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SUKATAN DAN RAMALAN KETUMPATAN DAN KELIKATAN BAGI SISTEM 

LARUTAN AKUEUS BINARI DAN TERNARI DARIPADA SUHU  

20 HINGGA 60 °C 

 

ABSTRAK 

Ketumpatan dan kelikatan bagi sistem larutan akueus binari dan ternari 

1-propanol + H2O, 2-propanol + H2O, urea + H2O, 1-propanol + natrium klorida + 

H2O, 1-propanol + urea + H2O, 2-propanol + natrium klorida + H2O dan 

2-propanol + urea + H2O telah ditentukan dalam seluruh julat komposisi dan 

pada julat suhu 20 hingga 60 °C. Tenaga pengaktifan bagi larutan akueus 

1-propanol dan 2-propanol telah dikira dan nilainya ialah 17.93 and 22.15 kJ 

mol-1 masing-masing. Persamaan polinomial dan suatu persamaan berdasarkan 

Hukum Power dan Teori Kadar Mutlak Erying telah diguna untuk 

mengkorelasikan kelikatan larutan akueus 1-propanol dan 2-propanol. Sisihan 

peratusan penyimpangan mutlak purata (AAD) bagi korelasi ini adalah 0.771 % 

dan 1.235 % bagi sistem larutan akueus 1-propanol dan 2-propanol 

masing-masing. Data ketumpatan telah dikorelasi oleh persamaan polinomial. 

Ralat purata bagi semua sistem yang dikaji ialah 3.80292 x 10-4. Ketumpatan 

dan kelikatan menurun dengan kenaikan suhu bagi semua sistem yang dikaji.  

 

Nilai-nilai isipadu molar lebihan (VE) dan kelikatan dinamik lebihan (∆η) telah 

dikira dari data sukatan larutan akueus 1-propanol dan 2-propanol. Nilai-nilai ini 



 xvi

telah dikorelasi sebagai fungsi pecahan mol dengan persamaan Redlich-Kister. 

Nilai bagi isipadu molar lebihan adalah negatif manakala kelikatan dinamik 

lebihan didapati adalah positif dalam seluruh julat komposisi dan suhu. 

 

Pengubahsuaian persamaan kekuatan ionik telah digunakan untuk meramal 

ketumpatan bagi sistem larutan akueus ternari. Nilai ketumpatan ramalan adalah 

bersetuju dengan nilai ketumpatan eksperimen, dengan peratusan ralat purata 

0.29 %. Persamaan penambahan berdasarkan kekuatan ionik larutan campuran 

telah digunakan untuk meramal kelikatan larutan akueus ternari. Percubaan 

telah dibuat untuk mengubahsuai persamaan kekuatan ionik dengan 

menggunakan jumlah kemolalan sebagai ganti kekuatan ionik. Peratusan ralat 

purata ramalan kelikatan bagi sistem yang dikaji adalah 1.63 %. 
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MEASUREMENT AND PREDICTION OF DENSITIES AND VISCOSITIES OF 

AQUEOUS BINARY AND TERNARY SOLUTIONS AT TEMPERATURES 

FROM 20 TO 60 °C 

 

ABSTRACT 

Densities and viscosities of the binary and ternary aqueous solution of 

1-propanol + H2O, 2-propanol + H2O, urea + H2O, 1-propanol + sodium chloride 

+ H2O, 1-propanol + urea + H2O, 2-propanol + sodium chloride + H2O and 

2-propanol + urea + H2O systems were measured over the whole composition 

range at temperatures between 20 and 60 °C. The energies of activation for 

viscous flow for aqueous solutions of 1-propanol and 2-propanol were calculated 

and found to be 17.93 and 22.15 kJ mol-1, respectively. A polynomial equation 

and an equation based on the Power Law and Erying’s absolute rate theory were 

used to correlate the viscosity data of the aqueous solutions of 1-propanol and 

2-propanol. The average absolute deviation percentage errors (AAD) of these 

correlations were found to be 0.771 % and 1.235 % for aqueous solutions of 

1-propanol and 2-propanol, respectively. The density data were correlated by the 

polynomial equation. The average standard deviation for the systems studied is 

3.80292 x 10-4. The densities and viscosities decrease with increase in 

temperatures for all the systems studied.  

 

 



 xviii

The values of excess molar volumes (VE) and viscosity deviations (∆η) were 

calculated from the measured data of 1-propanol and 2-propanol aqueous 

solutions. These values were correlated as a function of mole fraction by using 

the Redlich-Kister equation. The excess volumes are negative whereas the 

viscosity deviations are all positive over the entire composition range at all 

temperatures for the systems studied. 

 

The modified form of the ionic strength additive equation was used to predict the 

densities of the aqueous solution of the ternary systems. The predicted and 

observed densities are in good agreement, with an overall average percent error 

of 0.29 %. An additivity equation based on the ionic strength of the mixed 

solution was used for the viscosity prediction of the viscosity of the aqueous 

ternary solutions. An attempt was made to modify the ionic strength additive 

equation by using total molality instead of ionic strength. The overall average 

error for the viscosity prediction for the systems studied is 1.63 %. 
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CHAPTER ONE 

INTRODUCTION 

 

Many industrial processes involve with systems of aqueous solution containing 

more than one solute. The basic properties of the aqueous solutions most 

commonly used are density, solubility, viscosity, vapor pressure and thermal 

conductivity. A knowledge of thermodynamic and transport properties of 

aqueous solutions is important in engineering, designing new technological 

processes, developing theoretical models and also in research work. Accuracy 

in the design or performance of industrial equipment for handling operations or 

processes involving aqueous salt solutions requires accurate physical data on 

the solutions involved. For engineering utility, reliable solutions over wide range 

of concentration and temperature would be extremely valuable (Horvath, 1985). 

Volumetric properties of aqueous solutions, in conjunction with other 

thermodynamic properties provide useful information about water-solute 

interactions. Density and viscosity of aqueous solutions are required in both 

physical chemistry and chemical engineering calculations involving fluid flow, 

heat and mass transfer (Giro et al., 2003).  

 

Consequently, reliable and accurate data which can be applied to wide ranges 

of temperatures are required. The values of such quantities may sometimes be 

obtained from tables but it is usually found that even the most extensive tables 

do not contain all the data necessary for designing a technological process. The 

properties of fluid mixtures are required to understand the molecular 

interactions. It is usually found that the properties have only been studied for the 
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pure components from which the liquid mixtures are constituted and some 

methods are required for estimating the properties of the mixtures from those of 

pure substances. Such predictions usually entail considerable difficulties. The 

most difficult case occurs when the properties of the compound or mixture in 

question have not been measured at all. In this case the only information 

available may be the structural formula of the given compound.  

 

Although values of the necessary quantities can sometimes be estimated, it 

would clearly be preferable to perform the appropriate measurements and to 

determine the values of the properties under consideration experimentally. This 

is not practicable since the determination of the values of some physical 

properties requires the use of expensive special equipment. For this reason 

knowledge of the methods of computing the values of these physico-chemical 

quantities is of great importance for the technologist. It should theoretically be 

possible to compute the values of the necessary quantities from knowledge of 

the structure of the molecules and the character of the forces joining the atoms 

(Bretsznajder, 1971).   

 

Alcohols are self-associated organic liquids and are widely used in the chemical 

industry. The main uses of alcohols are as solvents for fats, gums, resins, 

paints, lacquers and varnishes, in the making of dyes and for essential oils in 

perfumery. Aqueous solutions of alcohols have served as useful industrial 

solvent media for a variety of separation processes. It also has become popular 

in solar thermal systems. Alcohols and their binary mixtures are also used as 
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solvents in chemistry and modern technology for homogeneous and 

heterogeneous extractive rectification (Naziev et al., 2004). 

 

Urea is a bio-molecule, a nonelectrolyte and hydrophilic water structures 

breaker and is physiologically important compound. Aqueous urea and its 

derivatives are important solvents and have a wide range of applications. It 

causes protein and nucleic acid denaturation. Specific interactions of urea with 

a molecule or changes in the solvent structure may be responsible for the 

denaturation process (Islam and Waris, 2004). The physical effects of urea in 

aqueous solutions are of interest in diffusion and micelle formation (MacDonald 

and Guerrera, 1970). 

 

Sodium chloride is present to a large extent in natural inorganic salt deposits. 

Sodium chloride is used in a plethora of applications, from manufacturing pulp 

and paper to setting dyes in textiles and fabric, to producing soaps and 

detergents. Sodium chloride is also the raw material used to produce chlorine 

which itself is required for the production of many modern materials including 

polyvinyl chloride and pesticides. Industrially, elemental chlorine is usually 

produced by the electrolysis of sodium chloride dissolved in water. Sodium 

metal is produced commercially through the electrolysis of liquid sodium 

chloride. The separation of sodium chloride has been a main objective in the 

inorganic industrial research long time ago (Taboada et al., 2005).  
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1.1 Literature Survey 

Ling and Van Winkle (1958) determined densities and viscosities of 1-propanol 

+ water, toluene + octane, 1-butanol + water, acetone + 1-butanol, benzene + 2-

chloroethanol, carbon tetrachloride + 1-propanol, ethanol + 1,4-dioxane and 

methanol + 1,4-dioxane at temperatures 30, 55, 75 and 95 °C. It was found that 

the liquid viscosity for the same liquid composition was lower at higher 

temperature. The estimated precision in the liquid density determination was 

0.05 %. Densities and refractive indices of 1-propanol, 2-propanol and methanol 

with water were measured at 20 and 25 °C by Chu and Thompson (1962). The 

density-composition curves for both 1-propanol and 2-propanol exhibit a steady 

decrease in density with increase in weight percent of alcohol. Densities and 

viscosities of binary aqueous solutions of 1-propanol have been studied and 

presented using power series equation by Mikhail and Kimel (1963) at 25, 30, 

35, 40 and 50 °C. The maximum deviation of the calculated values as 

compared with the experimental values reported by Mikhail and Kimel (1963) 

was less than 0.15 % and 0.88 % for density and viscosity, respectively.  

 

Viscosity studies of solutions of water in n-aliphatic alcohols were also reported 

at 15, 25, 35 and 45 °C (D’Aprano et al., 1979). The viscosity of most liquids as 

a function of temperature at constant pressure can be represented by Arrhenius 

equation. For most the systems, water decreases the viscosity of the dry 

alcohols, while for the lower members of the series literature data report an 

increase in viscosity on addition of water. Won et al. (1981) measured density, 

viscosity, surface tension, carbon dioxide solubility and diffusivity of methanol, 

ethanol, aqueous propanol and aqueous ethylene glycol solutions at 25 °C. The 
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density and viscosity of aqueous propanol solutions agree well with the data of 

Mikhail and Kimel (1963). 

 

Densities and refractive indices of pure alcohols from methanol to 1-decanol at 

various temperatures were presented by Ortega (1982). The data are discussed 

and correlated versus temperature through an empirical relationship. The 

empirical equation of Eykman is used to check the accuracy of experimental 

densities and refractive indices. Dizechi and Marschall (1982) measured 

kinematic viscosities and densities of eight binary and four ternary liquids 

mixtures of polar components at various temperatures and the data were 

correlated with McAllister’s equation and modified form of the McAllister’s 

equation. Mean percentage deviations and standard percentage errors for 

viscosity were found generally to be smaller than 1 %. Sakurai (1988) measured 

the densities of 2-propanol with water over the entire mole fraction range and 

from 5 to 45 °C at 5 °C intervals. The densities of 2-propanol generally 

decrease with temperature and composition of alcohol. The apparent molar 

volumes of water in 2-propanol increases with temperature. 

 

Kinematic viscosities of eight binary, five ternary and one quaternary liquid 

mixtures are reported for a wide range of temperatures and composition. The 

data were correlated with the McAllister equation and also with two modified 

versions of the McAllister equation (Soliman and Marschall, 1990). Liew et al. 

(1993) determined the viscosities of long chain n-alcohols from 15 to 80 °C. Plot 

of the logarithm of viscosity versus reciprocal absolute temperature were almost 

linear. The energies of activation were found to increase with chain length. The 
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viscosities and densities of 1-propanol + 1-butanol, 1-propanol + 1-pentanol, 1-

butanol + 1-pentanol, 1-butanol + 1-nonanol, 1-butanol + 1-decanol, 1-pentanol 

+ 1-octanol, 1-heptanol + 1-octanol and 1-decanol + 1-undecanol were 

measured over the entire composition range at 35 and 40 °C and at 

atmospheric pressure. The viscosity data were correlated by the McAllister 

equation with an average absolute error (AAD) 0.2 % (Shan and Asfour, 1998). 

 

Hynčica et al. (2004) measured the density for dilute aqueous solutions of 

methanol, ethanol, 1-propanol and 2-propanol in a wide interval of temperature 

and pressure. Herráez and Belda (2006) measured refractive index and density 

of binary mixtures of monoalcohols with water at 25 °C and atmospheric 

pressure. The excess molar volumes are negative in all these systems. Tôrres 

et al. (2007) determined the volumetric properties of binary mixtures of 

acetonitrile and alcohols at different temperatures and atmospheric pressure. 

The experimental results were fitted with the Redlich-Kister type equation. 

 

Romanklw and Chou (1983) determined the densities of aqueous sodium 

chloride, potassium chloride, magnesium chloride and calcium chloride in the 

concentration range 0.5 to 6.1 m by using oscillating tube-type densitometer. 

The data were represented by using least-squares polynomial regression 

analysis. Statistical evaluation of the experimental data indicates that 

uncertainties in the concentration of the solutions during weighing are the major 

source of error in the density measurement. Afzal et al. (1989) determined 

viscosities of aqueous solutions of the chlorides of potassium, sodium, calcium, 

magnesium, strontium, barium, cobalt, nickel, chromium and copper in the wide 
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range of concentrations and from 20 to 50 °C at 5 °C intervals. The ion-solvent 

interaction terms were evaluated in the concentrations range of 0.1 to 5.0 M. 

The data were represented by a newly suggested empirical equation. The 

viscosity coefficients estimated were found to be comparable with literature 

values.  

 

Zhang and Han (1996) determined the viscosity and density of water + sodium 

chloride + potassium chloride solutions at 25 °C. A 3.5th term in molarity was 

added to the extended Jones-Dole equation to produce a new equation. This 

extended Jones-Dole type equation can represent well the viscosities of the 

systems studied to saturated concentrations. The viscosity and density of water 

+ sodium chloride + calcium chloride solutions and water + potassium chloride + 

calcium chloride solutions were measured over the entire concentration range 

at 25 °C. The extended Jones-Dole equation represents well for these systems 

up to high concentration (Zhang et al., 1997). 

 

Herskovits and Kelly (1973) determined the relative viscosity and the viscosity B 

and C coefficients of alcohols, urea and amide solutions. The most significant 

finding of their study was that viscosity increments of most of those solutes 

were in the ranges predicted by the Einstein and Simha equations for rigid 

spherical or ellipsoidal particles. Viscosities for solutions of some α-amino acids 

in 5 mol kg-1 aqueous urea have been determined from 5 to 35 °C at 10 °C 

intervals. The viscosity B-coefficients for the amino acids in the aqueous urea 

solution have been calculated (Wang et al., 2000). Islam and Waris (2004) 

investigated the solute-solvent and ion-solvent interactions in leucine + aqueous 
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urea, sodium chloride + aqueous urea and potassium chloride + aqueous urea 

systems. Pal and Kumar (2004) measured the viscosities and densitites of L-

glycine, L-alanine and L-valine in aqueous urea solutions ranging from 5 to 

25 % urea by mass. The viscosity data have been analysed by Jones-Dole 

equation. The values of the B-coefficients for all amino acids in aqueous urea 

are positive indicating that the ion-solvent interactions are strong. 

 

 

1.2 Density 

The density of a substance, ρ is the ratio of its mass to its volume. Both mass 

and volume are extensive quantities. They specify how much of the substances 

are physically present in the mixture. The dimensions of density are M L-3. 

Density is an intensive quantity relating to the nature of the substance. The 

property varies not only with molecular weight but also with molecular 

interaction and structure. The density of fluids is an important element for 

research and industrial field. Density is used to solve variety of problems such 

as quality control in the production of industrial liquids or concentration 

determination in the food and beverages industries, as in measuring sugar and 

alcohols concentration. Specific applications for density include chemical spill 

models for substances such as oil or toxic gases. In addition, density is often 

required for the estimation of other chemical properties; such as molar 

refraction and viscosity (Nelken, 1990).  

 

The density is useful in conversion of concentration unit and in the investigation 

of interactions in solutions. The density data are used to calculate the apparent 
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molar volumes and partial molar volume at infinite dilution. Apparent molar 

volumes and partial molar volumes give a direct measure of displacement of 

water by solute and thus reflect the compatibility of the solute with water. 

Studies of the apparent molar volumes and partial molar volumes of electrolyte 

solutions are used to examine the ion-ion, ion-solvent, and solvent-solvent 

structural interactions. 

 

Density is a function of temperature for pure liquid. It can be expressed as: 

ρ = kT + m’         (1.1) 

where ρ is the density, k and m’ are constants and T the temperature. More 

complicated relations may have to be used at wider temperature ranges. 

Density is a function of compositions at a given temperature and pressure. For 

nonideal solutions, empirical calibration will give the relationship between 

density and composition. The information of density is important in identification, 

analysis and characterization of many substances in liquid, solid or gaseous 

state (Ortega, 1982). As density is one of the design data, accurate 

fundamental values are needed in plant design to avoid serious effect on plant 

performance and economics, ranging in severity from insignificant to critical. 

Effects of data uncertainties on data-sensitive process design problems are 

fairly large. 

 

There are currently large amounts of aqueous solutions or combination of 

different solutes that involve water and being used in many types of industrial 

processes. Therefore, the need to obtain the densities of these multicomponent 

aqueous solutions is paramount during, before and after each process in order 
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to make analyses or implement improvements. There are many techniques 

used to perform direct measurements of fluid densities. Some of these 

measurement techniques are by utilizing pycnometers, sinker method 

(hydrometer), dilatometers, magnetic float densitometer and vibrating tube flow 

densitometer (Teng and Mather, 1996). A pycnometer is basically a simple 

device that is normally made of glass with various types of sizes. Densities 

under constant pressure and temperature are obtained through a simple 

calculation of mass per volume. The pycnometer has a fixed volume and allows 

the weight of the liquid to be measured. 

 

A vibrating tube flow densitometer is a more complex instrument but it provides 

higher accuracy of the required data. Figure 1.1 shows a general sketch of a 

vibrating tube flow densitometer. It works mainly by measuring the natural 

vibrating frequency of a tube loaded with the liquid under study. When a tube is 

filled with a certain solution, it will vibrate at a different frequency from that of a 

tube with a solution of a different concentration or an empty tube. Although 

these measurement techniques for densities of aqueous solutions are easily 

available and provide adequate accuracy, however, direct measurement is very 

time consuming and not economical for industrial processes that requires a vast 

amount of data. Therefore, many density prediction methods are studied 

nowadays. 
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1.3 Densities of Pure Liquids 

For most pure liquids at constant pressure, the change in density with 

temperature can be summarized accurately by the following equations (Teng 

and Mather, 1996): 

 ρ = A + BT         (1.2) 

 ρ = A’ + B’T + C’T2        (1.3) 

where the values A, B, A’, B’ and C’ are parameters of equation and T is the 

temperature. The term B is negative, and either B’ or C’ is negative because the 

density of fluids decreases with increase in temperature.  

 

 

 
Figure 1.1 A general sketch of a vibrating tube flow densitometer (1, anchoring 
plate; 2, vibrating tube; 3, magnetic pickup; 4, thermoregulated jacket; 5, 
thermoregulated vessel) (Teng and Mather, 1996). 
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1.4 Densities of Aqueous Solutions 

For aqueous binary solutions at constant pressure, the density can be 

expressed as (Xu et al., 1992): 

 ρ = Σ øiρi + ø2 (1 - ø2) (1 + Σ biøi
2) (Σ eiTi)    (1.4) 

where ρi is density of the pure component i, øi, ø2, volume fractions of 

component i and the solute, and bi, ei are polynomial coefficients. In order to 

obtain a good polynomial fit, Equation (1.4) needs a large number of data points 

over the temperature and concentration ranges. Densities of most aqueous 

binary solutions at constant temperature and pressure with increase of its 

molalities show different behaviors.  

 

Figure 1.2 displays some of the general behaviors of densities of aqueous 

binary solutions with the increase of their molalities. Densities of soluble solutes 

with limited solubility are illustrated on Curve I. According to Perry et al. (1997), 

this category belongs to almost all inorganic soluble salts. Curve II represents 

substances such as acetic acids and sulfuric acids that pass through the 

maximum point of concentration as they near their pure solute. Densities of 

aqueous solutions that increase with concentration from dilute solutions to pure 

solutes are illustrated in Curve III. In Curve IV, the density of the solution initially 

increases until a maximum value and then begins to decrease until it is no 

longer higher than the density of pure water but lower. According to Shindo and 

Kusano (1979), the solute 2-methoxyethanol displays this type of behavior. For 

Curve V, it represents a solute that has an increase in density in the dilute 

region but then gradually its density decreases with concentration. Touhara et al. 

(1982) explained that methyethanolamine displays such behaviors. Through 
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Curve VI, it can be seen that the densities of the aqueous solution decrease 

with increase concentration. Solute such as acetone (Kurtz et al., 1965) and 

some alcohols (Herráez and Belda, 2006) give such behaviors. 

 

 

 

 

 
Figure 1.2 Some general behaviors of densities of aqueous solutions with the 
increase of their molalities (Teng and Mather, 1996). 
 

 

ρo 
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1.5 Representation of Densities Data for Aqueous Binary Solutions 

There are various equations representing density as a function of concentration 

that had been proposed (Horvath, 1985). Of the various proposed equations, 

many researchers have used the following equation to represent the density 

data of aqueous binary solutions: 

 1000 (ρ - ρo) = a1m + a2m3/2 + a3m2 + a4m5/2    (1.5)  

where a1 to a4 are temperature dependent parameters, m is the molality, ρ, the 

density of the solution and ρo as the density of water. 

 

Teng and Lenzi (1975) and Teng and Mather (1996) had proposed another form 

for representing the density data. Density is considered to be related to the 

apparent molal volume, Фv  by equation (1.6a): 

 ρ = (1000/m + M2) / (Фv + 1000/mρo)     

    = (ρo + mρoM2/1000) / (1 + mρoФv/1000)    (1.6a) 

with M2 as the molar mass of the solute and Фv  the apparent molal volume. By 

expanding the binomial term in the denominator with -1< mρoФv/1000 <1 gives 

rise to: 

ρ = {ρo + mρoM2/1000} {1 - mρoФv/1000 + (mρoФv/1000)2 - 

    (mρoФv/1000)3 + …} 

 = ρo + ρo {(M2  - ρoФv)/1000} m + ρo
2Фv {(ρoФv - M2) / 106} m2 +  

             ρo
3Фv

2 {(M2 - ρoФv)/109} m3 + ,,,     (1.6b) 

Equation (1.6b) can be simplified in the form of: 

ρ = ρo + Σ ajmj        (1.7) 
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where aj is the polynomial coefficient that is dependent on temperature and mj is 

the molality of the solute. If Equation (1.7) is to be compared with Equation 

(1.6b), then it shows that: 

 a1 = ρo {(M2 - ρoФv) / 103} 

 a2 = ρo
2Фv {(ρoФv - M2) / 106} 

 a3 = ρo
3Фv

2 {(M2 - ρoФv) / 109} 

 

At a certain temperature, the signs of aj depend on the magnitudes of M2 and 

ρoФv. For solutes whose molar masses are larger than ρoФv, like most 

electrolytes, the density polynomial fit will result in positive a1, negative a2, 

positive a3 and so on. Equation (1.7) has been used to fit density of many 

aqueous systems (Teng and Lenzi, 1975). 

 

 

1.6 Predictive Methods for Aqueous Multicomponent Mixtures 

In industry, aqueous solutions usually contain more than one solute of various 

combinations. Direct experimental determination of the densities of aqueous 

multicomponent solutions is tedious and troublesome. In addition, the possible 

combinations of individual solutes in aqueous solutions are tremendously large. 

It is therefore useful to have reliable and convenient predictive methods for the 

estimation of the densities of aqueous multicomponent solutions from the binary 

data (Teng and Mather, 1996). There exist some techniques or methods for the 

prediction of aqueous multicomponent mixtures. These methods are mainly 

equations that can be used to calculate the value of densities of the required 

aqueous multicomponent mixtures. 
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A simple constant ionic strength method (Teng and Mather, 1996) assumes that 

the density of a mixed solution at a given ionic strength is additive in the 

densities of the individual binary solutions at the same ionic strength, Ι: 

ρ = Σ yiρiΙ (constant Ι)       (1.8) 

where yi is the molality fraction of solute i in the mixed solution and ρiΙ is the 

density of the binary solution of solute i with the same ionic strength as that of 

the mixed solution. Although it is a simple method, extrapolation from the 

density-concentration relation may be needed for mixed solution of ionic 

strength beyond the solubility of that particular solute. This occurs when the 

mixed solution involves a solute of low solubility. Since this method involves 

ionic strength, it can only be used to system containing electrolytes. 

 

Young and Smith Mixing Rule (1954) proposed that the apparent molal volume 

of an aqueous mixed electrolyte solution is an additive function of the apparent 

molal volume of each electrolyte in a binary solution at the same ionic strength 

as that of the mixed solution: 

 Фv = Σ yiФvΙ (constant Ι)       (1.9) 

with yi is the molality fraction of solute i in the mixed solution, ФvΙ as the 

apparent molal volume of the solute i that has the same ionic strength as that of 

the mixed solution. 

 

The densities of binary aqueous solutions can be expressed as a function of 

concentration by means of the logarithmic equation:  

ρ = ρo - In {1 - B(p’) p’}       (1.10) 
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where p’ is the weight fraction of solute, B(p’) is a “density function”, expressed 

either by a linear equation, B(p’) = B(0) + βp’ or by an equation of a function 

represented by a discontinuous line consisting of linear segments. The constant 

B(0) and β depend on the nature of the solute and are determined empirically. 

This method can only be applied to solute that has high solubility in water. 

 

Teng and Lenzi (1975) had proposed a method to predict the densities of 

multicomponent aqueous solutions from binary data, which is based on 

solutions of the same density (isopycnotic). It assumes a linear relation between 

the solute molalities of binary and multicomponent aqueous solutions at the 

same density, ρ. It can be expressed generally as: 

 Σ mi / moi = 1  (constant ρ)      (1.11) 

where moi  is molality of binary solute i having the same density as the mixed 

solution, mi, molality of solute i in mixed solution. It states that when two or more 

aqueous solutions of the same density are mixed, the resultant solution will 

have nearly the same density. The short-range solute-solute interactions and 

hydration cross-effects or their mutual cancellation are assumed to be negligible. 

This method can be applied to systems involving electrolyte-electrolyte, 

electrolyte-nonelectrolyte, nonelectrolyte-nonelectrolyte and polyelectrolytes. 

However, a limitation of the method is that the muticomponent density must be 

within the density region of the binaries. 

 

An equation for the apparent molal volume of an electrolyte MvMXvX had been 

derived by Pitzer et al. (1978): 
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Фv = V°2 + ν │ZMZX│ (Av / 3b) ln (1 + bΙ1/2) - 

        2νMνXRT (mBv
mx + m2Cv

mx)      (1.12) 

where Bv
mx = (∂β(0) / ∂P)T + (∂B(1) / ∂P)T (2/α2Ι) {1 - (1 + αΙ1/2) exp(-αΙ1/2)} (1.13) 

 Cv
mx = (νMνX)1/2 (∂CФ / ∂P)T / 2      (1.14) 

Av is the Debye-Hückel coefficient, b = 1.2, α = 2.0. Least-squares regression 

enables values of ∂β(0) / ∂P, ∂B(1) / ∂P and ∂CФ / ∂P to be generated for an 

electrolyte with enough value of Фv and m. Unfortunately, the interaction among 

ions with like-charges is not taken into account in equation (1.12). Equation 

(1.12) needs to be used to calculate the four Фv for the possible cation-anion 

combinations of a ternary solution of mixed-type electrolytes that does not have 

common ions. 

 

Söhnel et al., (1984) proposed that the density of a binary solution can be 

described by the equation: 

 ρ = ρo + α’c - β’c3/2        (1.15) 

where c is the molar concentration (molarity) of the solute, α’ and β’ are 

parameters of equation. For an aqueous ternary solution: 

 ρ = ρo + Σ αi’ci - (Σ βi’3/2ci)3/2      (1.16) 

Densities of several aqueous ternary solutions from 15 to 100 °C had been 

predicted using the above equation. The error was especially large for systems 

of high solute concentration due to the equation not taking into account the 

short-range interactions that are important in concentrated solutions. 

 

Patwardhan and Kumar (1986, 1993) developed a unified model for the 

prediction of thermodynamic properties of aqueous mixed-electrolyte solutions.  
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ρ = Σ Σ ψij / Σ Σ (ψij / ρ°ij)       (1.17) 

where ψij = (1000yij + mijMij)  

 yij = (ISF)i (CF)j + (ISF)j (CF)i 

 (CF) = charge fraction, mizi / CH 

(CH) = total charge, Σ mizi 

 (ISF) = ionic strength fraction, mizi
 2 / 2Ι. 

Like Pitzer equation, for a solution of two electrolytes that contain four different 

ions - two cations, two anions, it requires the density information of four different 

electrolytes that involve all the four ions at the ionic strength of the mixed 

solution. The limitation of the method lies in the solubility of the electrolytes 

involved. 

 

An empirical approach was proposed by Hu (2000) in order to obtain the density 

values of multicomponent aqueous solutions that conform to the isopiestic linear 

relations, which means having the same water activity. This particular approach 

is used to estimate the densities of multicomponent systems from binary 

densities data at the same water activity. Equation (1.18) displays the empirical 

approach: 

 ρ = Σi (mi / mi°) ρi°        (1.18) 

where mi is molality of solute i in the aqueous multicomponent solution, mi°, 

molality of solute i in the aqueous binary solution with the same water activity as 

the aqueous multicomponent solution, ρ, density of the aqueous 

multicomponent solution, ρi°, density of the aqueous binary solution with the 

molality of mi°. 
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Pereira et al. (2001) have proposed an equation relating relative density to 

solvent density. The equation includes the effects of composition and the 

temperature. It is also a predictive model, based on the characteristics 

parameters for each solute.  

ρrel = 1 + d1w + d2w + (T - Tref)      (1.19) 

where ρrel is relative density, d1,d2 are parameters, w is mass fraction of solute 

and T the temperature. 

 

 

1.7 Comparison of the Predictive Methods 

These density predictive methods require density values of the aqueous binary 

solutions of the solutes involved. Good representation of the density of binary 

solutions as a function of compositions is important. Most methods use simple 

polynomial representation. Pitzer’s equation requires obtaining parameters for 

the apparent molal volumes of the binary solutions from non-linear least-

squares regression. The simple constant ionic strength method and isopycnotic 

equation are linear in apparent molar volume, while isopycnotic equation is 

linear in molality ratio. The others are additive and explicit in density. The simple 

ionic strength additive method gives generally higher errors (Teng and Lenzi, 

1975). The Young and Smith Mixing Rule have been shown to give good 

density prediction for electrolyte mixtures. The Patwardhan and Kumar method 

is an additive method but is not a simple one, especially when it involves 

solutes of different types of ions. Pitzer’s equation has been tested for some 

aqueous ternary systems with a common ion (Kumar and Atkinson, 1983; 

Kumar, 1985). It gives excellent predictions of the density, especially when the 
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binary mixing terms are included. All of these methods are only applicable to 

aqueous electrolyte solutions. For nonelectrolyte solutions, ionic strength is 

undefined. The method that can be applied to aqueous systems other than 

electrolytes is the isopycnotic method but the aqueous binary solution of the 

solutes involved must have common density. From the methods obtained, it 

was found that there is no convenient predictive method for density of ternary 

systems especially for solutions without common density. 

 

 

1.8 Viscosity 

Viscosity is a measure of the internal fluid friction, which tends to oppose any 

dynamic change in the fluid motion (Poling et al., 2001). Viscosity is the 

property of a fluid-liquid or gas that mainly characterizes its flow behavior. The 

concept of viscosity embraces the idea of the internal friction between the 

molecules of the fluid for, whenever any part of a fluid is caused to move, 

neighboring parts tend to be carried along too. This resistance to the 

development of velocity differences within a fluid is the essential feature of 

viscosity and it forms the basic of the quantitative assessment of viscosity 

(Dinsdale and Moore, 1962).  

 

Viscosity varies with temperature. In general, the viscosity of a simple liquid 

decreases with increasing temperature and vice versa. As temperature 

increases, the average speed of the molecules in a liquid increases and the 

amount of time they spend "in contact" with their nearest neighbors decreases. 

Thus, as temperature increases, the average intermolecular forces decrease. 
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Viscosity is normally independent of pressure, but liquids under extreme 

pressure often experience an increase in viscosity. 

 

The measurement of viscosity is of considerable importance in both industrial 

production and fundamental science. Viscosity is the quantity that determines 

the forces to be overcome when fluids are used in pipelines or bearing, and it 

controls the flow of liquid in such processes. In other applications the 

measurement of viscosity affords a convenient means of checking the 

constancy of a product. Viscosity measurement has also proved to be a 

valuable tool for the physical chemist since the viscosity coefficient is profoundly 

influenced by the size, shape and arrangement of the molecules.  

 

For laminar flow of a Newtonian fluid, the dynamic viscosity, η can be defined 

simply as the force per unit area required to maintain unit difference in velocity 

between two parallel layers of the fluid which are unit distance apart (Stokes 

and Mills, 1965). It may be written as: 

 η = ז / (∂u / ∂y)        (1.20)   

where η is the absolute viscosity, ז is the force per unit area or shear stress and 

∂u/∂y is the velocity gradient normal to the planes of flow. Because η appears 

as a proportionality factor between the shear stress and velocity gradient, it is 

usually termed the coefficient of viscosity. The dimensions of absolute viscosity 

are M L-1 T-1. The kinematic viscosity is a measure of the resistive flow of a fluid 

under the influence of gravity. It is defined as the ratio of absolute viscosity to 

density and can be expressed as: 

 η / ρ         (1.21) = ע 



 23

where ע is the kinematic viscosity. The dimensions in this case are L2 T-1. The 

unit of kinematic viscosity is the stoke, with the units square centimeters per 

second. In the SΙ system of units, viscosities are expressed in Pa s and 

kinematic viscosities in either m2 s-1 or cm2 s-1. Relative viscosity is the ratio of 

the viscosity of a solution to that of the pure solvent under the same conditions. 

The relative viscosity of solutions is given by 

 ηrel = η / η°         (1.22) 

 

The specific viscosity is the ratio of the difference between the solution and 

solvent viscosities to the solvent viscosity. The specific viscosity has the form: 

 ηsp = (η - η°) / η° 

       = ηrel - 1         (1.23) 

 

 

1.9 Viscosity of Water 

According to Franks (1972), the primary reference liquid for viscosity 

measurements is water. Therefore, viscosity of water at different temperatures 

must be very accurate at atmospheric pressure.  

 

 

1.10 Viscosities of Pure Liquids 

The viscosity of a liquid is a measure of the forces that work against movement 

or flow when a shearing stress is applied (Grain, 1990). The molecules in a 

liquid are held together much more strongly than in a gas. Viscosity is a 

measure of the force needed to overcome the mutual attraction of the 
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molecules so that they can be displaced relative to each other. The more 

strongly the molecules are held together, the smaller the flow for a given 

shearing stress. With increasing temperature, the random kinetic energy of the 

molecules helps to overcome the molecular forces and reduces the viscosity. 

 

Newton deduced that the viscosity produces retarding forces proportional to the 

velocity gradient (du/dx) and to the area (AL) of contact between moving sheets 

of liquid (James and Prichard, 1974). Thus the retarding force is shown as: 

 F α AL du/dx = η AL du/dx       (1.24) 

where η is the coefficient of viscosity or dynamic viscosity. This equation is not 

valid for the non-Newtonian liquids.  

 

The viscosity of a liquid always decreases with temperature and many empirical 

equations representing the dependence have been proposed. The viscosity of 

liquids depends on factors such as molecular size and intermolecular forces. 

The best known equation for representing the viscosity-temperature relation is 

due to Andrade-Guzman Equation as shown below: 

 η = A’’expB’’/T         (1.25) 

with η is the viscosity, T is temperature in Kelvin, and A’’ and B’’ are constants. 

This equation is successful for simple liquids but associated liquids, oils, fused 

salts, and some liquid metals are known to show serious deviations (Misra and 

Varshni, 1961). Equation (1.25) can be modified to Arrhenius type equation in 

the form of: 

 η = A’’expE(vis)/RT        (1.26) 
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