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PENGANGGAR PINCANG BARU UNTUK MENANGANI  
MASALAH KEKOLINEARAN 

 
ABSTRAK 

 
 

Analisis regresi merupakan satu kaedah statistik yang sering digunakan dalam 

bidang ekonomi, teknologi, sains sosial dan kewangan. Model regresi linear 

menerangkan hubungan antara satu pembolehubah sambutan dengan satu 

atau lebih pembolehubah tak bersandar. Kekolinearan ditakrifkan sebagai 

kewujudan hubungan yang hampir linear antara pembolehubah-pembolehubah 

tak bersandar. Kewujudan kekolinearan yang serius akan mengurangkan 

kejituan anggaran parameter dalam model regresi linear. Penganggar Kaedah 

Kuasa Dua Terkecil (Ordinary Least Squares Estimator) adalah satu anggaran 

saksama yang digunakan untuk menganggar parameter-parameter anu dalam 

model regresi linear. Nilai varians bagi Penganggar Kaedah Kuasa Dua Terkecil 

adalah amat besar dalam kes kekolinearan. Oleh itu, penganggar pincang 

dicadangkan sebagai alternatif bagi Penganggar Kaedah Kuasa Dua Terkecil. 

Dua penganggar pincang baru serta sifat-sifat penganggar tersebut seperti 

pincang (bias), varians dan min ralat kuasa dua telah diterbitkan dari teori 

dalam kajian ini. Dua cara telah digunakan untuk mendapat penganggar-

penganggar pincang baru ini. Dengan cara pertama, satu penganggar pincang 

baru diterbitkan dengan mengurangkan pincang Penganggar Liu-type khas 

(special case of the Liu-type Estimator). Dengan cara kedua, satu penganggar 

pincang baru diterbitkan dengan menggabungkan Penganggar Regresi 

Komponen Prinsipal (Principal Component Regression Estimator) dan 

Penganggar Liu-type khas. Penganggar pincang baru ini dinamakan ‘r-c Class 

Estimator’. Prestasi penganggar-penganggar baru ini dinilai dengan 



 xviii 

membandingkan min ralat kuasa dua mereka dengan penganggar-penganggar 

lain. Penganggar pincang baru pertama dibandingkan dengan Penganggar 

Kaedah Kuasa Dua Terkecil, Penganggar Liu-type khas, Penganggar Regresi 

Ridge (Ordinary Ridge Regression Estimator) dan Penganggar Liu (Liu 

Estimator). Penganggar pincang baru kedua iaitu ‘r-c Class Estimator’ 

dibandingkan dengan Penganggar Kaedah Kuasa Dua Terkecil, Penganggar 

Regresi Komponen Prinsipal dan penganggar Liu-type khas. Teknik yang 

berlainan telah digunakan untuk membandingkan penganggar-penganggar ini 

dalam situasi yang berlainan. Perbandingan ini adalah dijalankan dari segi teori. 

Satu set data juga digunakan untuk menjalankan perbandingan antara 

penganggar-penganggar tersebut. Perbandingan ini telah menunjukkan bahawa 

min ralat kuasa dua penganggar-penganggar pincang baru ini adalah lebih kecil 

daripada min ralat kuasa dua penganggar-penganggar lain di bawah situasi 

tertentu. Maka, kejituan anggaran parameter dapat dipertingkatkan dengan 

menggunakan penganggar-penganggar pincang baru ini dalam kekolinearan. 

Secara tidak langsung, kelemahan kekolinearan dikurangkan. Oleh itu, 

penganggar-penganggar pincang baru ini adalah lebih berkesan dan boleh 

dipertimbangkan sebagai anggaran parameter dalam model regresi linear demi 

menghasilkan model regresi linear yang lebih bagus. 
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NEW BIASED ESTIMATORS TO HANDLE THE 
PROBLEM OF MULTICOLLINEARITY 

 
ABSTRACT 

 
 

Regression analysis is a statistical method widely used in many fields such as 

economics, technology, social sciences and finance. A linear regression model 

is constructed to describe the relationship between the dependent variable and 

one or several independent variables. Multicollinearity is defined as the 

existence of nearly linear dependency among the independent variables. The 

presence of serious multicollinearity would reduce the accuracy of the 

parameter estimate in a linear regression model. The Ordinary Least Squares 

Estimator is an unbiased estimator that is used to estimate the unknown 

parameters in the model. The variance of the Ordinary Least Squares Estimator 

would be very large in the presence of multicollinearity. Therefore, biased 

estimators are suggested as alternatives to the Ordinary Least Squares 

Estimator. In this study, two new biased estimators are proposed from theory 

and their properties such as the bias, variance and mean squared error are 

derived. Two approaches are used to obtain the new biased estimators. The 

first approach reduces the bias of the special case of the Liu-type Estimator. 

Thus, a new estimator is obtained. The second approach combines the 

Principal Component Regression Estimator and the special case of the Liu-type 

Estimator. Thus, another new estimator named as the r-c Class Estimator, is 

obtained. The performance of these estimators is evaluated by comparing these 

estimators with some existing estimators in terms of mean squared error. The 

first new estimator is compared with the Ordinary Least Squares Estimator, the 

special case of the Liu-type Estimator, the Ordinary Ridge Regression Estimator 



 xx 

and the Liu Estimator. The second new estimator, that is the r-c Class 

Estimator, is compared with the least squares estimator, the Principal 

Component Regression Estimator and the special case of the Liu-type 

Estimator. Different techniques have been established to perform the 

comparisons depending on different situations. These comparisons between the 

estimators are done from a theoretical basis. In addition, numerical 

comparisons between these estimators are also done by using a data set. The 

comparisons show that these new estimators are superior to other estimators in 

terms of a reduction in the mean squared error when certain conditions are 

satisfied. Hence, the accuracy of the parameter estimate increases. Indirectly, 

the impact of multicollinearity is reduced. Therefore, the proposed new 

estimators can be considered in the linear regression model in order to obtain a 

better regression equation.  
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CHAPTER ONE 
 

INTRODUCTION 
 

 
1.1      Introduction 
 
Multicollinearity is one of the problems we face in regression analysis. In the 

presence of multicollinearity, biased estimators have been suggested as 

alternatives to the least squares estimator to improve the accuracy of the 

parameter estimates in the linear regression model. In this study, new biased 

estimators to handle the problem of multicollinearity are proposed. The 

background of the study, problem identification, objectives of the study, 

significance of the study, scope of the study and organization of the thesis are 

presented in this chapter. 

 

1.2  Background of the Study 

A linear regression model is constructed to describe the relationship between 

the dependent variable and the related independent variables. The linear 

regression model with p  independent variables, 1 2, , ..., pw w w , and a 

dependent variable, *y , is generally written as  

 

  * *

0 1 1 2 2 ... p py w w wφ φ φ φ ε= + + + + + ,                               (1.1) 

 

where jφ , 0, 1, 2, ...,j p= , is a parameter and *ε  is the error term.         

Suppose there are n  observations in the data, the linear regression model can 

be written in the matrix form                   

                



 2 

∗ ∗= +Y Wφ ε ,                (1.2) 

 

where ∗Y  is an ×n 1 vector of the observed random variables, W  is an 

( 1)n p× +  matrix of the known independent variables, φ  is a ( 1) 1p + ×  vector of 

parameters,  ∗
ε  is an ×n 1 vector of errors such that 2~ N( , )nσ∗

∗ε 0 I  and nI  is an 

identity matrix of dimension ×n n . The matrix W  is given by 

 

11 1

21 2

1

1

1

1

p

p

n np

w w

w w

w w

 
 
 =
 
  
 

W

�

�

� � � �

�

. 

 

One of the problems in regression analysis is the linear dependencies among 

the independent variables. This problem is known as multicollinearity. 

Multicollinearity represents a near exact relationship between two or more 

variables. Assume that the relationship between 1 2, , ..., pw w w  can be written as  

 

                                       1 1 2 2 ... p pa w a w a w k+ + + ≈ ,                                      (1.3) 

 

where ja , 1, 2, ...,j p= , and k  are constants.    

The regressors 1 2, , ..., pw w w  with nonzero constants are multicollinear (Ryan, 

1997). Note that the term multicollinearity is used interchangeably with 

collinearity (Belsley, 1991). 
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Data with multicollinearity frequently arise and cause problems in many 

applications of linear regression such as in econometrics, oceanography, 

geophysics and other fields that rely on nonexperimental data. Multicollinearity 

is a natural flaw in the data set due to the uncontrollable operations of the data-

generating mechanism (Belsley, 1991).  

 

In estimating the parameters in the regression model, it is often stated that 

multicollinearity can cause the signs of the parameter estimator to be wrong. 

The presence of multicollinearity will also mislead with the significance test 

telling us that some important variables are not needed in the model (Belsley, 

1991; Rawlings et al., 1998). Multicollinearity causes a reduction of statistical 

power in the ability of statistical tests. 

 

Furthermore, the unique solution for the parameter estimator is very unstable. 

The parameter estimators would change drastically when small changes occur 

in the dependent or independent variables (Rawlings et al., 1998). This also 

relates to the high variances in the parameter estimators. The variances of the 

parameter estimators for the independent variables involved in multicollinearity 

would be very large. A consequence of having large variances is that the width 

of the confidence intervals for the parameters will also be inflated. Therefore, 

the impact of multicollinearity is serious if the primary interest of a study is in 

estimating the parameters and identifying the important variables in the 

process. 

 

 



 4 

1.3  Problem Identification 

In order to estimate the unknown parameter, φ , in the linear regression model 

(1.2), the method of least squares is used. The least squares estimation 

procedure uses the criterion that the solution must give the smallest possible 

sum of squared deviations of the observed dependent variable from the 

estimates of their true means provided by the solution. The least squares 

principle chooses an estimator that minimizes the sum of squares of the 

residuals, that is, ( )∗ ∗′ε ε  (Rawlings et al., 1998). Let φ̂  be the least squares 

estimator of the parameter φ . The estimator, φ̂ , is given by 

 

    1ˆ ( ) ( )−′ ′=φ W W W Y* .                    (1.4) 

 

The least squares estimator as shown in Equation (1.4) is often called the 

Ordinary Least Squares Estimator (OLSE) of the parameter φ  (Belsley, 1991). 

The Ordinary Least Squares Estimator, φ̂ , is an unbiased estimator of φ  

because the expected value of the estimator φ̂  is equal to the parameter φ . 

The Ordinary Least Squares Estimator is also the best linear unbiased 

estimator because it has the minimum variance of all possible estimators that 

are both linear functions of the data and unbiased for the parameter (Rawlings 

et al., 1998). However, the minimum variance may be unacceptably large in the 

presence of multicollinearity (Rawlings et al., 1998). 

 

The mean squared error of an estimator is a measure of the goodness of the 

estimator. The mean squared error is equal to the variance of the estimator plus 

the square of its bias. The unbiased estimator, Ordinary Least Squares 
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Estimator, has no bias, but the high variance would cause the mean squared 

error of the estimator to become very large in the presence of multicollinearity. 

As a result, the accuracy of the parameter estimate is in question. 

 

The unbiased estimator has no bias from the parameter to be estimated while 

the biased estimator has a bias from the parameter. Some biased estimators 

have been suggested as a means to improve the accuracy of the parameter 

estimate in the model where multicollinearity exists. Although the biased 

estimator has a certain amount of bias, it is possible for the variance of a biased 

estimator to be sufficiently smaller than the variance of the unbiased estimator 

to compensate for the bias introduced. Thus, the biased estimator has a smaller 

mean squared error and the accuracy of the parameter estimate is improved. 

The biased estimators that have been proposed are the Ordinary Ridge 

Regression Estimator (Hoerl and Kennard, 1970a,b), the Liu Estimator (Liu, 

1993), the Principal Component Regression Estimator (Massy, 1965; 

Marquardt, 1970; Hawkins, 1973; Greenberg, 1975) and the Iteration Estimator 

(Trenkler, 1978). 

 

Some comparisons between the biased estimators have been done. From most 

of the comparisons between the biased estimators (Trenkler, 1980; Nomura, 

1988; Akdeniz and Kaciranlar, 1995; Sakallioglu et al., 2001; Akdeniz and Erol, 

2003), which estimator is better depends on the unknown parameters and the 

variance of the error term in the linear regression model as well as the choice of 

the biasing factors in biased estimators. Therefore, there is still room for 
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improvement where new biased estimators could be developed in order to 

provide a better solution. 

 

1.4  Objectives of the Study 

The objectives of the study are: 

(1) to develop new biased estimators to improve the accuracy of the parameter 

estimator in the model when multicollinearity exists. 

(2) to investigate the performance of the new biased estimators by comparing 

the new biased estimators with existing estimators in terms of mean squared 

error. 

 

1.5  Significance of the Study 

Linear regression model is widely used in many applications. Multicollinearity is 

a problem in regression analysis. The variance of the unbiased estimator, 

Ordinary Least Squares Estimator, is often unacceptably large in the presence 

of multicollinearity. Thus, the accuracy of the parameter estimator in the model 

is reduced and the large variance has had a serious impact on the linear 

regression model. By introducing more efficient new biased estimators to 

handle the problem of multicollinearity, the impact of multicollinearity would be 

reduced and hence provide a more meaningful regression model. 

 

1.6  Scope of the Study 

In this study, the problem of multicollinearity in the linear regression model is 

studied.  A linear regression model has a linear function of the parameters as 
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shown in Equation (1.1). The problem of multicollinearity is handled by using 

biased estimators in regression analysis. 

 

1.7  Organization of Thesis 

An overview on the multicollinearity diagnostics and the methods to handle the 

problem of multicollinearity is given in Chapter 2. The existing biased estimators 

and the unbiased estimator are also reviewed in detail in Chapter 2. In this 

study, new biased estimators are developed from theory. The development of 

these new biased estimators and their properties are presented in Chapter 3. In 

addition, some comparisons between these new estimators and other 

estimators are performed in order to investigate the performance of these new 

biased estimators. The comparisons between the estimators from theory are 

presented in Chapter 4. A numerical comparison between the estimators is also 

performed and it is presented in Chapter 5. Chapter 6 gives the summary and 

conclusions of the study. 
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CHAPTER TWO 
 

LITERATURE REVIEW 
 

 
2.1     Introduction 
 
In this study, the problem of multicollinearity in the linear regression model is 

studied.  A linear regression model that has a linear function of the parameters 

is defined in this chapter. An overview on the multicollinearity diagnostics is also 

presented. Several clues that are used to detect the presence of 

multicollinearity are discussed. Some issues related to multicollinearity 

diagnostics are also presented. Besides, an overview on the methods to handle 

the problem of multicollinearity is presented. In particular, some biased 

estimators have been suggested as a means to improve the accuracy of the 

parameter estimate in the model when multicollinearity exists. The rationale for 

using biased estimators instead of unbiased estimator for the model when 

multicollinearity exists is given. The details of a list of biased estimators 

reviewed are presented in this chapter.   

 

2.2  Linear Regression Model 

A linear regression model with p  independent variables, 1 2, , ..., pw w w , and a 

dependent variable, *y , is generally written as  

 

  * *

0 1 1 2 2 ... p py w w wφ φ φ φ ε= + + + + + ,                               (2.1) 

 

where jφ , 0, 1, 2, ...,j p= , is a parameter and *ε  is the error term.         
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The regression model as shown in Equation (2.1) is a linear regression model 

because it is a linear function of the parameters. In this study, the problem of 

multicollinearity in the linear regression model is studied. 

 

Suppose there are n  observations in the data, the linear regression model can 

be written in the matrix form (see page 2 for details)                   

                

∗ ∗= +Y Wφ ε .               (2.2) 

 

Let φ̂  be the least squares estimator of the parameter φ . The estimator, φ̂ , is 

given by (Belsley, 1991) 

 

1ˆ ( ) ( )−′ ′=φ W W W Y* .                  (2.3) 

 

The least squares estimator as shown in Equation (2.3) is often called the 

Ordinary Least Squares Estimator of the parameter φ . 

                 

Suppose standardization is done on the dependent variable and independent 

variables so that the length of each vector is one. The standardization refers to 

the centering and scaling process. Let Y  and Z  be the vector of standardized 

dependent variables and the matrix of standardized independent variables, 

respectively. The element of the vector of standardized dependent variables, Y ,  

is given by (Ryan, 1997) 
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* *

* * 2

1
( )

i
i n

ii

y y
y

y y
=

−
=

−∑
,               (2.4) 

 

where iy , 1, 2, ...,i n= , is the element of the vector of standardized dependent  

                 variable, Y ,   

           *

iy , 1, 2, ...,i n= , is the element of the vector ∗Y , and  

           

*

* 1

n

ii
y

y
n
==

∑
 is the mean of the dependent variable *y .                     

The element of the matrix of standardized independent variables, Z ,  is given 

by (Ryan, 1997) 

           

            
2

1
( )

ij j

ij n

ij ji

w w
z

w w
=

−
=

−∑
      (2.5)

  

where ijz , 1, 2, ...,i n= ,  1, 2, ...,j p= , is the element of the matrix of  

                 standardized independent variables, Z ,  

           ijw , 1, 2, ...,i n= , 1, 2, ...,j p= , is the element of the matrix W , and   

           1

n

iji
j

w
w

n
==

∑
 is the mean of the independent variable jw , 1, 2, ...,j p= .               

 

Thus, the linear regression model with p  standardized independent variables, 

1 2, , ..., pz z z , and a standardized dependent variable, y , is generally written as  

 

   1 1 2 2 ... p py z z zγ γ γ ε= + + + + ,                               (2.6) 
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where jγ , 1, 2, ...,j p= , is a parameter and ε  is the error term.         

When standardization is done on the dependent variable and independent 

variables, the linear regression model with standardized variables has no 

intercept because the mean of the standardized dependent variable, y , is equal 

to zero.  

 

Suppose there are n  observations in the data. A linear regression model with 

standardized variables can be written in the matrix form                   

                

= +Y Zγ ε ,                (2.7) 

 

where Y  is an ×n 1 vector of standardized dependent variables, Z  is an ×n p  

matrix of standardized independent variables, γ  is a ×p 1 vector of parameters, 

ε  is an ×n 1 vector of errors such that 2~ N( , )nσε 0 I  and nI  is an identity matrix 

of dimension ×n n . 

 

Let γ̂  be the least squares estimator of the parameter γ . The estimator, γ̂ , is 

given by (Belsley, 1991) 

 

−′ ′= 1ˆ ( )γ Z Z Z Y .                  (2.8) 

 

The least squares estimator as shown in Equation (2.8) is often called the 

Ordinary Least Squares Estimator of the parameter γ . 
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Let ˆ jγ  and ˆ
jφ , 1, 2, ...,j p= , be the least squares estimators of the parameters, 

jγ  and jφ , respectively. The relationship between the least squares estimators, 

ˆ jγ  and ˆ
jφ , is given by (Ryan, 1997) 

 

    

2

1

2

1

( )
ˆˆ

( )

n

ij ji
j jn

ii

w w

y y
γ φ=

∗ ∗

=

−
=

−

∑
∑

,     (2.9) 

 

where ijw , 1, 2, ...,i n= , 1, 2, ...,j p= , is an element of the matrix W , 

           1

n

iji
j

w
w

n
==

∑
 is the mean of the independent variable jw , 1, 2, ...,j p= , 

*

iy , 1, 2, ...,i n= , is an element of the vector ∗Y , and  

           

*

* 1

n

ii
y

y
n
==

∑
 is the mean of  the dependent variable *y . 

 

Let the matrix λ  be a ×p p  diagonal matrix whose diagonal elements are the 

eigenvalues of ′Z Z . The matrix λ  is given by 

 

1 2diag( , , ..., )pλ λ λ=λ ,               

 

where jλ , 1, 2, ...,j p= , is the j-th eigenvalue of ′Z Z  and 

max 1 2 min... 0pλ λ λ λ λ= ≥ ≥ ≥ = > . 

Let the matrix T  be a ×p p  orthonormal matrix consisting of the p  eigenvectors 

of ′Z Z . The matrix T  is given by 
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1 2[ , , ..., ]p=T t t t ,               

 

where jt , 1, 2, ...,j p= , is the j-th eigenvector of ′Z Z  and jt  is a 1p ×  vector 

where the k-th element of eigenvector jt  is denoted by kjt , , 1, 2, ...,j k p= .  

Note that the matrix T  and the matrix λ  satisfy ′ ′ =T Z ZT λ  and ′ ′= =T T TT I , 

where I  is a p p×  identity matrix.  

 

The eigenanalysis for the purpose of multicollinearity diagnostics typically is 

done on ′Z Z , where Z  is the matrix of standardized independent variables. The 

standardization is necessary to prevent the eigenanalysis from being dominated 

by one or two of the independent variables. If standardization is not performed, 

the independent variables in their original units of measure would contribute 

unequally to the eigenvalues (Rawlings et al., 1998). 

 

2.3  Methods for Detecting Multicollinearity 

The problem of multicollinearity can be avoided in regression analysis by 

conducting a designed experiment. The independent variables in a well 

designed experiment should be uncorrelated. Unfortunately, time and cost 

constraints may prevent the researchers from collecting data in this manner. 

Therefore, much of the data collected are observational (Mendenhall and 

Sincich, 2003). Since observational data frequently consists of correlated 

independent variables, we should detect the presence of multicollinearity in the 

data. Then, corrective action should be taken if necessary in order to reduce the 

impact of multicollinearity on the regression analysis. Therefore, multicollinearity 
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diagnostics should be carried out in order to detect the presence of 

multicollinearity.  

 

A review on the multicollinearity diagnostics is presented in Section 2.3.1 while 

some issues related to multicollinearity diagnostics are presented in Section 

2.3.2. 

 

2.3.1  A Review of Multicollinearity Diagnostics 

There are several clues that could be used as a guide for multicollinearity 

diagnostics. The clues that are employed to detect the presence of 

multicollinearity are as follows: 

 

(a) Wrong sign of the parameter estimate  

In the presence of multicollinearity in the data, the sign of the parameter 

estimates can differ from the sign of the parameters based on the basic prior 

information about the true parameters (Belsley, 1991; Rawlings et al., 1998).  

 

(b) Important variables appearing as unimportant from the significance 

test 

The variances of the parameter estimates involved in the multicollinearity 

become very large. Thus, some known important variables have low t-statistics 

and hence the variables appear as unimportant from the significance test. 

These known important variables in the model are replaced with incidental 

variables that are involved in the multicollinearity (Belsley, 1991; Rawlings et al., 

1998).  
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(c) High correlations between the independent variables which are shown 

in the correlation matrix  

The correlation matrix is simply the matrix ′Z Z  (Belsley, 1991). The matrix ′Z Z  

is a square symmetric matrix where each element in the matrix is the correlation 

coefficient between the independent variables. The correlation matrix is given 

by                        

    

12 1

21 2

1 2

1

1

1

p

p

p p

r r

r r

r r

 
 
 ′ =
 
 
  

Z Z

�

�

� � � �

�

,                    

                                         

where 1

2 2

1 1

( )( )

( ) ( )

n

ik k im mi
km

n n

ik k im mi i

w w w w
r

w w w w

=

= =

− −
=

− −

∑

∑ ∑
, , 1, 2, ...,k m p= , represents the  

                   correlation coefficient between independent variables kw  and mw , 

         1

n

iki
k

w
w

n
==

∑
, 1

n

imi
m

w
w

n
==

∑
 are the means of the independent variables  

                 kw  and mw , respectively, , 1, 2, ...,k m p= , and 

         ikw , imw , 1, 2, ...,i n= , , 1, 2, ...,k m p= , are the elements of the matrix   

                 W . 

High correlation coefficient values between the independent variables in the 

correlation matrix indicate multicollinearity in the data. However, this clue is 

suitable for the linear regression model which consists of only two independent 

variables. In the case where the linear regression model consists of more than 

two independent variables, looking at the value of the correlation coefficient in 

the correlation matrix would not be sufficient because large values of the 
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correlation coefficients between independent variables will only identify 

multicollinearity involving two variables but may miss those involving more than 

two variables. Thus, the correlation matrix is unable to reveal the presence or 

number of several coexisting collinear relations (Belsley, 1991). 

 

(d) Large value of the variance inflation factor 

The variance inflation factor for the j-th parameter, jVIF , is the j-th diagonal 

element of matrix 1( )−′Z Z , where 1, 2, ...,j p=  and Z  is the matrix of 

standardized independent variables. The term variance inflation factor comes 

from the fact that the variance of the j-th parameter estimate is directly 

proportional to jVIF  (Belsley et al., 1980; Ryan, 1997). 

  

A large value of variance inflation factor is another clue for detecting the 

problem of multicollinearity. A value of 10jVIF >  is a guideline for serious 

multicollinearity (Rawlings et al., 1998). The presence of multicollinearity would 

result in having inflated variances of the parameter estimates. Thus, the width of 

the confidence intervals for the parameters will also be inflated, perhaps even to 

the point of rendering one or more intervals useless (Ryan, 1997). 

 

A large value of jVIF  indicates there is multicollinearity involving jz  and the 

other independent variables. This is due to the fact that 
2

1

1
j

j

VIF
R

=
−

, where 2

jR  

is the multiple correlation coefficient of jz  regressed on the remaining 
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independent variables. A high jVIF  indicates an 2

jR   near unity (Farrar and 

Glauber, 1967; Belsley, 1991). 

 

The variance inflation factor has the following weaknesses: like any correlation 

based measure, large variance inflation factors are sufficient to collinearity but 

not necessary to it; variance inflation factors do not reveal the number of near 

dependencies that are involved in the multicollinearity (Belsley, 1991). 

 

A procedure related to the variance inflation factor has been proposed, i.e. 

collinearity indices. The collinearity indices are the square roots of the variance 

inflation factors. The collinearity index measures the closeness of the 

regression matrix to one, that is, exactly collinear (Steward, 1987; Belsley, 

1991).  

 

(e) High condition index 

Let the matrix 1 2diag( , , ..., )pλ λ λ=λ  be a ×p p  diagonal matrix whose diagonal 

elements are the eigenvalues of ′Z Z . Let the matrix 1 2[ , , ..., ]p=T t t t  be a ×p p  

orthonormal matrix consisting of the p  eigenvectors of ′Z Z . Note that the matrix 

T  and the matrix λ  satisfy ′ ′ =T Z ZT λ  and ′ ′= =T T TT I , where I  is a p p×  

identity matrix.  

 

The condition number of the matrix Z  is defined as  

 

max

min

condition number
λ

λ
= .             (2.10) 
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Note that the condition number ≥ 1, and maxλ  and minλ  refer to the largest 

eigenvalue and smallest eigenvalue, respectively (Rawlings et al., 1998). 

A large condition number indicates the presence of multicollinearity. When 

multicollinearity does not exist in the data, the condition number is 1. That is, 

the condition number of a matrix is unity when all the columns are pairwise 

orthogonal and scaled to have unit length. Furthermore, all eigenvalues are also 

equal to 1 when multicollinearity does not exist in the data. 

  

Extending the concept of condition number, the j-th condition index of the matrix 

Z , jCI , is defined as 

 

max
j

j

CI
λ

λ
= ,                       (2.11) 

 

where 1jCI ≥ , maxλ  and jλ  refer to the largest eigenvalue and the j-th 

eigenvalue, respectively, 1, 2, ...,j p=  (Rawlings et al., 1998). 

The largest condition index is also the condition number. Condition indices 

around 10 indicate weak dependencies among the independent variables. 

Condition indices between 30 and 100 indicate moderate to strong 

dependencies and condition indices larger than 100 indicate serious 

multicollinearity. The number of condition indices greater than 30 represents the 

number of near-dependencies contributing to the problem of multicollinearity 

(Belsley et al., 1980; Rawlings et al., 1998).  
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(f) High variance-decomposition proportions 

The presence of multicollinearity would result in large variance inflation factors 

and inflated variances of the parameter estimates. A more useful value to 

identify the proportion of variance of the parameter estimator that results from 

multicollinearity is the variance decomposition proportion. 

 

Let γ̂  be the least squares estimator of the parameter γ . The estimator, 

−′ ′= 1ˆ ( )γ Z Z Z Y , is given by Equation (2.8). 

 

The variance-covariance matrix of γ̂  is given by 

 

2 1ˆVar( ) ( )σ −′=γ Z Z .              (2.12) 

 

Let ˆkγ , 1, 2, ...,k p= , be the least squares estimator of the parameter kγ . Thus, 

the variance of  ˆkγ , 1, 2, ...,k p= , is given by  

 

2

2

1
ˆvar( )

p kj

k j
j

t
γ σ

λ=
= ∑  ,             (2.13) 

 

where jλ , 1, 2, ...,j p= , is the j-th eigenvalue of ′Z Z , and kjt , , 1, 2, ...,j k p= , is 

the k-th element of eigenvector jt . 

Note that Equation (2.13) decomposes ˆvar( )kγ  into a sum of components, each 

associated with one of the eigenvalues jλ . Thus, the ,k j -th variance 

decomposition proportion is defined as the proportion of the variance of the k-th 
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parameter estimate associated with the jλ . The ,k j -th variance decomposition 

proportion, kjP , , 1, 2, ...,j k p= , is given by (Belsley et al., 1980) 

 

             

2

2

1

/

/

kj j

kj p

kj jj

t
P

t

λ

λ
=

=
∑

,                                 (2.14) 

 

where jλ , 1, 2, ...,j p= , is the j-th eigenvalue of ′Z Z , and kjt , , 1, 2, ...,j k p= , is 

the k-th element of eigenvector jt . 

 

An interpretation of the variance decomposition proportions requires the 

following two conditions for the result to be an indication of serious 

multicollinearity (Belsley et al., 1980): 

1. The condition index jCI  is greater than 30. 

2. High variance decomposition proportions for two or more variances 

of the parameter estimator, that is, > 0.5kjP  for two or more 

ˆvar( )kγ , where 1, 2, ...,k p= .  

 

2.3.2  Issues Related to Multicollinearity Diagnostics 

Several procedures for multicollinearity diagnostics that have been proposed in 

the literature focus on the linear regression model (Lee and Weissfeld, 1996). A 

linear regression model has a linear function of the parameters while a 

nonlinear regression model has a nonlinear function of the parameters. 

However, many models developed from principles of behaviour of the system 

are nonlinear in the parameters. There are some recent researches focusing on 
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multicollinearity diagnostics for nonlinear regression (Weissfeld, 1989; Lee and 

Weissfeld, 1996; Weissfeld and Sereika, 1991). In addition, Belsley (1991) 

noted that not all collinearity is harmful. A procedure for determining a harmful 

collinearity is proposed by Belsley (1991). The details of some issues related to 

multicollinearity diagnostics are as follows:  

 

(i) Multicollinearity Diagnostics for Nonlinear Regression 

Belsley et al. (1980) developed a method for detecting multicollinearity in a 

linear regression model based on a set of condition indices and variance 

decomposition proportions. Based on Belsley et al. (1980), a number of 

multicollinearity diagnostics were proposed for nonlinear regression models 

such as the parametric censored data models (Weissfeld, 1989), the Cox model 

with time dependent covariates (Lee and Weissfeld, 1996) and the generalized 

linear models, particularly, the binary logistic and proportional odds regression 

models (Weissfeld and Sereika, 1991). 

 

(ii) Procedure for Determining Harmful Collinearity 

Belsley (1991) pointed out that diagnosing the presence of collinear relations is 

one thing; determining whether those collinear relations are causing statistical 

harm to a regression analysis is another. Thus, a procedure for determining 

harmful collinearity is proposed by applying the multicollinearity diagnostics 

followed by a test for adequate signal-to-noise. To determine whether any 

particular variance of the parameter estimate is large or small is necessarily 

relative. The signal-to-noise gives the ratio of the parameter estimate to the 

variance of the parameter estimate. Hence, if the variance of the parameter 
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estimate were large relative to the parameter estimate, the situation would be 

harmful. Harmful collinearity is defined for the joint occurrence of 

multicollinearity and adequate signal-to-noise. 

 

2.4  Methods for Combating Multicollinearity 

When serious multicollinearity is detected in the data, some corrective actions 

should be taken in order to reduce its impact. The remedies for the problem of 

multicollinearity depend on the objective of the regression analysis. 

Multicollinearity causes no serious problem if the objective is prediction. 

However, multicollinearity is a problem when our primary interest is in the 

estimation of parameters (Rawlings et al., 1998). The variances of parameter 

estimates, when multicollinearity exists, can become very large. Hence, the 

accuracy of the parameter estimates is reduced. 

 

One suggestion that has been frequently made in trying to overcome the 

problem of multicollinearity is to collect new data (Ryan, 1997). Sometimes, the 

problem of multicollinearity occurs due to inadequate or erroneous data. 

Unfortunately, this is not always possible since some analysis must be based 

on the available data. Furthermore, this solution is not possible when the 

presence of multicollinearity is the result of internal constraints of the system 

being studied (Rawlings et al., 1998). 

 

Another obvious solution is to eliminate the regressors that are causing the 

multicollinearity. However, selecting regressors to delete for the purpose of 

removing or reducing multicollinearity is not a safe strategy. Even with extensive 
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examination of different subsets of the available regressors, one might still 

select a subset of regressors that is far from optimal. This is because a small 

amount of sampling variability in the regressors or the dependent variable in a 

multicollinear data can result in a different subset being selected (Ryan, 1997). 

 

An alternative to regressor deletion is to retain all of the regressors, but to use a 

biased estimator instead of a least squares estimator in the regression analysis. 

The least squares estimator is an unbiased estimator that is frequently used in 

regression analysis. When the primary interest of the regression analysis is in 

parameter estimation, some biased estimators have been suggested as a 

means for improving the accuracy of the parameter estimate in the model when 

multicollinearity exists.  

 

An introduction of the unbiased estimator is presented in Section 2.4.1 while an 

overview of biased estimators is presented in Section 2.4.2. Some hybrids of 

the biased estimators are presented in Section 2.4.3. A review on the 

comparisons between the biased estimators is presented in Section 2.4.4. 

 

2.4.1 Unbiased Estimator 

The Ordinary Least Squares Estimator, −′ ′= 1ˆ ( )γ Z Z Z Y  (Equation (2.8)), is an 

unbiased estimator of γ  because the expected value of γ̂  is equal to γ , that is, 

 

ˆE( ) =γ γ .              (2.15) 
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The least squares estimator γ̂  is the best linear unbiased estimator of the 

parameter, γ . The least squares estimator has the smallest variance of all 

possible estimators that are both linear functions of the data and unbiased for 

the parameter. The minimum variance of the least squares estimator may be 

very large in the presence of multicollinearity. A number of biased estimators 

have been recommended to estimate the parameter when multicollinearity is 

detected in the data. Although the biased estimators have a certain amount of 

bias, they may be preferable to the least squares estimator in terms of a 

reduction in variance. The rationale for using a biased estimator instead of the 

least squares estimator is further explained by Rawlings et al. (1998): 

“Relaxing the least squares condition that estimators be unbiased 

opens for consideration a much larger set of possible estimators 

from which one with better properties in the presence of 

collinearity might be found. Biased regression refers to this class 

of regression methods in which unbiasedness is no longer 

required. Such methods have been suggested as a possible 

solution to the collinearity problem. The motivation for biased 

regression methods rests in the potential for obtaining estimators 

that are closer, on average, to the parameter being estimated than 

are the least squares estimators.” 

 

2.4.2 Biased Estimators  

Instead of using the least squares estimator, biased estimators are considered 

in the regression analysis in the presence of multicollinearity. When the 

expected value of the estimator is equal to the parameter which is supposed to 
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