaysia, 1984). In view of this unhealthy 

scenario, more attention has been given by regulatory bodies to monitor the water 

quality from pesticides contamination.  

 

In Malaysia, no specific local water regulation on pesticides content has been 

implemented by government so far. However, there is a provision for the regulation of 

import, manufacture and sales of pesticides which exists under the Pesticides Act 1974 

(amended in 2004). Its objective is to ensure that pesticides imported, manufactured 

and sold in the country are of good quality and that they will not cause adverse effects 

on man, food crops and the environment (Department of Agriculture, 2006). This 

outline of objective is still very wide, general and vague. Nevertheless, according to the 

Drinking Water Quality Standards in Malaysia, the content of certain pesticides in 

drinking water is monitored up to four times a year by referring to the limit set by World 

Health Organization (WHO) (Perbadanan Bekalan Air Pulau Pinang, 2007).  

 

2.3 Treatment Technologies for Pesticides Removal 

Unlike heavy metals and other pollutants, pesticides are lethal to the 

environment even at micro level of concentrations (Yedla and Dikshit, 2005). The 

conventional water treatment processes such as alum coagulation, clarification and 

chlorination had been concluded to produce insignificant pesticides removal (Sisodia et 
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al., 1996). This situation was also demonstrated at the A.H. Weeks drinking water 

treatment plant at Ontario, Canada, whereby sand filtration and flocculation by 

aluminum sulfate were proven ineffective in removing trace levels of atrazine (Hua et 

al., 2006). Hence, in order to protect the environment and to meet the stringent 

enforcement regulations, many researchers are competing to produce effective, 

reliable and economical way for pesticide-containing water treatment system.  

 

Current treatment technologies for pesticides treatment can be divided into 

three categories. They are chemical, physical and biological methods. Chemical 

treatment using advanced oxidation processes (AOP’s) has gained interest of 

researchers lately due to its ability to destruct organic compounds. Biological method is 

still in its infancy in this area and it is still facing many challenges that needed to be 

overcome. On the other hand, physical treatment such as adsorption and membrane 

filtration has produced satisfactory results in removing pesticides from water. Table 2.3 

summarizes the available methods for pesticides removal and findings by researchers. 

 

2.4   Membrane Filtration 

Membrane is a barrier which separates two phases and restricts the transport of 

various chemical species (Strathmann, 1990). Microfiltration, ultrafiltration and reverse 

osmosis are among the well established membrane separation processes. 

Ultrafiltration and microfiltration are basically similar in their mode of separation. They 

separate by molecular sieving through increasingly fine pores. However, in reverse 

osmosis membranes, the membrane pores are so small that solutes permeate the 

membrane by dissolving in the membrane material and diffusing down on a 

concentration gradient. Separation occurs because of the differences in solubilities and 

mobilities of different solutes in the membrane (Baker, 2004). Nanofiltration is the most 

recently developed pressure-driven membrane separation process and has properties 

that lie between those of ultrafiltration and reverse osmosis (Oatleya et al., 2005).



 24

Table 2.3: Treatment methods available for pesticides removal and findings by researchers. 

Treatment  
methods 

Findings/Conclusions  References  

Advanced oxidation 
processes (AOP’s) 
 
 

-Based on the production of hydroxyl radicals as oxidizing agents to mineralize synthetic organic chemicals.  
-These radicals are the second strongest oxidative species after fluorine (reduction potential E0 = 2.8 V) and 
they attack unselectively most of the organic molecules, resulting in a partial or total decomposition. 
- The commonly applied AOP’s are ozonation, Fenton’s process and photocatalytic oxidation. 
 

Evgenidou et al. (2005) 

(a) Ozonation -Decrease of 66–96% of the atrazine concentrations was observed when ozone treatment was integrated in 
the A.H. Weeks drinking water treatment plant which serves the City of Windsor, Ontario Canada. 
 

Hua et al. (2006) 

 -Complete degradation of a mixture of several pesticides (alachlor, atrazine, chlorfenvinphos, diuron and 
isoproturon) in aqueous solutions at pilot-plant scale was found to be slow. 
-It was also hard to accomplish as large amounts of the oxidant were required to lower the organic content of 
the solutions. 
 

Maldonado et al. (2006) 

(b) Fenton’s process -Studied on the oxidation of atrazine in the presence of hydrogen peroxide (H2O2) and ferrihydrite at different 
concentrations and pHs. 
-The decomposition product of atrazine was detected only after 1 day of experiment and a decrease of 
atrazine by 21% was observed over a period of 8 days. 
 

Barreiro et al. (2007) 

(c) Photocatalytic  
oxidation 

-Studied on photocatalytic oxidation of azynphos-methyl and dimethoate in water.  
-It was found that TiO2 absorbed light only in the narrow UV range of the solar spectrum, therefore, FeCl3, 
another photocatalyst and also, probably, photosensitizer for TiO2, must be used.  
-Concluded that solar light can be used together with small amount of FeCl3 and TiO2 for a tertiary treatment 
to eliminate pollutant as pesticides in a short time as the decomposition took place at higher rates compared 
to photocatalytic oxidation by using only either of them. 
 

Dominguez et al. (1998) 

 -TiO2 was a more efficient photocatalyst compared to ZnO since the oxidation and decomposition of 
dimethoate proceeded at higher reaction rates.  
-However, complete mineralization was not achieved in both systems and the authors proposed longer 
irradiation time or higher quantities of the catalysts for better performance. 
 
 

Evgenidou et al. (2005) 
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