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ABSTRAK 

 
 

Kajian ini dijalankan bagi memodelkan ciri-ciri aliran dalam model fizikal takungan pam 

menggunakan Dinamik Bendalir Berkomputer (CFD) melalui kod FLUENTTM 6.2. 

Prosedur atau tatacara ujikaji melibatkan cerapan data mengunakan meter halaju , 

meter aliran, dan meter pusaran (Rotometer / Vortimeter). Tiga jenis pengukuran 

diambil iaitu halaju, aliran, dan sudut pusaran untuk sembilan kajian kes yang telah 

dinilai pada tiga kedalaman air yang berbeza (0.3m, 0.24m, dan 0.18m), masing-

masing pada tiga kadar alir yang berbeza (15L/s, 10L/s, dan 4L/s); Sejumlah 162 titik 

cerapan bagi setiap kes. Suatu ujian visual yang melibatkan teknik pengesanan 

penunjuk bewarna (dye) turut dijalankan untuk mencirikan aliran. Dalam kajian ini, 

pembangunan model CFD yang komprehensif telah digunakan dalam rekabentuk 

takungan pam. Perbandingan dengan kaedah ujikaji dan model CFD akan 

dibincangkan dengan lebih lanjut. Hasilan FLUENTTM menggambarkan ciri-ciri asas 

magnitud vektor-vektor halaju (m/s), kontur vektor halaju (m/s) dan kontur tekanan 

pegun (pascal). Persetujuan yang baik diperolehi antara keputusan simulasi dan ujikaji. 

Lokasi vortex dalam keputusan ujikaji hampir menyamai keputusan simulasi CFD yang 

diperolehi dalam kajian ini. Purata perbezaan halaju di antara ujikaji dan simulasi ialah 

4.2% dan 11.6%. Sementara itu, nilai pekali regresi (R2) yang berada dalam julat 0.98 

ke 0.99 telah diperolehi untuk kehubungan plotan berselerak antara data ujikaji dan 

simulasi. Oleh itu, daripada kajian ini, kesimpulan yang boleh dibuat ialah CFD dapat 

digunakan untuk simulasi atau di masa akan datang menggantikan model fizikal 

takungan pam.  

 
 
 
 
 

MODELING OF FLOW CHARACTERISTICS IN A PUMP SUMP PHYSICAL 
MODEL USING COMPUTATIONAL FLUID DYNAMICS 

 



 xix

ABSTRACT 

 
This study attempts to model the flow characteristic in a pump sump physical model by 

using Computational Fluid Dynamics (CFD) code FLUENTTM 6.2. The experimental 

procedures include the data collection using a velocity meter, flow meter and swirl 

meter (Rotometer / Vortimeter). Three types of measurements were conducted which 

are velocity, flow, and swirl angle for nine cases which had been evaluated at three 

different water depths (0.3m, 0.24m and 0.18m) and at three different flow rates (15L/s, 

10L/s and 4L/s); a total of 162 measurement points per case. A visual test that involves 

the dye tracing technique was also carried out to characterize the flow. Further, in this 

study, a comprehensive CFD model of pump bays was developed. The comparison of 

experimental method and CFD model is discussed in details. The FLUENTTM outputs 

illustrate the basic features of magnitudes of velocity vectors (m/s), contour of velocity 

vector (m/s) and static pressure contour (pascal). A good agreement is determined 

between simulation and experimental results. The locations of the vortices in the 

experimental results closely match the CFD simulation results obtained. The average 

velocity magnitude difference between experimental and CFD simulated result is 

recorded at 4.2% to 11.6%. Moreover, the regression coefficient (R2) values of velocity 

magnitude ranging from 0.98 to 0.99 were obtained from the scattered plot relationship 

between experimental and simulated data. Thus from the study, it can be concluded 

that the CFD can be used to simulate flow characteristics in pump sump as an 

alternative to physical modeling of pump sump.  
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CHAPTER 1 
INTRODUCTION 

 

1.1  Background of the Study 

The flow phenomena that arise in the pump bays of water intake structures 

have been studied experimentally by many researchers (Dicmas, 1987; Larsen and 

Padmanabhan, 2001; Ansar et al., 2002; Nakato, 2003; Tokyay and Constantinescu, 

2005a) due to the importance in determining pump bays performance. Unfortunately, 

the phenomena are so complex and diverse that, there is no comprehensive theoretical 

model to predict them. Existing design guides, usually contains little more than rules of 

thumb for pump performance. Therefore, Computational Fluid Dynamics (CFD) could 

play a potentially useful role in determined flow conditions within pump bays. Improved 

knowledge of flow conditions should lead to improvements in the bay design and 

consequently the pumps operation. The factors affecting pump-bay flows have been 

known in qualitative and empirical terms but there is no exact method for predicting 

them. The only way of doing so is by an expensive hydraulic model study. Because of 

the high costs involved in the design and construction of small physical scale laboratory 

models, there is a need for more research in the numerical simulations. The prime 

drawbacks of physical hydraulic models are the relatively lengthy periods needed for 

model building, data acquisition and analysis. The numerical simulation code 

introduced herein does not have those drawbacks, plus it has additional advantages. In 

this study, the application of the comprehensive CFD model will be used in the design 

of pump bays, and the comparison with the development experimental model will be 

discussed in details.  
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1.2  Problem Statements 

Water pumps in drainage, agriculture, and industrial process applications are 

known to experience certain common operational problems, such as vibration, impeller 

damage due to cavitation and excessive bearing wear resulting in severe deterioration 

of their performance and finally lead to a significant increase of operational and 

maintenance costs. These problems probably result from poor intake design. 

Therefore, there are several problems that should be highlighted in this study. The 

common of the main problems are summarized as follows (Larsen and Padmanabhan, 

2001; Karassik et al., 2001 and Nakato, 2003): 

 

a. Free surface vortices – the air may draw from the surface into the pump. These 

types of vortices can cause unbalance loading of impeller, periodic vibration 

and therefore reduction in pump capacity. 

b. Subsurface vortices – which may emanate from floor, site, back walls or 

combination among them. These can cause vibration and cavitation that may 

reduce pump efficiency. 

c. Pre-rotation – flow entering the pump which change the angle of the attack of 

the impeller blades from the design value and may effect pump efficiency and 

lead to cavitation.  

d. An uneven distribution of flow at the pump throat which may results in unequal 

loading of pump impeller. This action will lead to vibration and unbalance 

loading of impeller. 

e. Cavitation that can cause damage on the underside of mixed flow impeller. 

 

 These problems encountered in the pump sump will affect the pump 

performance and significantly increase the operational and maintenance costs. In order 

to identify sources of particular problems and find practical solution for it, the usual 

approach is to conduct the laboratory experiments on a scaled physical model. The 
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problems are already there; however the solutions are still the matter. The main 

concern and challenge in this study is to understand the flow characteristics. These 

results will be compared with the computational result by using the Computational Fluid 

Dynamic (CFD), FLUENTTM software. 

 

1.3  Objectives of the Study 

In order to accommodate the main concern and challenge stated in the problem 

statement, the following objectives are set up to be find the optimum solution. These 

designated objectives will serve as the basis of the problem solving and also as a 

guideline and reference in order to complete the study. The objectives are as listed 

below: 

 

1. To identify flow characteristics in particular surface vortices and subsurface 

vortices, velocity distribution and pressure contour at different discharge water 

levels. 

2. To develop a simulation model of sump intake using CFD.  

3. To ascertain the effectiveness of the CFD analysis. 

4. To predict the occurrences of vortices using CFD. 

 

1.4  Scope of the Research 

To achieve the above objectives designed, the following tasks need to be 

carried out: 

 

(i) Literature review – This is the first step to understand the concept and theory of the 

related research area. It serves as a basic knowledge of other researchers experiences 

as stated in their literature works reviewing the theory, concept and methods of their 
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studies. It is hoped that the review will ensure a good overview on the whole research 

activities. 

 

(ii) Design of the structure of physical model – The structure of the physical model 

had been designed by referring to the existing design guidelines (DID, 2000). The 

design of the pump sump includes the determination of material used, sump scale and 

relevant components such as the approaching slope and bell mouth.  

 

(iii) Construction of the physical model – In this part, experiences and expertise 

from Drainage and Irrigation Department (DID) was utilized, by involving in construction 

of a physical model. Construction of the physical model includes column intake, inlet 

channel, water intake, piping system, fitting and checking valve and pumps. 

 

(iv) Hydraulic data collection on the model testing – In this study, three types of 

measurement were conducted which involve velocity, flow and swirl angle 

measurements. These three measurements were conducted using different special 

equipments that will be explained in the following chapter. Visual tests that engage the 

dye tracing technique were also carried out to understand and identify the flow 

characteristics and vortex position. 

 

(v) Numerical simulation – The simulation had been made by using CFD code i.e. 

FLUENTTM 6.2 software. The FLUENTTM model serves as a tool that discrete and 

solves governing equations for specific geometries using a set of finite volume method.  

 

(vi) Data processing, analysis, interpretation and evaluation – At this stage, all the 

data from experimental methods and numerical methods have to be analyzed. Both 

experimental and simulated data will be interpreted and evaluated accordingly. 
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(vii) Result assessment – This section presented results and analysis of data from 

experimental physical model test, simulated by using CFD method and its comparison.  

 

(viii) Conclusions and recommendation – It is the final chapter for this thesis, which 

highlights the findings of this research and recommendations for further studies on the 

related topic.  

 

1.5  Advantages of the Research  

The outcomes of the research will provide some advantages in understanding 

the flow feature by experimental and numerical methods. The entire advantages are as 

listed below: 

 

1. The vortices including surface vortices and subsurface vortices can be locally 

identified in the numerical model. Perhaps, other hydraulic problem such as 

back flow and dead flow region can also be identified. 

2. By using numerical method, in stead of construction the physical model of pump 

sump, the numerical results could be utilized. These could reduce cost and 

working time. 

3. Operational and maintenance cost of a pump station can be cut off by curbing 

the entire hydraulic problem through more efficient and effective design. 

4. The developed databases can be used to remedy existing problematic pump 

sump which can help other researchers. 

 

1.6  Thesis Structure 

The thesis has been categorized into specific chapters for better understanding 

of the research. The lists of chapters are as follow: 
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Chapter 1: Introduction – This chapter gives an overview of the thesis including five 

important things such as background of the study, problem definition, objective of the 

research, scope of research and advantages of the research. 

 

Chapter 2: Literature review and hypothesis – This chapter provides important 

theoretical and conceptual understanding of related topics based on various 

researches including hypothesis of the research.  

 

Chapter 3: Experimental setup – The experimental setup of the sump intake model 

will be described and it will help to fulfill the proposed designated objectives and 

answer the problems defined. This chapter is the most important part in this thesis. The 

experimental procedures include the data collection procedure using instrumentations. 

 

Chapter 4: Computational Fluid Dynamics – This chapter will discuss the concept, 

theory and the methods of CFD. Besides that, this chapter will give a clear view and 

step by step basic understanding of CFD.  

 

Chapter 5: Result and discussion – Results, analysis, discussion and result 

assessment of experimental and simulation are described in this chapter. Comparison 

of experimental and numerical methods results are described in detail. It will be 

followed by analysis, discussion and result assessments. Furthermore, the result from 

the CFD methods will be visualized and discussed in this chapter. 

 

Chapter 6: Concluding remarks – The final chapter will summarize all the activities 

related to this study, and all the recommendations for further works are presented here.  

 

 



 6

CHAPTER 2 
LITERATURE REVIEW 

 

2.1  Introduction 

 This chapter describes the pump intake structure, Reynolds number, Froude 

number, similitude analysis, mechanism involved in vortex formation, free surface and 

water interface, fundamental of vortex flow in sumps and problem encountered in the 

pump intakes. Finally, a review is presented on Computational Fluid Dynamics (CFD) 

and their application in the physical model of a pump sump.  

 

2.2  Pump Intake Structures 

 The term ‘water intake’ refers to the channel leading from the water source 

which may be a river or reservoir and all installations downstream including the pump 

column or the intake pipe (the suction tube portion of a vertical intake), the approach 

channel (upstream of pump bay) and the pump bay (bounded by the floor, the back 

wall, side walls dividers walls separating adjacent pump column). Usually the upstream 

end of the pump column has an inlet attachment called the suction bell. The function of 

the intake is to supply an evenly distributed flow of water to the pump suction bell.  

 

 Intake structures can be categorized as being clear liquids or solids-bearing 

liquids. For clear liquids, intakes are further classified into rectangular, formed, circular 

and trench types, as well as suction tanks and cans. For solid-bearing liquids, trench 

type and rectangular wet wells are usually considered. These structures are covered in 

detailed laboratory studies where hydraulic modeling is frequently performed to locate 

and suppress or avoid flow problems in existing water intakes. For example, Larsen 

and Padmanabhan (2001) recommended model study to be undertaken for the 

following water intakes conditions: 

• Intakes with asymmetric approach flow (e.g., an offset in the approach channel) 
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• Intakes with multiple-pump sumps with a common approach channel and 

variety of pump-operating combinations. 

• Intakes with pumps capacities greater than 2.5m3/s per pump. 

• Intakes with an expanding approach channel and 

• Intakes with possibilities of screen blockages and/or obstructions close to the 

suction-pipe entrance. 

 

A hydraulic intake structure, such as the multiple pump sump, consists of an 

open channel (pump sump or diversion channel) and a pipe or conduit. The flow in the 

intake involves the transition from a free-surface flow in an open channel to a close 

conduit flow in a pipe. Several of types of intake structure exist. Figure 2.1 shows the 

different types of intake structures. The vertically downwards intake consists of a pipe 

or conduit located just above (or near) the floor of the pump sump. Other intake 

structures include a horizontal intake, inclined downward and upward intakes, and 

vertically upward intakes in free-surface flow. If the flow is not driven by gravity, as in 

the vertically and inclined downward intakes, a pipe is needed to withdraw water from 

the pump sump to its final destination. Therefore, a pump is required in the horizontal, 

the vertically upward and vertically inclined intakes. The intake that requires pumps are 

commonly referred to as pump intakes. For this study, vertically upward intake is used 

in the physical model of pump sump.  

 

There are many researchers who have stated about the specific hydraulic 

phenomena that can adversely affect the performance of pumps (Tullis, 1979; Dicmas, 

1987; Bauer and Nakato, 1997; Larsen and Padmanabhan, 2001; ANSI, 1998 and 

Warring, 1984). The hydraulic phenomenon that has been discussed are free surface 

and subsurface vortices, excessive of flow entraining the pump and its variations with 

time, entraining air or gas bubbles and non-uniform of velocity at the impeller eye and 

excessive variations in velocity with time. 
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Figure 2.1: Types of intake structures (Source: Knauss, 1987) 

 

The sump should be designed to allow the pumps to achieve optimum hydraulic 

performance for all operating conditions. The acceptance criteria for the model test are 
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based on the Hydraulic Institute Standards (1983) recommendations and shall be as 

follows: 

 

• Free surface and subsurface vortices entering the pump must be less severe 

than vortices with coherent (dye) cores (free surface vortices of Type 3 and 

subsurface vortices of Type 2) 

• Dye core vortices may be acceptable only if they occur for less than 10% of the 

time or only infrequent pump operating conditions. 

• Swirl angles, both the short-term (10 to 30 second model) maximum and the 

long-term (10 minute model) average indicated by the swirl meter rotation, must 

be less than 5°. Odgaard and Dlubac (1984) reported swirl rotation must be less 

than 3°. 

• Maximum short-term (10 to 30 second models) swirl angles up to 7 degrees 

may be acceptable, only if they occur less than 10% of the time for infrequent 

pump operating conditions. The swirl meter rotation should be reasonably 

steady, with no rapid changes in direction when rotating near the maximum 

allowable rate (angle). 

• Time-average velocities at points in the throat of the bell or at the pump suction 

in a piping system shall be within 10% of the cross-sectional area average 

velocity. Time-varying fluctuations at a point shall produce a standard deviation 

from the time-averaged signal of less than 10%.  

 

 A set of design criteria has been developed by the Iowa Institute of Hydraulic 

Research (IIHR) based on their vast experience with model studies of pump sumps. 

Nakato and Yoon (1992) summarize them as follows: 

 

• No detectable boundary-attached vortices extending into the pump bells 
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• No free-surface vortices stronger than Type 2 (Arden Research Laboratory 

classification) 

• No velocities measured at the pump throat that vary by more than 10% from the 

average of all local velocities measured in the cross section 

• Vortimeter-tip velocity angles (swirl angles) no greater than 5° 

• No detectable, large scale, persistent unsteadiness or waviness in the pump 

bell approach flows, no indication of persistent large scale turbulence, and no 

flow anomalies judged objectionable by investigators experienced with pump-

intake model test. 

 

The guidelines listed could help to determine whether conditions for the existing 

intake structures are acceptable or not. If the conditions are not acceptable, 

modification to the intake structure should be made until the requirement is satisfied. 

There are many guidelines or the basic designs that have been developed to improve 

the reliability and performance of pump sumps. The Hydraulic Institute Standards 

(1983) and British Hydrodynamics Research Association (Prosser, 1977) detailed 

some recommendations for the multiple pumps in open sumps as illustrated in Figure 

2.2 and Figure 2.3.  
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Figure 2.2: Guidelines for multiple pump sumps (Source: Hydraulic Institute Standards, 
1983) 
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Figure 2.3: Basic sump design for multiple pump sumps according to British 
Hydrodynamics Research Association, (a) open sump and (b) unitized sumps (Source: 

Prosser, 1977) 
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Padmanabhan (1987) has also developed guidelines for single sump and 

multiple sump intakes, which are illustrated in Figure 2.4 and Figure 2.5 These 

guidelines and basic sump design as discussed are considered in this study in 

determining methods to minimize the vortices in the multiple pump sumps. As 

Padmanabhan (1987) states, the guidelines given previously are helpful for the 

preliminary design of pump sumps, but a model study should be performed for more 

complex intake structures and for the evaluation of preliminary designs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

Figure 2.4: Basic design for a single bay sump with uniform approach flow (Source: 
Padmanabhan, 1987) 

 

 

 

 

 

Screens 
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Figure 2.5: Basic design for multiple bay sumps with uniform approach flow (Source: 
Padmanabhan, 1987) 

 
 
  

The American National Standard for Pump Intake Design (1998) recommends 

that the intake design for vertical wet pit pumps is as shown in Figure 2.6 and Figure 

2.7. The geometry is generally defined in terms of the pump inlet bell diameter as 

shown. Once the number and the size of pump required are determined, a pump inlet 

diameter can be estimated. The bell diameter can be estimated based on an inlet pipe 

velocity of between 0.9m/s and 2.4m/s. As the selected bell diameter has been 

determined, the proportions of the inlet structure can be estimated from Figure 2.6 and 

Figure 2.7. Table 2.1 gives recommended values for the dimensions.  

 

Select S using S/D=a+bFD with 
a=1-1.5 and b=2-2.5 

S should also satisfy the 
required NPSH for the sump 
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Figure 2.6: Recommended intake structure layout (Source: American National 
Standard for Pump Intake Design, 1998) 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.7: Filler wall details for proper bay width (Source: American National Standard 
for Pump Intake Design, 1998) 
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Table 2.1: Recommended dimensions for Figures 2.6 and 2.7 (Source: American 
National Standard for Pump Intake Design, 1998) 

 
Dimension Variable Description Recommended Value 

 
A 

 
 

 
a 

 
 

B 
 

 
C 

 
D 
 

H 
 

h 
 
 

S 
 

W 
 

w 
 

 
X 

 
 
 

Y 
 
 

Z1 
 
 
 

Z2 
 
 
α 
 
β 

 
 
 
 
Φ 
 

 
Distance from the pump inlet bell 
centerline to the intake structure 
entrance 
 
Length of constricted bay section near 
the pump inlet 
 
Distance from the back wall to the pump 
inlet bell centerline 
 
Distance between the inlet bell and floor 
 
Inlet bell design outside diameter 
 
Minimum liquid depth 
 
Minimum height of constricted bay 
section near the pump inlet bell 
 
Minimum pump inlet bell submergence 
 
Pump inlet bay entrance width 
 
Constricted bay width near the pump 
inlet bell 
 
Pump inlet bay length 
 
 
 
Distance from pump inlet bell centerline 
to the through-flow traveling screen 
 
Distance from pump inlet bell centerline 
to diverging walls 
 
 
Distance from pump inlet bell centerline 
to sloping area 
 
Angle of floor scope 
 
Angle of wall convergence 
 
 
 
 
Angle of convergence from constricted 
area to bay walls 

 
A = 5D minimum, assuming no 
significant cross-flow* at the 
entrance of the intake structure 
 
a = 2.5D minimum 
 
 
B = 0.75D 
 
 
C = 0.3D to 0.5D 
 
(see text) 
 
H = S + C 

h = (greater of H or 2.5D) 
 
 
S = D (1.0 + 2.3FD) 
 
W = 2D minimum 
 
w = 2D 
 
 
X = 5D minimum, assuming no 
significant cross-flow at the 
entrance to the intake structure 
 
Y = 4D minimum. Dual-flow 
screens required a model study 
 
Z1 = 6D minimum, assuming no 
significant cross-flow* at the 
entrance to the intake structure 
 
Z2 = 5D minimum 
 
 
α = -10 to + 10 degrees 
 
β = 0 to +10 degrees(Negative 
values of β, if used, require flow 
distribution devices developed 
through a physical model study) 
 
Φ = 10 degrees maximum 
 

*Cross-flow is considered significant when Vc > 0.5Vx average 
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2.3  Reynolds’s Number 

In 1883, Osborne Reynolds is the first to develop the basic laws of turbulent 

flow. He studied the flow of liquid in pipes and found that at a low speed the flow is 

smooth but at high speed, the flow is turbulent. He found that the onset of turbulence in 

a smooth pipe was related to the Reynolds number in a very interesting way. In the 

case of pipe flow, where the diameter of the pipe is the characteristic length scale, for 

Re < 2000 the flow is laminar, for 2000 < Re < 4000 there is a gradual change to 

turbulent flow, and for Re > 4000 the flow is turbulent. In the case of open-channel 

flow, such as in canals and rivers, the depth of flow is used as the characteristic length 

scale and open-channel flows are turbulent for > 1000 (Chin, 2000). In most 

engineering applications involving closed-conduit and open-channel flow, the Reynolds 

number limits are far exceeded and the flows are fully turbulent. The formula of 

Reynolds number can be calculated by the equation: 

   

                            Re   =      =     =   
VL VL inertial forces 

viscous forces
ρ

υ μ
            (2.1) 

                                               
 
where,             

       V =    velocity (m/s) 

  L =    characteristic length (m) 

  υ  =    kinematic viscosity (m2/s) 

  µ   =    dynamic viscosity (kg/ms)  

  ρ   =    water density (kg/m3) 

 

 
2.4  Froude Number 
 

The Froude number is the ratio of inertial to gravitational forces and is defined 

for pump sump as: 

 
        (2.2)

                   
     

D 
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where, 
 

FD = Froude Number 

g   = gravitational constant (9.81m/s) 

 
 
 Characteristic length in an open channel is taken to be the hydraulic depth. 

Depending on the magnitude of the ratio of inertial to gravity forces, a flow is classified 

as subcritical, critical or supercritical (French, 1986). If FD = 1, the flow is in a critical 

state with the inertial and gravitational forces in equilibrium. If FD < 1, the flow is in a 

subcritical state, and the gravitational forces are dominant. If FD > 1, the flow is in a 

supercritical state and inertial forces are dominant.  

 

When the flow is subcritical, FD < 1, the velocity of flow is less than the speed of 

an elementary gravity wave. Therefore, such a wave can transmit upstream against the 

flow, and upstream areas are in hydraulic communication with the downstream areas. 

Furthermore, when the flow is supercritical, FD > 1, the velocity of the flow is greater 

than the speed of the elementary gravity wave. Therefore, such wave cannot transmit 

upstream against the flow, and the upstream areas of the channel are not in hydraulic 

communication with the downstream areas. Thus, the possibility of an elementary wave 

transmit upstream against the flow can be used as a criterion for differentiating 

between subcritical and supercritical flows. Critical flow is unstable and often sets up 

standing waves between super and subcritical flow. When the actual depth is below the 

critical depth, it is called supercritical because it is in a higher energy state. Likewise, if 

actual depth is above critical depth it is called subcritical because it is in a lower energy 

state. 

 
 
2.5  Similitude Analysis 
 

In the similitude analysis, the geometric and flow similarity requires the model 

and the flow to be identical as the real model and flow. This is to ensure the result 
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obtained from the model study is well presented in order to predict full scale behavior. If 

similarity has been obtained between model and prototype, the Froude number of the 

model and the prototype must be the same for flow conditions where inertial and 

gravitational forces are dominant.  

 

For similarity of the flow patterns, the Froude number shall be equal in model 

and prototype (American National Standards for Pump Intake Design, ANSI/Hydraulic 

Institute Standards 9.8, 1998): 

 
   (2.3) 

 

where, 

 Fr = Froude ratio parameter 

 Fm = Froude model parameter 

 Fp = Froude prototype parameter 

 

 A reasonable large geometric scale is selected to minimize viscous and surface 

tension scale effects, and to reproduce the flow pattern in the vicinity of the intake. The 

model also shall be large enough to allow visual observations of flow patterns, accurate 

measurements of swirl and velocity distribution and sufficient dimensional control. 

Froude number and Reynolds number for the model and prototype cannot be made 

equal. Fixing the same Froude number for model and prototype results in the velocity 

being reduced in the model depth and a fixed gravity constant. Fixing the Reynolds 

number results in the velocity being increased in the model, given geometric scale 

reduction of dimensions and constant kinematics viscosity.  

 

 Froude and Reynolds number equality could only be achieved simultaneously 

by using a fluid with suitable kinematics viscosity in the model to adjust the Reynolds 

number to match the prototype Reynolds number. However this is not possible and in 
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practice, water is used in the model as well as in the prototype. In the free surface 

work, the gravitational forces are the most important value, so that the Froude number 

must be made equal in the prototype in preference to the Reynolds number. This 

ensures surface profiles, rotational flow and waves are correctly represented. For the 

turbulent flow, the Reynolds number is not particularly important as long as both model 

and prototype have values in the same flow regime (Abustan et al. 2004). If the 

reduced Reynolds number of a model approaches the transitional point of turbulent to 

laminar flow then laminar flow could occur in the model but turbulent or transitional flow 

would occur in the prototype. Clearly this is not acceptable and consequently a 

minimum operable Reynolds number has to be chosen (Abustan et al. 2004). 

 

2.6  Mechanisms Involved in Vortex Formation 

A number focused experimental and numerical investigations have provided 

insight into the fundamental processes leading to the development of vortices in the 

sump intakes. Shin et al. (1986) demonstrated that two basic mechanisms lead to inlet 

vortex formation. The first mechanism involves the development of an inlet vortex due 

to the amplification of ambient vorticity in the approach flow as vortex lines are 

convicted into the inlet. The second mechanism involves the development of a trailing 

vortex in the vicinity of the intake as a result of the variation in circulation along the 

inlet. For this second case, a vortex can develop in a flow that is irrotational upstream, 

and the vortex development therefore does not depend on the presence of ambient 

vorticity. Shin et al. (1986) investigation on kinematic parameters, indicate that the 

strength of an inlet-vortex or trailing vortex system increases with decreasing distance 

from the surface. However, for an inlet in an upstream irrotational flow, two counter 

rotating vortices can still trail from the rear of the inlet. Causes of vortex motion, 

however, are still difficult to define for most practical situations. 
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2.7  Free Surface and Water Interface 

Vortices in the vicinity of pump intakes may be adjacent to the channel bottom 

or a channel wall (submerged vortices) or they may appear adjacent to the free surface 

(free surface vortex). By studying the way that the vortex interact with the free surface, 

more information can be known about the characteristics in vortex formation and 

possibly better prediction methods can be developed as a result of such studies. 

 

The study of the interactions with the free surface requires consideration of the 

dynamics of the vorticity field bounded by a deformable surface. The surface deforms 

to satisfy the conditions that the tangential stress is equal to zero and the normal stress 

is equal to a constant at all times. According to Rood and Edwin (1995), the interaction 

between vorticity and the surface characteristized by both the vorticity and flux of the 

vorticity at the free surface, the deformation of the free surface, and the dynamic 

behavior of the velocity field. The stresses at the interface between the two fluids 

(water and air) must be in balance, such that: 

 
(stress)water side of interface + (stress)air side + (stress)surface = 0         (2.4) 

 

When describing the local details of flow at the free surface, viscous forces 

normally cannot be neglected, especially when describing the vorticity generated by the 

deformation. However, when localized flow details are not taken into account, there are 

instances when the viscous terms can be neglected. By neglecting viscous forces, and 

order of magnitude, estimates of the deformations can be obtained. For estimation of 

the free surface deformation, the approximation is appropriate when the viscous force 

is much less than the inertial force. This condition typically occurs when the flow is at 

high Reynolds number. 
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2.8  Fundamentals of Vortex Flow in Sumps 

Deviations in the pump approach flow distribution are the most common source 

of swirl and vortex formation. Durgin and Hecker (1978) categorized the sources of 

vortex formation into three types: 

• Nonuniform approach flow to the sump due to the geometric orientation of sump 

or approach channel or due to streaming flow patterns generated by 

obstructions such as intake piers or columns. 

• Existence of shear layers of high velocity gradients, including separated 

boundary layers which are inherently rotational. 

• Rotational wakes generated by objects or obstructions in the way of the 

approach flow to the sump. 

 

Padmanabhan (1987) reported that items first and second listed above are 

major sources of vorticity in free surface and submerged vortices in pump sumps, 

respectively. Similar, Anwar (1968) had mention that, the formation of vortices is 

governed by two major factors which are submergence depth or distance from the 

water surface to the entrance of the suction pipe and the swirl in the approach flow. He 

also stated that a reduction in the swirl or an increase in submergence depth can 

prevent the formation of vortices. Chang (1977) summarized the flow processes that 

generate vortices in a pump sump as follow: 

• Asymmetric approach flow – the approach flow has an inherent swirl which can 

be magnified as the flow converges into the intake, due to the conservation of 

angular momentum. 

• Boundary discontinuities – changes in channel cross-section, diffusers, false 

baffles, etc., can cause small eddies to shed, thus adding to the total vorticity. 

The importance of this effect depends on how close the discontinuity is to the 
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intake and the strength of the eddy it creates. The presence of the intake itself 

can also be a source of shading eddies. 

• Boundary layer development – since the velocity at any solid boundary must be 

zero because of viscosity, velocity gradients will be present in the boundary 

layer which generate vorticity. 

• Stagnation point flow – The flow at the plane surface near a gas turbine intake 

showed the existence of a stagnation point towards which the boundary layer, 

containing vorticity, flowed and was subsequently, drawn into the intake. Using 

a combined boundary layer and potential flow analyses, a concentrating 

stagnation point in the free surface is associated with vortex formation at 

hydraulic intakes; and, 

• Secondary layer - The presence of secondary flow currents in a plane 

perpendicular to the main flow direction in straight rectangular channel. These 

secondary flow velocities are only about 1% of the main velocity, but may be of 

sufficient strength to contribute to the instability of vortices. 

 

2.9  Problems Encountered in Pump Intakes 

 The various hydraulic problems associated with pump intakes include formation 

of surface and subsurface vortices, prerotation and swirl, and flow separation at or near 

the suction bell of either wet pit or dry-pit centrifugal pump. Any of these problems 

adversely affect pump performance by causing cavitation, vibrations, and/or loss of 

efficiency (Tullis, 1979; Alboleda and El-Fadel, 1996). Usually there is more than a 

single reason for these problems, and the extents of the combined effects are seldom 

predictable by mathematical modeling.  

 

Formation of vortices, dependent on suction pipe velocity and submergence, is 

strongly influenced by added circulation from vorticity sources, such as a nonuniform 
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approach flow resulting from intake and approach channel geometries; rotational 

wakes shed from obstructions, such a columns or piers; and the velocity gradients 

resulting from boundary layers at the walls and floor (Durgin and Hecker, 1978). The 

circulation contributed by these vorticity sources is unpredictable and strongly depends 

on intake design and operating conditions, especially for large pumping units with 

multiple bays fed by a common approach channel. In these cases, physical modeling is 

the only way of predicting the behavior of the prototype with a reasonable degree of 

reliability. 

 

2.9.1  Free Surface Vortex 
 

Jain et al. (1978) reported that air entraining vortices, known as free surface 

vortices, draw air into the intake from the water surface and thereby cause 

considerable loss of pump efficiency and produce vibrations and noise. Free surface 

vortices are most damaging to the pump when they draw air or trash into the intake 

columns. The intensity of surface vortex varies directly with some functions of intake 

and/or approach velocity and inversely with submergence, assuming upstream 

conditions and other effects to be constant. The change in intensity is gradual, so the 

specific point at which a vortex does or does not exist becomes a matter of definition 

(Dicmas, 1987). To determine minimum submergence of the outlet pipe in the tank, the 

Hydraulic Institute (1998) recommended the following relationship: 

 

 S = (1.0 + 2.3F) D                                       (2.5) 

where, 

 FD = Froude number 

 D = Diameter of inlet opening (m) 

 S = Submergence (m) 

At certain stages of development, formations of vortices can be intermittent, so 

practical definitions have to allow for these variations. Vortices in a model study usually 
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