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IMPLEMENTASI KAWALAN TANPA SENSOR BERASASKAN DSP 
DENGAN KAEDAH PENGESANAN EMF BALIK SECARA TERUS UNTUK 

MOTOR BLDC 
 

ABSTRAK 
 
 

Projek ini mempersembahkan satu kaedah baru untuk mengesan voltan balikkan EMF 

tanpa sensor untuk sistem pacuan BLDC dengan mengaplikasikan kawalan digital 

DSP (digital signal processor). Dengan kaedah ini voltan neutral motor tidak diperlukan 

untuk mengesan EMF balik. Sebaliknya, kaedah ini menggunakan rangkaian A/D 

berkelajuan tinggi yang terdapat pada pengawal DSP. EMF balikan yang sebenar bagi 

lingkaran motor yang terapung dapat dikesan ketika masa tutup PWM kerana voltan 

terminal bagi motor adalah bertindak secara terus dengan fasa EMF balik pada ketika 

ini. Voltan EMF balik juga dirujukkan pada sambaungan bumi tanpa sebarang kesan 

hingar. Dengan itu, kaedah pengesanan EMF balik ini tidak dipengaruhi oleh hangar 

pensuisan PWM. Justeru itu, peningkatan dan penapisan isyarat tidak diperlukan. 

 

Simulasi untuk projek ini telah diimplementasi dengan mengunakkan perisian 

Simulink Matlab. Dalam simulasi, elemen utama seperti kelajuan, “torque’, arus fasa, 

voltan terminal, dan voltan EMF balik diperhati. Model simulasi untuk motor BLDC, 

marangkumi penyelesaian mengunakan keadah pengamiran bergantung kepada input 

kepada motor dan konstan simulasi. Model matematik bagi system pacuan telah dibina 

untuk menganalisis keupayaan system pacuan yang direkebentuk.   

 

 Sistem pacuan ini menggunakan sistem digital DSP, yang telah diprogramkan 

dengan program kawalan tanpa sensor untuk system pacuan motor BLDC. 

Implementasi melalui bahasa program DSP telah megurangkan bilangan komponen 

dan mempercepatkan respon dari pengawal. DSP berpretasi tinggi yang digunakkan 

telah mengurangkan masa lingkaran kawalan. Pengubahsuaian dapat dilakukan 

dengan mudah pada struktur kawalan dengan memprogram perisian baru ke dalam 



 xiv

pengawal. Kesahihan system pacuan yang direkabentuk telah diperiksa melalui 

keputusan ujian kaedah simulasi dan pembinaan prototaip. Prototaip yang dibina 

mempunyai julat operasi pada 24V, 5A. Berdasarkan analisis yang dijalankan 

keputusan prototaip menyamai keputusan simulasi. 
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 IMPLEMENTATION OF DSP BASED SENSORLESS CONTROL WITH 
DIRECT BACK-EMF DETECTION METHOD FOR BLDC MOTOR 

 
ABSTRACT 

 
 

This thesis presents a back EMF sensing scheme, direct back EMF detection, for 

sensorless Brushless DC (BLDC) motor drives with a DSP based controller. Using this 

scheme, the motor neutral voltage is not needed to measure the back EMF. Instead the 

method utilizes the high-speed A/D converter channels, which are available on a DSP 

controller. The true back EMF of the floating motor winding is detected during the off 

time of PWM because the terminal voltage of the motor is directly proportional to the 

phase back EMF during this interval. Also, the back EMF voltage is referenced to 

ground without any common mode noise. Therefore, the developed back EMF sensing 

method is immune to switching noise and common mode voltage.  As a result, 

attenuation and filtering is not necessary for the back EMF sensing.  

 

The simulation of the BLDC motor drive system is implemented in SIMULINK 

MATLAB software. The simulation of the system for important characteristics such as 

speed, torque, phase current, terminal voltage, and Back EMF (BEMF) are monitored. 

The simulation modeling involves solving many simultaneous differential equations, 

each depending upon the inputs to the motor and the simulation constants.  

A mathematical model of the drive system is also developed to analyze the 

performance of the proposed driver.  

 

The system is implemented developing the hardware, using a digital signal 

processor (dsPIC30F), which is programmed with sensorless control for BLDC motor. 

The implementation through assembly language programming of DSP has resulted in 

reduced hardware and fast response of the controller. The high performance of digital 

signal processors (DSPs) minimizes the control loop delays. Also further modifications 



 xvi

in control structure are easily possible by changing the software. The implemented 

hardware can support speed range up to 3500 rpm of the BLDC motor, with reduced 

back EMF noise. The validity of the proposed BLDC motor drive system is verified 

through simulation and hardware results such as phase current, back EMF signal 

waveforms and speed. The experimental results on a 3-phase, 24 V, 120 W BLDC 

motor using dsPIC30F (DSP) based digital controller closely agree with the simulation 

results.  
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CHAPTER I 

INTRODUCTION TO BRUSHLESS DIRECT CURRENT (BLDC) MOTOR 
 

 
1.0 Research Objective 
 

The objective of this thesis is to present the design of a 3-phase sensorless 

brushless dc (BLDC) motor control with back-EMF (electromotive force) zero-crossing 

sensing using an AD converter. It is based on Microchip dsPIC30F3010 DSP which is 

dedicated for motor control applications. The system is designed as a motor drive system 

for 3-phase BLDC motors and is targeted for applications in both industrial and appliance 

fields. The reference design incorporates both hardware and software parts of the system 

including details of hardware layout. This thesis also includes the basic motor theory, 

simulation implementation concept, hardware implementation and software design. 

 
1.1      Research Methodology 
 

The research methodology of this thesis involves a number of different tasks that 

are needed to lead towards completion. The first task is to define the objective of the 

research in which the target specification of end product is defined. This followed by the 

literature review where all the theoretical information regarding the research is gathered 

and a comparison of previous similar research is discussed.  A brief description on the 

BLDC motor theory and performance is then presented. The advantage of the proposed 

back-EMF detection scheme for sensor-less control is compared with the conventional 

back-EMF detection schemes. Next in this thesis, the simulation of the targeted controller 

implementation for the drive system using MATLAB SIMULINK software tools is discussed. 

The simulation waveforms of voltages, phase currents and speed response are obtained to 

compare with the results from proto-type hardware drive system. The next task is to design 

the hardware for the target controller, based on the application target.  The component 
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ratings and type were selected. Once the hardware design is completed the software 

implementation is carried out. The software code matching the hardware design is 

developed in this stage. The next step is to integrate the software code and the hardware 

to debug any failures. This task is implemented with ICD2 [15] debugging software.  The 

following task is to analyze the test results obtained with the controller and motor to 

determine the performance, and also the waveforms of critical parameters captured during 

this stage. The final stage is to conclude the research findings and the thesis write up. 

Figure 1.1 shows the flow chart of the research methodology of this thesis. 

 

 
 
 
 
 
 
 
 
 

 

Figure1.1: Flow chart showing the research methodology. 
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1.2      Literature Review  

The 3-phase BLDC motors are well adoptable for industrial applications that require 

medium and very high speeds. Two important characteristics, low inertia and high peak 

torque, result in the motor capable of quick accelerations and decelerations. Sensor and 

sensorless control are two methods of control of BLDC motors [1-5]. In sensor control Hall 

sensors are normally used which need maintenance. An approach to position sensorless 

BLDC motor drive [6], a new algorithm for sensorless operation [7] and sensorless control 

without signal injection [8] are reported. Two types of sensorless control techniques of PM 

BLDC motors are discussed [12]. The first type is the position sensing using back EMF of 

the motor, and the second one is position estimation using motor parameters. The position 

estimation scheme usually needs complicated computation, and the cost of the system is 

relatively high. The back EMF sensing scheme is the most commonly used method, which 

is adopted in this thesis. The advantages of the position sensing using back EMF are: 

• It is suitable to be used on a wide range of motors and the method is easily 

implemented on both Y and Δ connected 3-phase motors. 

• It requires no detailed knowledge of motor properties. 

• It is relatively insensitive to motor manufacturing tolerance variations. 

• It will work for either voltage or current control. 

 

In a 3-phase BLDC motor, only two out of three phases are excited at any time, 

leaving the third phase winding floating. The back EMF voltage in the floating winding can 

be measured to establish a switching sequence for commutation of power devices in the  

3-phase inverter. The conventional method of sensing back EMF is to build a virtual 

neutral point that will, in theory, be at the same potential as the center of a Y wound motor 

and then to sense the difference between the virtual neutral and the voltage at the floating 
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terminal. However, when using a chopping drive, the neutral is not a standstill point. The 

neutral potential jumps from zero up to near dc bus voltage, creating a large common 

mode voltage since the neutral is the reference point [9].  

 

Meanwhile, the PWM signal is superimposed on the neutral voltage as well, 

inducing a large amount of electrical noise on the sensed signal. Proper sensing of the 

back EMF requires a lot of attenuation and filtering. The attenuation is required to bring the 

signal down to the allowable common mode range of the sensing circuit, and the low pass 

filtering is to smooth the high switching frequency noise. The result is a poor signal to 

noise ratio of a very small signal, especially at start-up where it is needed most. 

Consequently, this method tends to have a narrow speed range and poor start up 

characteristics. To reduce the switching noise, the back EMF integration [13], third 

harmonic voltage integration [10] and flux estimation [7] were introduced.  

 

The integration approach has the advantage of reduced switching noise sensitivity. 

However, it still has the problem of high common mode voltage in the neutral. The flux 

estimation method has estimation error at low speeds. An indirect sensing of zero crossing 

of phase back EMF by detecting conducting state of free-wheeling diodes in the unexcited 

phase was also approached [6]. The implementation of this method is complicated and 

costly, while its low speed operation is still a problem.  

 

In this thesis a back EMF detection method, which does not require the motor 

neutral voltage is implemented. The back EMF can be detected directly from the terminal 

voltage by properly choosing the PWM and sensing strategy. The resulting feedback signal 

is not attenuated, providing a signal with a very good signal/noise ratio. As a result the 
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proposed sensorless BLDC motor drive provides a much wider speed range up to 4000 

rpm, from start-up to full speed, than the conventional approaches mentioned above. 

 

The report of this thesis conducts the theoretical analysis of the concept of the 

direct back EMF detection scheme, providing detailed understanding of the method. In the 

past, several integrated circuits based on neutral voltage construction have been 

commercialized [16, 17]. Unfortunately, all these ICs are all analog devices, which lack 

flexibility in applications, regardless of poor performance at low speed. Use of 8-bit 

microcontrollers have been the mainstay of embedded-control systems for a long time [9]. 

However, the computational power and command execution speed of these controllers is 

lower compared to a Digital Signal Processor (DSP).  

 

One single-chip architectural platform that is ideal for BLDC motor control is the 16-

bit Digital Signal Controller (DSC). The DSPs can apply very complicated control theory 

and speed estimation for the sensorless BLDC motor control. The DSP devices are 

available for a low cost; and the instructions sets are easy to use. Low system cost and 

high flexibility are good motivations to design a new DSP based controller which is 

dedicated to sensorless BLDC drive [18]. The flexibility mentioned here are the further 

modifications in control structure easily accomplished by changing the software 

programming. As a result, a low cost DSP based controller is developed, implementing the 

proposed back EMF sensing scheme.  

 
1.3      Brushless Direct Current (BLDC) Motor Background 
 

Brushless Direct Current (BLDC) motors are one of the motor types which currently 

becoming popular. BLDC motors are utilized in wide range of industries such as consumer 

electronics, medical, automotive, industrial automation equipment and aerospace. The 
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commutation of BLDC motors are not the same as the brush type DC motor. The 

mechanical commutator of the brush dc motor is replaced by electronic switches, which 

supply current to the motor windings as a function of the rotor position. This kind of ac 

motor is called a brushless dc motor, since its performance is similar to the traditional dc 

motor with commutators.  BLDC motors have many advantages compared to brush type 

DC motors and induction motors, listed as follows [1-5]: 

 

• Better speed versus torque characteristics. 

• High dynamic response. 

• High efficiency. 

• Long operating life. 

• Noiseless operation. 

• Higher speed ranges. 

 

In addition, the ratio of torque delivered to the size of the motor is higher, making it 

useful in applications where space and weight are critical factors. Over the years of 

advanced technology development in power semiconductors, embedded systems, 

adjustable speed drives (ASDs) control schemes and permanent-magnet brushless 

electric motor production have contributed for reliable and cost-effective solution for 

adjustable speed applications. Household appliances are expected to be one of fastest-

growing end product market for electronic motor drives (EMDs) over the following next few 

years [19]. The major appliances include clothes washers, room air-conditioners, 

refrigerators, vacuum cleaners, freezers, etc. The market volume is predicted to be a 26% 

compound annual growth rate over the five years from 2000 to 2005, as shown in  

Figure 1.2. 
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Figure1.2: Market trend for electronic motor drives in household appliances [19]. 

 

The automotive industry will also see the explosive growth ahead for BLDC type 

electronically controlled motor system owing to the compact design and high efficiency of 

BLDC motor. The appliances and devices use the electric motors to convert electrical 

energy into useful mechanical energy required by the load. Consumers now demand for 

lower energy costs, better performance, reduced acoustic noise, and more convenience 

features. In recent years, proposals have been made for new higher energy-efficiency 

standards for appliance industry, which will be legalized in near future [20]. These energy 

standards proposals present new challenges for appliance designers. The continuous 

global demand for higher efficiency and better performance, enable the transition of 

industries to switch over to ASDs. The BLDC motor drive system which is cost effective 

with high performance will be the sought after system. 
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1.4      Construction and Operating Principal of BLDC Motor 

BLDC motors can be classified as a kind of synchronous motor. Generally for 

synchronous motor the magnetic field generated by the stator and the magnetic field 

generated by the rotor rotate at the same frequency. BLDC motors can be classified as 

single-phase, 2-phase and 3-phase configurations. As the name indicates, the stator has 

the corresponding number of windings. Out of these, 3-phase motors are the most popular 

and widely used, which is the topic in this thesis. 

 

1.4.1   Stator Construction 

BLDC motors have three stator windings connected in star or delta pattern. Most of 

the available BLDC motors have star type winding connection. Each of these windings are 

constructed with numerous coils interconnected to form a winding. One or more coils are 

placed in the slots and they are interconnected to make a winding. Each of these windings 

is distributed over the stator periphery to form an even numbers of poles [1-5]. The stator 

windings are designed either distributed or concentrated types, each generating sinusoidal 

or trapezoidal types of back electromotive force (BEMF) respectively. The phase current 

also has trapezoidal or sinusoidal variations. This thesis deals with the concentrated type 

stator windings construction. The stator of a BLDC motor consists of stacked steel 

laminations with windings placed in the slots that are axially cut along the inner periphery, 

as shown in Figure 1.3. 
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Figure1.3: Stator of a BLDC motor [13]. 
 
 
 

1.4.2   Rotor Construction 

The construction of BLDC motor rotor is made of permanent magnet materials. The 

pole pairs can vary from two to eight pole pairs with alternate North (N) and South (S) 

poles. The proper magnetic material to create the rotor is selected based upon the 

required magnetic-field density. Traditionally ferrite magnets are used to make permanent 

magnets, but recently as the technology advanced, rare earth alloy magnets are gaining 

popularity. The disadvantage of the ferrite magnets is having low flux density for a given 

volume even though it is cheaper compared to rare earth alloy magnets. In contrast, the 

rare earth alloy material has a high magnetic density per volume and enables the reduction 

of rotor size for the same applied torque. Another advantage of these alloy magnets are 

the improvement of size-to-weight ratio and provide higher torque for the same size motor 

using ferrite magnets. The type of rare earth alloy magnets that recently gaining popularity 

are such as Neodymium (Nd), Samarium Cobalt (SmCo) and the alloy of Neodymium, 

Ferrite and Boron (NdFeB). Continuous research is going on to improve the flux density to 
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compress the rotor further [1-5]. Figure 1.4 shows the cross sections of different 

arrangements of magnets in a rotor. 

 

 

 

 

 

 

 

Figure1.4: Rotor magnet cross-sections [13]. 

 

1.5      Theory of Operation of BLDC Motor 

The commutation sequence for BLDC motors has one of the windings energized to 

positive power (current enters into the winding), the second winding is negative (current 

exits the winding) and the third is in a non-energized condition. The interaction between 

the magnetic field generated by the stator coils and the permanent magnets creates the 

required torque. Ideally, the peak torque occurs when these two fields are at 90° to each 

other. In order to keep the motor running, the magnetic field produced by the windings 

should shift position, as the rotor moves to catch up with the stator field. The motor 

construction with star connection consists of three electromagnetic circuits connected at a 

common point, also referred to as neutral point. Each electromagnetic circuit is split in the 

center, thereby permitting the permanent magnet rotor to move in the middle of the 

induced magnetic field. The key to electronic commutation is to sense the rotor position, 

and then energize the correct winding phases to keep the rotor rotating. Figure 1.5 is a 
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simplified illustration of the motor construction with its winding topology and star 

connection. 

 

 

 

 

 
 
 

 

 

 

Figure1.5: Simplified BLDC motor diagrams [13]. 

 
 
1.6     Torque and Speed Characteristic of BLDC Motor 

There are two torque parameters used to define a BLDC motor, peak torque (TP) 

and rated torque (TR). During the operations, the motor can be loaded up to the rated 

torque where the torque remains constant for a speed range up to the rated speed. The 

motor can be run up to the maximum speed, which is up to 150 % of the rated speed, but 

the torque starts dropping [13]. Some applications demand more torque than the rated 

torque especially when the motor starts from a standstill and during acceleration. During 

this period, extra torque is required to overcome the inertia of the load and the rotor itself. 

The BLDC motor can deliver the extra-required torque, maximum up to peak torque, as 

long as it is operated within the zone of the speed torque curve. Figure 1.6 shows an 

example of torque and speed characteristics of BLDC motor. 
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Figure 1.6: Torque and speed characteristics of BLDC motor [13]. 

 

1.7      Sensorless BLDC Motor Drives  

The BLDC motor drive system consists of a dc power supply switched to the stator 

phase windings of the motor through an inverter by power switching devices. The detection 

of rotor position will determine the switching sequence of the inverter. The phase current of 

the motor, in typically rectangular shape, is synchronized with the back EMF to produce 

constant torque at a constant speed. Three-phase inverters are generally used to control 

these motors, requiring a rotor position sensor for starting and for providing the proper 

commutation sequence to stator windings. These position sensors can be Hall sensors, 

resolvers, or absolute position sensors. Figure 1.7 shows the structure of a BLDC motor. 

      

 

 

 

 

 

 

Figure1.7: Structure of a BLDC motor [15]. 



 13

 The disadvantages of sensored motor control system are increased cost and size 

of the motor, and need special mechanical arrangement for mounting the sensors. A BLDC 

motor control system with position sensors is shown in Figure 1.8. 

 

 

 

 

 

 

 

 

 

 
 

Figure1.8: Typical brushless DC motor control system with rotor position. 
 

These position sensors, particularly Hall sensors, are temperature sensitive, 

limiting the operation of the motor to below about 75 °C [5]. On the other hand, they could 

reduce the system reliability because of the components and wiring. In some applications, 

it even may not be possible to mount any position sensor on the motor. Therefore, 

sensorless control of BLDC motor has been receiving great interest in recent years.  

Figure 1.9 shows the structure of sensorless control of BLDC motor.  
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Figure1.9: Sensorless control of BLDC motor. 

 

Sensorless method of commutation will eliminate all the Hall sensor accessories 

such as, sensor magnet, sensor wires, and the sensor PCB board. This will simplify the 

BLDC motor construction thus reducing cost. In certain applications where the motor 

operates in dusty environment, or generates heat will increase the Hall sensor failure. 

Therefore sensorless drive system is a best way to increase the overall reliability of a drive 

system since, the system with fewer components are more reliable. Figure 1.10 shows 

typical 3-phase back EMF, output torque, and phase current waveforms of the motor. 
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Figure1.10: Typical three phase back EMF, output torque, and phase current waveforms 
[13]. 
 

 

Figure 1.11 shows the current flow sequence that should be followed, based on 

commutation sequence. The sequence numbers on Figure 1.10 correspond to the 

numbers given in Figure 1.11. 
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Figure1.11: Winding energization based on commutation sequence [14]. 
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CHAPTER 2 
DIRECT BACK EMF DETECTION FOR SENSORLESS BLDC DRIVES 

 
 
2.0      Introduction 
 

This chapter presents a brief description of the conventional virtual neutral point 

back EMF detection method. Then, the implemented back EMF detection scheme is 

discussed. In order to explain and simulate the idea of the back EMF sensing scheme and 

the sensorless system a simplified mathematical model based on the basic circuit topology 

has been described. 

 

2.1      Conventional Back EMF Detection Schemes 

A BLDC motor driven by a three-phase inverter is commonly known as, six-step 

commutation. The conducting interval of each phase A, B or C is 120° by electrical angle. 

The commutation follows certain pattern in one cycle; the first step is AB, then to AC, to 

BC, to BA, to CA, to CB and then just repeats this pattern. The conducting interval lasts for 

60 electrical degrees, which is called one step, so totally, there are 6 steps in one cycle. A 

transition from one step to another step is called commutation. Therefore, only two phases 

conduct current at any time, leaving the third phase floating. For example, when phase A 

and phase B conduct current, then phase C is floating. In order to produce maximum 

torque, the inverter should be commutated every 60° so that current is in phase with the 

back EMF. The current is commutated in such a way that the current is in phase with the 

phase back EMF to get the optimal control and maximum torque/ampere.  

 

The commutation timing for sensorless drive can be achieved from the back EMF 

on the floating windings of the motor. The back EMF on the unconnected winding is a 

direct indication of the rotor position and it is possible to determine the commutation timing 
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if the back EMF is known. If the zero crossing of the phase back EMF is detected, then the 

commutation of the appropriate stator windings can be implemented. Since only two 

phases are conducting current at one time instant, and the third winding is open, this 

feature enables the back EMF detection in the floating winding [21]. In Figure 2.1, the 

phase current is in phase with the phase back EMF. 

 

 

 

 

 

 

 

 

Figure2.1: Phase current and the back EMF. 

 

The conventional back EMF zero crossing detection scheme needs the motor 

neutral point voltage to get the zero crossing of the back EMF, since the back EMF voltage 

is referred to the motor neutral point. When terminal voltage is compared to the neutral 

point, the zero crossing of the back EMF can be obtained. The conventional back EMF 

zero crossing detection scheme with the motor neutral point available is shown in  

Figure 2.2. 
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Figure2.2: Back EMF zero crossing detection scheme with the motor neutral point [6]. 

 

The motor neutral point is not available in most of the motors. In order to sense the 

back EMF, the most-commonly used method is to build a virtual neutral point. Theoretically 

this method creates a neutral point that will be at the same potential as the center of a  

Y wound motor. The differences between the virtual neutral and the voltage at the floating 

terminal are sensed to provide commutation. The virtual neutral point is built by resistors, 

as shown in Figure 2.3.  

 

 

 

 

 

 

 

 

Figure2.3: Back EMF zero crossing detection scheme with the virtual neutral point [6]. 
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The comparators output makes a transition from low to high, when the back EMF 

developed in the windings crosses the zero point towards positive side. When the back 

EMF developed in the windings crosses the zero point towards negative side the 

comparators output makes a transition from high to low. By having three such comparator 

circuits, one on each of the phases gives three digital signals corresponding to the back 

EMF signal in the windings. The combination of these three signals is used to derive the 

commutation sequence. This scheme is quite simple and has been used for a long time 

since the invention [11, 22]. However, this scheme has its drawbacks. 

 

Because of the PWM drive, the neutral point is not a standstill point. The potential 

of this point jumps up and down. It generates very high common mode voltage and high 

frequency noise. Normally voltage dividers and low pass filters are used to reduce the 

common mode voltage and smooth the high frequency noise. For instance, if the dc bus 

voltage is 50 V, the potential of the neutral point may vary from zero to 50 V. The allowable 

common mode voltage for a comparator is typically a few volts, i.e. 5 V. The signal need to 

be heavily attenuated and the voltage divider will reduce the signal sensitivity at low speed, 

especially at start-up where it is needed most [9]. Figure 2.4, shows the back EMF sensing 

based on virtual neutral point. 
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Figure2.4: Back EMF sensing based on virtual neutral point [9]. 

 

Another method of back EMF zero cross sensing is comparing the back EMF 

voltage to the half of the dc bus voltage by using comparators. In this method shown in 

Figure 2.5, phase A is connected to the positive side of the power supply (DC+), phase C 

is connected to the negative side of the power supply (DC-) and phase B is open. The 

back EMF observed in phase B increases and decreases as the power supply (DC+, DC-) 

are connected and disconnected to the winding terminals in the energizing sequence. By 

comparing the back EMF voltage and half of the dc bus, the voltage between the central 

point of phases A and C is obtained. Each phase requires a circuit as shown in Figure 2.5, 

the combination of these three signals is used to derive the commutation sequence. This 

scheme is easy to implement with three op-amp comparators.  
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Figure2.5: Back EMF sensing compared to half of the dc bus [6]. 

 

There are few drawbacks to this circuit. First, if all three windings do not have 

identical characteristics, the back EMF measured will have either negative or positive 

phase shift. This may result in energizing the windings at different instances than they 

should be, and motor winding drawing excess current. Another drawback is that if the 

motor rated voltage is much less than the DC bus voltage, there could be a large 

difference between the back EMF zero cross point and half of the dc bus voltage. This 

could also result in having a phase shift in either direction. 

 

A few other schemes for sensorless BLDC motor control were also developed, 

such as the back EMF integration, third harmonic voltage detection, and free-wheeling 

diodes conducting states. The back EMF integration approach has the advantage of 

reduced switching noise sensitivity and automatic adjustment of the inverter switching 

instants to changes in the rotor speed [13]. The back EMF integration method still has 

accuracy problems at low speeds. The rotor position is determined based on the stator 

third harmonic voltage component [10], in this scheme. The main disadvantage is its 

relatively low value of the third harmonic voltage at low speed. The rotor position 
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information is determined based on the conducting state of freewheeling diodes in the 

unexcited phase [6]. The sensing circuit is relatively complicated and low speed operation 

is still a problem. 

 

2.2      Implemented Direct Back EMF Detection Scheme 

As described in Section 2.1, the noisy motor neutral point causes problems for the 

sensorless system. The proposed back EMF detection method tries to avoid the neutral 

point voltage. If a proper Pulse Width Modulation (PWM) strategy is selected, the back 

EMF voltage referred to VDC/2 signal can be extracted directly from the motor terminal 

voltage. The special event trigger from the dsp PWM module is used to initiate conversion 

of the ADC signals just before the switches turn off. The VBUS voltage is sensed as VDC 

using resistor pairs, and VDC/2 signal is used as the zero crossing reference voltage for 

back EMF sensing. The PWM signals are arranged in complementary mode, due to the 

duality in the system operation. The PWM signals are applied to both high and low side 

inverter switches. To implement the complementary PWM algorithm, dead time is 

necessary to prevent cross conduction between high side and low side MOSFETs in the 

bridge inverter. The DSP controller has built-in dead time generation to avoid cross 

conduction. Both center-aligned and edge-aligned PWM signals can be implemented due 

to flexibility in the DSP software programming. Figure 2.6 shows the concept of detection 

circuit. The difference between Figure 2.4 and Figure 2.6 is that the motor neutral voltage 

is not involved in the signal processing as shown in Figure 2.6.  
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Figure2.6: Proposed back EMF zero crossing detection scheme. 

 

The DSP controller has a high speed A/D converter that is used for this purpose. 

Using potential divider, the back EMF signal is brought down to a level that the DSP can 

measure. The signal is sampled by the A/D, and is continuously compared with a digital 

value corresponding to the zero point. When the two values match, the commutation 

sequence is updated. The advantage with this method is that it is more flexible in terms of 

measurement. When the speed varies, the winding characteristics may fluctuate, resulting 

in variation of back EMF. In such a situation, the DSP has complete control over the 

determination of zero crossing point. Also, digital filters are implemented to filter out the 

high frequency switching noise components from the back EMF signal. 

 

The commutation algorithm used is the standard BLDC control algorithm. The 

commutation occurs 30 electrical degrees after the back EMF zero crossing. Due to easy 

programmability of the microcontroller, the system has much flexibility to operate the motor 
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