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KESAN PARAS PEMAKANAN PROTEIN, LIPID DAN HUFA YANG 
BERLAINAN TERHADAP PERTUMBUHAN DAN PRESTASI PEMBIAKAN 

IKAN EKOR PEDANG Xiphophorus helleri BETINA 
 
 
 

ABSTRAK 
 
 

 Ikan air tawar berkeupayaan mensintesis asid lemak sangat tidak tepu (HUFA) 

daripada asid lemak C18 poli tidak tepu (PUFA) yang biasanya didapati dalam diet yang 

mengandungi minyak sayuran untuk memenuhi keperluan nutrisi pertumbuhan ikan. 

Namun demikian, pengetahuan tentang keperluan nutrisi HUFA dalam fasa pembiakan 

aktif ikan air tawar adalah kurang. Dua eksperimen telah dijalankan untuk memeriksa 

kesan paras pemakanan protein, lipid and HUFA yang berlainan terhadap pertumbuhan 

and prestasi pembiakan ikan betina ekor pedang. Dua paras pemakanan protein (20% 

dan 30%) dengan empat paras pemakanan lipid (8%, 12%,16%, 20%) dalam setiap 

paras pemakanan protein telah diformulasikan sebagai diet ujian. Keputusan 

menunjukkan paras pemakanan protein mempengaruhi berat akhir, pertambahan berat 

dan kadar pertumbuhan spesifik (SGR) ikan betina ekor pedang secara signifikan.  

Pertambahan paras pemakanan lipid dari 8% hingga 12-16% berjaya meninggikan SGR 

ikan betina ekor pedang pada paras pemakanan 20% dan 30% protein.  Interaksi antara 

pemakanan protein dan lipid berjaya mempengaruhi penyimpanan protein and lipid dalam 

isi dan ovari ikan betina ekor pedang secara signifikan.  Ikan yang diberi diet 30% protein 

and 12% lipid menunjukkan SGR, indeks gonadosomatik (GSI) dan penyimpanan protein 

dalam isi yang tertinggi yang justerunya menyebabkan produktiviti anak ikan yang 

tertinggi.  30% protein dan 12% lipid telah dirujuk sebagai paras pemakanan protein dan 

lipid yang optimum untuk pertumbuhan dan prestasi pembiakan ikan betina ekor pedang.  

Berdasarkan paras pemakanan protein dan lipid tersebut, 3 diet yang terdiri daripada 

30% protein dan 12% lipid yang mengandungi paras minyak sotong dan minyak linseed 

yang berlainan (100% minyak sotong, 1:1 minyak sotong:minyak linseed dan 100% 

minyak linseed) sebagai sumber pemakanan lipid telah diformulasikan.  Ikan betina ekor 



 xx

pedang yang diberi diet mengandungi 1:1 minyak sotong :minyak linseed menghasilkan 

bilangan anak ikan yang tertinggi.  Penyimpanan komposisi asid lemak di hati, isi dan 

ovari swordtail mencerminkan komposisi asid lemak diet. Kekurangan penyimpanan asid 

dokosaheksanoik (DHA, C22:6n-3), asid eikosapentanoik (EPA, C20:5n-3) dan asid  

arakidonik  (AA, C20:4n-6) didapati dalam hati, daging dan ovari ikan betina ekor pedang 

yang diberi diet mangandungi minyak linseed sahaja sebagai sumber pemakanan lipid 

yang justerunya membawa kepada kekurangan bilangan anak ikan yang dihasilkan. 

Penyimpanan AA yang tinggi dalam ovari dan anak ikan menunjukkan kepetingan AA 

dalam proses pembiakan ikan swordtail.  Selain itu, ekspresi gene desaturase dan 

elongase dalam hati dan isi ikan betina ekor pedang didapati bertambah dengan 

pertambahan paras pemakanan minyak linseed. Ekspresi gene desaturase dalam ovari 

juga bertambah dengan paras pemakanan minyak linseed tetapi ekspresi gene elongase 

dalam ovari tidak menunjukkan corak yang spesifik.  Secara keseluruhanya, eksperimen 

ini menunjukkan kesan positif paras pemakanan HUFA terhadap prestasi pembiakan ikan 

betina ekor pedang walaupun ia mempunyai keupayaan untuk meninggikan transkripsi 

mRNAs desaturase dan elongase semasa diberi paras pemakanan yang kekurangan 

HUFA. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 xxi

EFFECT OF VARYING DIETARY PROTEIN, LIPID AND HUFA LEVELS  ON 
GROWTH AND REPRODUCTIVE PERFORMANCE OF FEMALE SWORDTAIL 

Xiphophorus helleri 
 
 
 

ABSTRACT 

 

 Freshwater fish possess higher ability to biosynthesize highly unsaturated fatty 

acids (HUFA) from C18 polyunsaturated fatty acids (PUFA) found in plant-based diets in 

fulfillment of the nutrient needed for growth and development.  However, there is very 

little knowledge on HUFA requirement during active spawning phase of freshwater 

broodstock. Two experiments were carried out to determine the effect of dietary protein, 

lipid and HUFA levels on growth and reproductive performance of female swordtail. Two 

dietary protein levels (20% and 30%) with 4 dietary lipid levels (8%, 12%, 16%, 20%) 

within each protein level were formulated as experimental diets.  Results showed that 

dietary protein level significantly influenced final weight, weight gain and specific growth 

rate (SGR) of female swordtail.  In addition, increasing dietary lipid levels from 8% to 12-

16% significantly improved SGR of swordtail at both 20% and 30% dietary protein levels.  

Dietary protein and lipid interaction significantly influenced protein and lipid deposition in 

muscle and ovary of swordtail.  Fish fed diets 30% protein 12% lipid gave the highest 

SGR, gonadosomatic index (GSI) and muscle protein deposition which evetually led to 

the highest fry production.  30% protein and 12% lipid were concluded to be the optimum 

dietary protein and lipid requirements for optimized growth and reproductive performance 

of female swordtail. Based on these optimum protein and lipid levels, three iso-

nitrogenous (30% protein) and iso-lipidic (12% lipid) experimental diets containing 

different ratios of squid oil and linseed oil (100% squid oil, 1:1 squid oil:linseed oil and 

100% linseed oil) as dietary lipid source were formulated.  Swordtail utilizing diet 

containing mixture of squid and linseed oil produced significantly highest fry production.  

Fatty acid composition of liver, muscle and ovary of female swordtail reflected dietary 
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fatty acid profiles. Significant lowered levels of docosahexaenoic acid (DHA, C22:6n-3), 

eicosapentaenoic acid (EPA, C20:5n-3) and arachidonic acid (AA, C20:4n-6) were found 

in liver, muscle and ovary of swordtail fed diet containing linseed oil as sole dietary lipid 

source, which probably led to lower fry production.  High deposition of AA in oocyte and 

fry of broodstock also indicated the importance of AA in ovary and larval development. 

Increased gene expressions of desaturase and elongase were observed in liver and 

muscle of female swordtail fed diets with increasing levels of linseed oil. In addition, 

desaturase gene expression in ovary also displayed the same pattern while ovary 

elongase expression did not show any specific trend. Overall, this study has 

demonstrated the beneficial effect of dietary HUFA inclusion on the reproductive 

performance of female swordtail although they possess the ability to increase 

transcription of desaturase and elongase mRNAs during low dietary HUFA provision.   

 

 

 



 1

Chapter 1 INTRODUCTION 

 

1.1 Research background 

 Ornamental fish culture is an important activity in several Asian countries due to 

the increasing popularity of aquarium fish.  The total production value from Southeast 

Asian aquarium fish farms is estimated to be US$80-150 million annually (Ng and Tan, 

1997).  Live bearing ornamental fish species such as guppies (Poecilia reticulata), 

mollies (Poecilia latipinna, Poecilia sphenops), swordtails (Xiphophorus helleri) and 

platies (Xiphophorus maculatus) are favoured among aquarium hobbyists because of 

variation in body colours and fin patterns. Swordtails alone accounted for 5.4% of the 

total number of ornamental fish imported in the United States in 1992 (Chapman et al., 

1997).   

 

 The culture of swordtail is carried out in earthen ponds and floating net cages, 

mainly in Singapore, Malaysia, Thailand, Indonesia, India and China.  However, feeding 

practices in farms are poor as they rely mainly on live feed such as bloodworms, Tubifex 

and freshly prepared wet paste containing fish meal and skimmed milk powder 

(Fernando et al., 1991), which lead to problems such as detrimental water effluent, 

accumulation of harmful pathogens and inability to fulfill overall nutrient requirement of 

fish.  Therefore, development of a proper formulated diet with the correct ratios and 

levels of different nutrients is important.  Formulated diets need to be economical to 

reduce production cost, practical to ease storage, transportation and supply and also 

environmental friendly. 

 

 In teleosts, nutrition factors such as feed ration, nutrient levels and compositions 

have great influence in various reproductive parameters such as gonadal development, 

egg quantity and quality, hatchability, larval quantity and survival (Izquierdo et al., 2001; 
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Watanabe and Vassallo-Agius, 2003).  Generally, carbohydrates, proteins and lipids are 

the major nutrients that provide energy to sustain fish metabolism, growth and 

reproduction.  In addition to this, nutrients such as essential proteins, fatty acids, 

carotenoids, vitamin C and vitamin E are important in regulating various reproductive 

processes (Izquierdo et al., 2001; Watanabe and Vassallo-Agius, 2003).   

 

 Swordtails are viviparous breeders with females storing transferred sperm within 

the ovaries for internal egg fertilization, followed by hatching of eggs and a gestation 

period of 27 days before the release of free-swimming embryos (Siciliano, 1972).  The 

whole process of reproduction from gonad formation and maturation to the production of 

good quantity and quality offspring is very complicated.  Detailed knowledge on the effect 

of different nutrients influencing different stages of reproduction is greatly needed.  

Therefore, broodstock nutrition studies are often carried out to evaluate reproductive 

performances of a particular fish species by determining different levels of nutrients in 

maternal dietary intake.  However, understanding of broodstock nutrition of many fish 

species is still poor because of difficulties in conducting experiments involving proper 

feeding and proper measurement of reproductive performances.   

 

 Studies have shown that proteins are normally included in broodstock diets for 

energy and growth.  They are present as lipoproteins, hormones and enzymes in teleost 

eggs, which are crucial in providing nutrient, ensuring proper development and hatching 

of embryos prior to exogenous feeding (Brooks et al., 1997).  On the other hand, lipids 

are known to provide energy and as metabolite storage in fish.  Besides this, several 

studies also denoted the importance of dietary lipids involved in many vital reproductive 

processes such as oocyte development, egg production and embryo development 

(Fernandez-Palacios et al., 1995; 1997; Bell et al., 1997; Mazorra et al., 2003).  During 

fish maturation and reproduction, lipids are transported into oocytes from maternal 

reserves, stored and accumulated in yolk and utilized by developing embryos 
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subsequently (Brooks et al., 1997).  Studies also showed improved feed conversion ratio 

(FCR), nitrogen and phosphorus retention when Atlantic salmon was fed diets with 

higher lipid levels (Hillestad et al., 1998; Hemre and Sandnes, 1999).  Inclusion of lipid 

also helps to increase stability of feed in water (Chaiyapechara et al. 2003).  Moreover, 

improved growth parameters were found in Atlantic salmon and gilthead seabream fed 

diets with higher lipid levels (Hemre and Sandnes 1999; Vergara et al., 1999).  However, 

excessive inclusion of lipid in diet can cause reduction in feed consumption due to 

feeling of satiation, which in turn reduce intake of other nutrients.  Numerous studies 

have been carried out to investigate the interactive importance of dietary protein and lipid 

levels on fish growth performances (Miller et al., 2005; Ozorio et al., 2006).   

 

 Dietary lipid might contain different oil sources and thus, containing different fatty 

acid composition.  Arachidonic acid (ARA, 20:4n-6), eicosapentaenoic acid (EPA, 20:5n-

3) and docosahexaenoic acid (DHA, 22:6n-3) are three highly unsaturated fatty acids 

(HUFA) widely studied in order to determine optimal dietary levels required for fish 

growth, reproduction and development.  In general, these HUFA are responsible for 

maintaining cell membrane integrity. More specifically, they act as precursors for 

eicosanoids synthesis, an important group of paracrine hormones involved in the 

regulation of a wide range of physiological processes.  Eicosanoids are an active range 

of chemical molecules that control vital reproduction pathways such as ovulation and 

steroidogenesis (Sorbera et al., 2001).  HUFA is also identified as a vital nutrient in 

broodstock diet to ensure reproduction success and offspring survival.  Many studies in 

the past two decades have identified lipid, and in particular HUFA, as important nutrients 

influencing reproductive performances in numerous fish species (Fernandez-palacious et 

al., 1995; Furuita et al., 2000; Izquierdo et al., 2001; Bell and Sargent, 2003; Mazorra et 

al., 2003; Watanabe and Vassallo-Agius, 2003; El-sayed et al., 2005).  However, 

essential fatty acids requirement varies among different fish species (Sargent et al., 

1999a). 
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 HUFA are provided in broodstock diet by adding fish oil, a traditional dietary lipid 

source in aquaculture containing high level of AA, EPA and DHA.  It was predicted that 

global production of fish oil, 1.2-1.4 million tons/year, might not be able to meet the need 

of animal feed in the next few years (Izquierdo et al., 2004).  Various studies were 

conducted to seek suitable replacement for fish oil as its cost is increasing and the 

supply is diminishing (Barlow, 2000; Chamberlin and Barlow, 2000).  These studies 

usually aimed to substitute fish oil fully or partially with vegetable oil as it is a cheap and 

sustainable resource (Bell et al., 2003; Fonseca-Madrigal et al., 2005; Montero et al., 

2003; 2005; Regost et al., 2003; Izquierdo et al., 2004; Rennie et al., 2005; Ruyter et al., 

2006; Francis et al., 2006).  Overall studies showed that soybean oil and linseed oil can 

be good alternative oil sources for salmonids, sea bream, turbot and some freshwater 

species without compromising growth rates and feed conversion.  However, vegetable 

oils are rich in linolenic acid (LNA, 18:3n-3) and linoleic acid (LA, 18:2n-6) but devoid of 

HUFA.  Fish fed on vegetable oils usually reflect low HUFA profiles in their body fatty 

acid composition. This low HUFA composition might affect fish reproductive performance 

and bring negative value for human consumption.  Therefore, knowledge on dietary 

HUFA requirement of cultured species is important in order to incorporate appropriate 

level of plant oil as dietary lipid source in aquafeeds.  Besides that, improper inclusion of 

AA, EPA and DHA in diet will cause an imbalance in HUFA biosynthesis pathway as they 

compete with each other in some metabolic pathways (Sargent et al., 1999b).    

 

 Most of the freshwater fish are known with their ability to synthesize HUFA from 

LNA and LA.  LNA and LA are considered essential fatty acids (EFA) for freshwater fish 

as EPA and DHA are synthesized from LNA of the n-3 series fatty acids, while AA is 

synthesized from LA of the n-6 series fatty acids.  In HUFA biosynthesis pathway, 

desaturase and elongase are major enzymes responsible for fatty acid desaturation and 

elongation from shorter chain of fatty acid to HUFA mediated by microsomal system 

(Tocher et al., 2002a; 2002b; Seliez et al., 2003).  However, several studies have shown 
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the benefits of dietary inclusion of HUFA in freshwater species even though they 

possess the ability to synthesize these fatty acids endogenously.  Mukhopadhyay and 

Rout (1996) reported highest growth rate was obtained from Catla carp with the inclusion 

of fish oil and sunflower oil as dietary lipid source. Higher growth performance was not 

achievable over 50% replacement of fish oil by linseed oil in freshwater Murray cod 

(Francis et al., 2006).  Smith et al. (2004) also reported inclusion of dietary HUFA 

benefited weight gain in silver perch.  However, very little is known about HUFA dietary 

requirements and utilization in freshwater fish especially during reproduction phase. 

 

 However, marine fish require substantial levels of dietary HUFA because they do 

not possess the ability to synthesize these HUFA de novo nor from shorter chain 

precursors such as LNA and LA.  Therefore, EPA, DHA and AA are considered EFA for 

marine fish.  Even though many studies have shown the essentiality and beneficial 

effects of dietary HUFA to marine fish, it remains to be seen if a similar practice will 

improve reproductive performance of freshwater broodstock.     
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1.2 Objectives 

 In light of the above discussions, the present study is aimed to: 

a. investigate the effect of different dietary protein and lipid levels on the growth and 

reproductive performances of female swordtail 

b. investigate the effect of different dietary HUFA levels on the reproductive 

performances, tissue fatty acid profile and desaturase and elongase mRNAs of  

female swordtail 
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Chapter 2 LITERATURE REVIEW 

 

2.1 Swordtail Biology 

 The swordtail is a freshwater fish grouped within the family of Poeciliidae. The 

poeciliid family contains few of the most popular ornamental species in the aquarium 

trade known as the “big four.”  The genus Xiphophorus includes species of the swordtail 

and the platy while the genus Poecilia includes species of the molly and the guppy.  

These fish are hardy, relatively peaceful, colourful, and among the easiest fish to breed 

 

The natural geographical origin of the common swordtail, Xiphophorus helleri, 

extends from northern Mexico to the central and western parts of Guatemala and 

Honduras in Central America. The species was introduced and has become popular in 

southern Florida, California, the Lake Mead area of Arizona and Nevada, Hawaii, 

Canada, Puerto Rico, Africa, Sri Lanka, Australia, Guam, Fiji and United Kingdom 

(Dawes, 1991; Jacobs, 1969).   

 

 The male swordtail grows to a maximum overall length of 14cm and the female to 

16 cm. Swordtails are sexually dimorphic and the males and females are easily identified. 

It is reported that swordtail attains sexual maturity at the length of 2.5-3.0cm or at 10-12 

weeks of age (Milton and Arthington, 1983; Dawes, 1991). Swordtails are completely 

polygamous and do not form mating pairs after they reach sexual maturity.  The male 

fish will not only court females of their own species, but also they will mate with females 

of other poeciliids that resulted in hybridization.  

 

 All poeciliid males possess a modified anal fin called a gonopodium.  It is used to 

insert sperm into the female in order to fertilize the eggs during the mating process.  

Matured male swordtails have elongated lower caudal fin that looks like a sword.  
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Meanwhile, Poeciliid females pocess a distinguishing feature called the “gravid spot”, a 

dark area just slightly above and forward of the anal fin which changes in size and 

darkness with the development of the embryos.  Female swordtails are livebearing fish in 

which fertilization, hatching of eggs and development of the embryos will take place 

within the females until live young are released from her body.  Female swordtails can 

store viable sperm in the folds of their oviducts to fertilize matured eggs when needed.  

Therefore, subsequent clutches of eggs in the females can be fertilized even after long 

contact with a male fish.  A single copulation can provide viable sperm for fertilization up 

to two years and a female can give birth to five to nine consecutive broods from a single 

mating event (Axelrod and Wischnath, 1991). 

 

 Optimal water temperature was reported to be between 22oC to 26oC for 

reproduction in all livebearers and the gestation period was estimated to range from 26 

to 30 days (Dawes, 1991).  Studies of the reproductive activities of wild swordtails in 

Australia have revealed that temperature can influnce the number of fry produced per 

female per month (Milton and Arthington, 1983).  Data showed that with the rise of every 

degree in water temperature from 22oC, the number of fry per spawn will correspondingly 

increase by three, with the highest average number of fry found in water with a 

temperature of 29oC. It also reported decrease in fry production when water 

temperatures drop below 18oC or rise above 29oC.  The fecundity of swordtail has been 

reported to be as high as 242 fry/female (Breder and Rosen, 1966). However, an 

average female swordtail spawns about 30 fry/female. 

 

 Commercial production of livebearer fish are normally carried out in earthen 

ponds.  Broodstock are kept in the ponds and allowed to spawn freely for 6-7 months.  

After that, the fish are harvested and graded for market and new batch of broodstock are 

introduced into the ponds. However, this type of large-scale production produces higher 

number of off-color and deformed fish.  In order to maximize the production of a desired 
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colour or fin variety, the broodstock should be kept in traps or small cages within aquaria, 

tanks, or ponds.  Further more, this can avoid cannibalism of the fry by the broodstock 

and increase the survival of fry from one particular strain. Simple plastic net cage, clear 

plastic box or any container with holes that allows fry to escape from the broodstock can 

be used for swordtail culture. 

 

2.2 Protein 

 Nutritional status of fish often affects their reproductive performances including 

time to first maturation, fecundity, egg size, egg and larval quality.  The nutrient 

requirements vary between species and within species, at different stages of life.  Energy 

is present in the chemical bonds of molecules that hold the nutrients together.  Energy is 

partitioned by fish between various physiological processes including maintenance, 

growth and reproduction.  It will be used for metabolism first and the excess will be 

divided between growth and reproduction. 

 

   Protein is the largest molecule in cell made up from amino acids.  There are 20 

naturally occurring amino acids that will be incorporated into proteins.  Proteins are 

linked by peptide bonds between the carboxyl group of one amino acid to the amino 

group of another amino acid in chains of different orders and lengths.  Amino acids have 

a general structure of –NH2CHRCOOH- , where R is the organic side chains made up 

from some or all of carbon, hydrogen, oxygen, nitrogen and sulphur atoms. The structure 

of protein is determined by the sequence of amino acids it is composed from.  This 

sequence is determined by the gene coding for the production of that particular protein. 
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R1    O            R2    O 

                  H     N     C     C     N     C     C     OH   

                                                H     H            H     H 

 

Figure 2.1 Two amino acids linked by a peptide bond 

 

 Proteins are divided into essential and non-essential amino acids.  The non-

essential amino acids can be synthesized by the animal from other chemical compounds.  

Essential amino acids are the amino acids that cannot be synthesized by fish.  Therefore, 

adequate level of protein and correct ratios of all essential amino acids and most non-

essential amino acids must be provided in fish diet for protein synthesis and growth.  

Some of the amino acids will also be deaminated and degraded for energy.  Synthesis 

and degradation of protein will occur continuously in tissues.  Fish is able to grow when 

the rate of protein synthesis is greater than the rate of protein degradation.  If there are 

insufficient essential amino acids, then protein degradation will be greater than protein 

synthesis and the fish is unable to grow.  Fish meal is used as a traditional protein 

source in fish diet to provide most of the non-essential and essential amino acids.   

 

2.2.1 Dietary protein requirement of fish 

 Optimum protein level in diet promotes fish growth, earlier puberty and oocyte 

maturation.  Larger size broodstock has been reported to display higher spawning rates 

(Gunasekera et al., 1996a;1996b; El-Sayed et al., 2003), higher fecundity (Milton and 

Arthington, 1983) and egg size (Seghal and Toor, 1991; Bromage et al., 1992;).  

Research has shown that optimum dietary protein requirement for fish ranges from 30% 

to 50% of the diet (De Silva and Anderson, 1995). 
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 Carnivorous fish species such as salmonids, percids and marine flatfish require 

40-55% of dietary protein. Other species such as cyprinids and tilapias are capable to 

grow when fed with lower protein level around 30-40% (Joblings, 1994).  Watanabe et al. 

(1984) found that 45% of dietary protein level resulted in highest number of eggs 

produced, number of viable eggs and larval hatchability in red sea bream.  Chong et al. 

(2004) suggested that a minimum of 30% protein should be included in the diet of female 

swordtail broodstock for optimum reproductive performance.  It is concluded that dietary 

protein is crucial for both the somatic growth and the reproduction process of female 

swordtail.  Khan et al. (2004) suggested protein level of 30% for optimum growth and 

reproductive performances in grass carp, Ctnenopharyngodon idella. 

 

 Protein is the most abundant nutrient found in fish egg (Watanabe and Kiron, 

1994) besides being structural, functional and energetic constituent in fish tissues.  It is 

also important for fish fertilization and normal development of embryo as amino acids act 

as a reservoir of materials used for biosynthetic activities during embryogenesis.  

Relationship between dietary protein and few reproductive parameters varies between 

different species, dietary compositions and culture conditions.  Some studies showed 

increased dietary protein levels increased the total number of eggs produced per female 

in tilapia, O. niloticus (Siddiqui et al., 1998), spawning frequency and the number of eggs 

per spawn in nile tilapia (El-Sayed et al. 2003) and number of eggs per body weight in 

bighead carp, Aristichthys nobilis (Santiago et al., 1991).  Increasing protein levels in diet 

also improved fertilization and hatchability of fish eggs in O. niloticus (Gunasekera et al., 

1996a) and C. carpio (Manissery et al. 2001) as high protein diets most probably 

produce more oocytes and hatch into larvae.  Increased dietary protein levels up to 35% 

caused an increase in Gonadosomatic index (GSI) in grass carp (Khan et al., 2004), 

while no significant effect was found in tilapia, O. niloticus (Gunasakera and Lam, 1997; 

Gunasakera et al., 1997).  Various contradictory results also showed that relative 

fecundity and egg diameter were not affected by dietary protein in carp (Khan et al., 



 12

2004), tilapia (Gunasekera et al., 1996a, 1997), and European sea bass (Cerda et al., 

1994).     

  

 Few studies also indicated that further increase in protein intake did not benefit 

fish reproductive performances once the dietary protein requirement has been met 

(Gunasekera et al., 1996a; Emata and Borlongan, 2003).  Excessive protein level over 

35% in diet caused a marked decline in weight gain and fish growth of grass carp (Khan 

et al., 2004).  This might have resulted from extra energy being used to deaminate and 

excrete excess amino acids and caused a reduction in dietary energy available for 

growth.   

 

Table 2.1 Estimated protein requirements of some juvenile fish (adapted from De Silva 

and Anderson, 1995) 

Species Protein source Optimum protein level in diet 

(%) 

Channel catfish Whole egg protein 32-36 

Common carp Casein 38 

Gilthead bream Casein, Fish protein concentrate 40 

Grass carp Casein 41-43 

Red sea bream Casein 55 

Chinook salmon Casein, gelatin and amino acids 40 

Rainbow trout Fish meal 40 

Snake head Fish meal 52 

Tilapia Casein, egg albumin and fish 

meal 

30-56 
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2.3 Lipid 

 Lipids are organic molecules which contain hydrogen, oxygen and many carbon 

atoms in variation of chain or ring conformations.  They are biological substances, 

soluble in organic solvent such as chloroform, hydrocarbons or alcohols but insoluble in 

water.  Lipids occur in all living cells and contribute to its cellular structures.  They also 

provide stored fuel and participate in many biological processes such as transcription of 

genetic code, regulation of genetic pathways, physiological responses and so on.  Fatty 

acids, triglycerides, phospholipids, sterols and sphingolipids are the five major classes of 

lipids. 

 

Fatty acids usually exist in esterified form in nature called triacylglycerols or 

triglycerides, which mean triesters of glycerol.  They are formed by esterification of fatty 

acids with glycerol and represent the major storage lipids of both plants and animals.  

Triacylglycerols are an efficient form to store metabolic energy as they are less oxidized 

than carbohydrates and proteins.  Hence, they yield more energy on oxidation. 

 

 

 

CH3(CH2)4(CH=CHCH2)2(CH2)6COOH 

 

Figure 2.2 Chemical structure of a fatty acid - Linoleic acid, C18:2(n-6). 
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Figure 2.3 Structure of triacylglycerol, where R1, R2 and R3 are fatty acids. 

 

 

Phospholipids are also called glycerophospholipids.  They are the major lipid 

component of biological membranes.  Majority of phospholipids contain nitrogen and 

phosphorus in addition to carbon, hydrogen and oxygen.  Cholesterol is the most notable 

sterol lipid.  It is a major component of animal cell membrane, a precursor of steroid 

hormones and bile acids.  Corticosteroid hormones of interrenal tissues are involved in 

the regulation of salt and water balance and the metabolism of carbohydrates and 

proteins.  Gonadal steroids such as androgens and oestrogens are vital hormones in 

reproduction as they induce the production of vitellogenin in the liver and initiate some 

behavioral changes in spawning activity.  Vitellogenin is the main yolk precursor protein 

in teleosts.  Sphingolipids are also major membrane component and are commonly 

found in the membranes of nerve cells. 
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2.3.1 Dietary lipid requirement of fish 

 Lipids are important source of energy and essential fatty acids (Watanabe, 1982).  

In addition to being highly digestible and well metabolized by fish, lipids also increase 

diet palatability and stabilizes feed pellet during manufacture, transportation and storage.  

Increasing dietary lipid will be an effective strategy to improve feed efficiency and reduce 

protein utilization as it is able to spare the use of protein as energy source.  

 

 Maximum growth of white seabass fingerlings was obtained from diets inclusion 

of 15.5% and 18% lipids with 61% protein (Lopez et al., 2006).  Other marine species 

such as red drum, black rockfish, red sea bream and Asian Seabass have showed 

improved growth fed with diets containing around 17% lipid and 30%-50% protein 

(Craigh et al., 1999; Lee et al., 2002; Williams et al., 2003).  Surubim, Pseudoplatystoma 

coruscans, fed experimental diet with the highest lipid level, 18% lipid and 46% protein 

showed the best nutritional performance in weight gain, protein retention and energy 

retention (Martino et al., 2002).  They also concluded that dietary 10-20% lipid gave the 

optimal growth rates in fish.  In salmonids, dietary lipids up to 30% improved feed and 

protein utilization and reduce nitrogen excretion (Beamish and Medland, 1986; Hillestad 

and Johnsen, 1994; Helland and Grisdale-Helland, 1998). 

 

 Excess dietary lipid will cause a decrease in feed consumption and therefore, 

reduce the intake of other dietary nutrients and fish growth (Watanabe, 1982; Ellis and 

Reigh, 1991; Lopez et al., 2006).  The growth reduction effect from excessive dietary 

lipid level was probably due to the limited ability of fish to digest and absorb high amount 

of lipid, excess lipid accumulation in liver and visceral imbalance in metabolic activities.  

Lopez et al. (2006) demonstrated that increasing dietary lipid to more than 18% with 61% 

protein did not improve weight gain and SGR of white sea bass fingerlings.  Wang et al. 

(2005) showed that dietary lipid level over 15% reduced feed intake and had a negative 

influence on growth of Cobia.  Few studies (Bromley, 1980; Lie et al., 1988; Hellestad 
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and Johnsen, 1994; Perez and Oliva-Teles, 1999) have shown that excessive level of 

dietary lipid promoted undesirable increase of lipid deposition in fish, especially in 

carcass, visceral and tissue cavity.  The localization of excess lipid deposits strongly 

reduces the nutritional value, organoleptic properties, transformation yields and storage 

time of fish carcass. 

 

 Fish proximate and fatty acid composition normally reflect dietary lipid and fatty 

acids levels.  As dietary lipid level increased from 5% to 25% in Cobia, energy retention, 

daily lipid gain, viscerosomatic index (VSI), hepatosomatic index (HSI), body lipid content 

and muscle lipid content also increased dramatically (Wang et  al., 2005).  Similar result 

was found in carcass lipid content in Japanese sea bass (Ai et al., 2004).  

 

2.3.2 Lipid metabolism 

 Nutrients in feed are digested in fish gut and absorbed into bloodstreams through 

gut lining.  These nutrient molecules circulate around the body and are taken up by 

various tissues.  They are then subjected to metabolism reactions including catabolism 

to liberate energy and anabolism to produce new tissues.   

 

 Carbohydrate will be broken down to glucose, and protein to amino acids.  Lipids 

are broken down to fatty acids and are resynthesized into lipids after absorption through 

gut lining to form droplets and lipoproteins that circulate in fish blood system.  

Lipoproteins help the insoluble lipid components to be maintained in aqueous 

environment.  Lipoproteins and droplets are hydrolyzed to their constituent fatty acids 

and glycerol by lipoprotein lipase enzyme in target tissues outside the cell.  They are 

then transported across cell membrane and form triacylglycerols or oxidized for energy.  

Triacyglycerols stored in adipose tissues and required for metabolism will be hydrolyzed 

by triacylglycerol lipase before passing out from the cell.  
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Figure 2.4  The fate of gross nutrients (adapted from De Silva and Anderson, 1995). 

 

 The degradation of glucose, amino acids and fatty acids will reach a common 

intermediate compound called acetyl Co-A.  Acetyl Co-A will enter citric acid cycle, which 

is then connected to the process of oxidative phosphorylation.  Oxidative 

phosphorylation will consume oxygen and release carbon dioxide and energy in the form 

of ATP (Adenosine triphosphate).  

  

2.3.3 Protein sparing effect of lipid 

 Growth of fish will often be limited as it needs to direct some amino acids into 

energy liberating pathway to provide energy for basal metabolism despite protein 

synthesis.  Lipid and carbohydrate will normally be included in fish diet by formulator to 

replace protein as alternative energy sources so that most of the amino acids will be 

used for protein synthesis.  This is referred as protein-sparing effect.  Sparing dietary 

protein from use as energy also reduces ammonia and nitrogen waste production in 

aquatic environment from metabolism of amino acids (Bromley, 1980; Shyong et al., 

1998; Vergara et al., 1999; Lopez et al., 2006). 
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 Lipid is an effective source of non-protein energy compared to other energy 

sources as it releases more energy per unit weight.  It is easily digested and metabolized 

compared to carbohydrate and therefore, serves as a better source of energy for protein 

sparing. Besides that, inclusion of lipid can produce cost-effective diet compared to high 

cost protein sources. 

 

 The protein sparing effect of lipid varies between species.  Overall, inclusion of 

15-18% lipid will be optimal to replace protein energy in diet (Lie et al., 1988).  Ai et al. 

(2004) concluded 41% protein and 12% lipid was the optimal dietary level of protein and 

lipid for Japanese sea bass.  At three protein levels of 36%, 41% and 46%, increasing 

dietary lipids from 8% to 16% improved specific growth rate (SGR), protein efficiency 

ratio (PER), protein productive value (PPV) and energy retention in Japanese sea bass, 

showing protein sparing effect of lipid.  Bromley (1980) showed that protein sparing 

action of lipid was most significant in turbot fed to three-quarter of satiation as 42% of 

dietary protein was converted into fish protein in diet containing 6% lipid.  Meanwhile, 

only 32% conversion of protein was demonstrated in diet containing 0.5% lipid.  Lee et al. 

(2002) demonstrated that increasing dietary lipid levels significantly improved 

hepatosomatic index (HSI), viscerosomatic index (VSI), protein efficiency ratio and 

protein retention in juvenile rockfish, Sebastes schlegeli, indicating protein sparing effect 

of lipid.  It was concluded that 42% protein and 14% lipid was optimal dietary level for the 

growth and protein utilization of juvenile rockfish.  Lee and Sang (2005) showed that 

increase of dietary lipid from 10% to 19% with 42% dietary protein caused improved 

growth and protein utilization in bagrid catfish, Pseudobagrus fulvidraco.  They 

suggested a diet containing 42% protein and 19% lipid would be suitable for bagrid 

catfish.    
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 Boujard et al. (2004) concluded sea bass could be fed diets containing up to 30% 

lipid and 54% protein.  These high energy diets increased nitrogen retention, reduced 

phosphorus excretion and the use of fish meal as protein energy intake.  Carmona-

Osalde et al. (2005) found that increased dietary lipid levels improved maturation index 

and GSI in crayfish, Procambarus llamasi.  Diet containing 20% protein 12% lipid was 

recommended for growth in crayfish while diet containing 30% protein 12% lipid for 

maturation.  Protein sparing effect also has been reported in several fish species fed 

diets containing lipid as main energy source (De Silva et al., 1991; Vergara et al., 1999).   

 

 On the other hand, Ozorio et al. (2006) indicated that increasing dietary lipid from 

12% to 16% with dietary protein of 15% and 28% did not induce protein sparing effect in 

white seabream, Diplodus sargus due to a low protein requirement in this species.  

Studies elsewhere also showed no protein sparing effect by dietary lipid in sharpsnout 

seabream (Hernandez et al., 2001) and dentex (Espinos et al., 2003).  High energy diet 

and high inclusion of carbohydrate could also inhibit lipid absorption and reduced protein 

sparing effect by lipid (Ozorio et al., 2006).  

 

 Protein sources for fish farming depend mostly on fish meal, which is produced 

from demersal fish as raw material from northern water.  The population of fish will 

eventually decrease in the near future.  Therefore, it is necessary to lower the content of 

fish meal in fish diet and substitute it with other energy sources.  Dietary protein 

utilization needs to be improved for protein synthesis rather than for energy.  Besides 

that, adequate levels of protein and lipid need to be considered carefully to produce 

optimum dietary protein and lipid ratio in feed.  An imbalance in the diet will have 

adverse influences on fish growth, nutrient utilization, body lipid deposition, increased 

production cost and deterioration in water quality.   
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 2.4 Fatty acids 

 Fatty acyl groups form the hydrophobic interior of all cell membranes.  This 

condition provides an impermeable barrier to water and polar molecules and separates 

the cell from the surrounding environment.  Fatty acids are carboxylic acids with long-

chain hydrocarbons as their side groups.  The nomenclature of fatty acids is as follow:   

C x:y(n-z) where, 

 x = the number of carbon atoms 

  y = the number of double bonds in the hydrocarbon chain  

 z = the position of carbon at which the first double bond appears numbering                

from the non-carboxyl (COOH) end  

 In addition to that, C represents carbon and n represents omega. 

 

 Saturated fatty acids are straight chain or branched-chain structures with an even 

number of carbon atoms without any double bond.  For example, palmitic acids (C16:0) 

with a chemical structure of CH3(CH2)14COOH.  The most common saturated fatty acids 

lie in the range of 12 to 22 carbons.  However, acids from 2 carbons to longer than 30 

carbons have been reported.  Acids such as ethanoic, propanoic, butanoic and hexanoic 

are in this category.  Branched-chain fatty acids are usually found in bacteria, butter fats 

and skin lipids.  They occur at low concentration in animal fats and some marine oils. 

 

Monounsaturated fatty acids (MUFA) are fatty acids with a chain length of 16-22 

carbon atoms and contain one double bond between the carbon atoms.  For example, 

Oleic acid (C18:1n-9) with chemical structure of CH3(CH2)7CH=CH(CH2)7COOH.  

Saturated and monounsaturated fatty acids serve as major energy yielding nutrients in 

fish.  Polyunsaturated fatty acids (PUFA) contain 2 to 4 double bonds between its carbon 

atoms while highly unsaturated fatty acids (HUFA) contain more than 4 double bonds.  

Chain length and the degree of unsaturation (number of double bonds) will determine the 

physical and chemical properties of the fatty acids.  Saturated fatty acids are normally 
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solid at room temperature while unsaturated fatty acids have low melting points and are 

fluid oils at room temperature. 

 

 Fatty acids existing in terrestrial plants and animals have a relatively low degree 

of unsaturation (less number of double bonds) with 14-18 of carbon chain lengths while 

fatty acids in aquatic organisms have high degree of unsaturation and longer chain 

lengths. Unicellular algae are the primary producers of essential fatty acids in marine 

ecosystem.  They contain 20% of their dry weight as lipid, with approximately 50% of it 

present as n-3 PUFA.  Besides that, red algae are rich in AA as well as n-3 PUFA.  

Crustacean zooplanktons are the major consumers of phytoplankton, and they are 

subsequently consumed by planktivorous fish.  Throughout this food chain n-3 PUFA are 

generally elongated.  Fatty acids are found mostly in algae as C18 PUFA while C20 and 

C22 HUFA are found in zooplankton and fish.  In fish, the amount of C22 HUFA is greater 

than C20 HUFA. 

 

 Freshwater microalgae and insects normally contain higher amount of n-6 PUFA 

compared to marine algae (De Silva and Anderson, 1995).  This eventually causes fatty 

acid composition of freshwater fish to contain higher proportions of n-6 PUFA compared 

to marine fish which contain higher composition of n-3 PUFA.  Nevertheless, both are 

rich in EPA and DHA.  Therefore, fatty acid composition of marine fish and freshwater 

fish will be different depending much on the fatty acid composition of the prey present in 

the two environments.  
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2.4.1 Dietary Fatty acids requirement of Fish 

 Inadequate provision of essential fatty acids will cause low growth rate, poor food 

conversion rate and affect reproductive performances of broodstocks.  Research on the 

dietary fatty acids requirement has changed from considerations of optimal dietary levels 

of n-3 HUFA to optimal dietary ratios of the two important n-3 HUFA, EPA and DHA.  

Recent research aims to find the optimal dietary levels and ratios of the three important 

dietary HUFA, which are EPA, DHA and AA. 

 

 The EFA requirement of fish differs considerably between different species.  

Rainbow trout require n-3 fatty acids, while carp, eel, tilapia and salmon require both of 

the n-3 and n-6 fatty acids for good growth.  HUFA such as EPA and DHA are important 

EFA for red sea bream, plaice and yellowtail, LNA and LA are considered as non-

essential fatty acids (Watanabe, 1982).  El-Sayed et al. (2005) found that Nile tilapia 

broodstock reared in brackish water required dietary n-3 HUFA for optimum spawning 

performance.  Meanwhile, soybean oil which is rich in n-6 HUFA may meet the fatty 

acids requirement of broodstock reared in freshwater. 

 

 Studies also showed that HUFA especially EPA and DHA have a higher EFA 

value and growth enhancing effect than LNA of the n-3 fatty acids.  Similarly, AA has a 

higher EFA value than LA of the n-6 fatty acids (Watanabe, 1982).  Watanabe & 

Takeuchi (1976) found that replacing pollock liver oil which is high in HUFA with a 

comparable amount of methyl LNA did not improve the growth of trout.  Other studies by 

Takeuchi and Watanabe (1977, 1980) showed that 0.5% of dietary supplementation of 

EPA and 0.5% of dietary n-3 HUFA mixture of EPA and DHA produced higher growth 

rate than dietary supplementation of 1% LNA in carp, eel and salmon. 
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 Seed oils in terrestrial plants are rich in n-6 PUFA but devoid in n-3 PUFA.  Lipids 

found in aquatic food chain have high proportion of n-3 PUFA as well as n-6 PUFA that 

satisfy the fatty acids requirement of fish.  Therefore, farming fish relies closely on fish oil 

and fish meal for provision of dietary n-3, n-6 fatty acids and HUFA.  Lee et al. (1967) 

obtained reduced growth in trout fed corn oil as sole lipid source but the growth 

increased when trout were fed with Salmon oil which is rich in C20 and C22 n-3 fatty acids.   

  

 Fish tissues generally have higher concentrations of DHA and EPA than AA 

showing a dietary requirement of n-3 HUFA.  However, this should not obscure the fact 

that AA is also an important minor component in fish cell.  DHA is an important dietary 

HUFA as it is present in a very high concentration in visual and neural cell membrane in 

both fish and mammals, especially in rod cell outer segment membrane and 

synaptosomal membrane.  Juvenile herring deprived of DHA were not able to capture 

prey at low light intensities efficiently (Bell et al., 1995a; 1995b).  AA is the major 

precursor of eicosanoids.  Eicosanoids are a range of highly active C20 compounds 

formed in trace amounts in every tissue in the body.  Nevertheless, they are involved in 

variety of physiological functions such as cardiovascular, inflammatory response and 

reproduction.  They are also produced in response to stressful situations in both the 

cellular and body level.  Eicosanoids formed by AA are more biologically active than 

those eicosanoids formed by EPA. Watanabe (1982) concluded that most of the 

commercial diets for rainbow trout, carp, eel, salmon and red sea bream contain 4-6% 

lipid and 0.4-0.6% of EPA and DHA to satisfy the EFA requirement of these fish. 

 

 Yu & Sinnhuber (1976) concluded that addition of 1% LA stimulated growth of 

rainbow trout, but the growth was depressed when the dietary LA level increased to 

2.5% and 5%.  Extremely high levels of n-3 fatty acids and more than 1% of n-6 fatty 

acids in diet depressed the growth of Coho Salmon (Yu et al., 1979).  Excess addition of 

LNA or HUFA mixture of EPA and DHA of 4 times higher than the dietary requirements 
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produced poor growth and low feed conversion in rainbow trout (Takeuchi & Watanabe, 

1979).  Sargent et al., (1999b) concluded that excess supplementation of EPA in the diet 

of turbot larvae was not deleterious but an excess of AA was.  Essentially normal 

survival, growth, pigmentation and metamorphosis were shown by turbot larvae fed on 

rotifers and brine shrimp nauplii supplemented with tuna orbital oil with a ratio EPA:AA of 

4.2.  At ratios of EPA:AA of 1.5 and 0.4, achieved by elevating dietary AA levels, 

pigmentation and metamorphosis of the larvae were found impaired.  Excess dietary AA 

was found to alter brain eicosanoid production and cause a biochemical-induced stress.  

For sea bass larvae, optimal dietary ratio of DHA:EPA was found to be circa 2:1 while 

optimal dietary ratio of EPA:AA was circa 1:1.  For turbot and halibut, optimal dietary 

ratio of DHA:EPA was 2:1 while optimal dietary ratio for EPA:AA was 10:1 (Sargent et al., 

1999a). We should consider a balance proportion of fatty acids for fish growth compared 

to the amount of fatty acids present in the diet by taking into account the ratio of n-3:n-6 

fatty acids, ratios of DHA:EPA:AA. 

  

 Sargent et al. (1999b) stated that imbalanced levels and ratios of dietary EFA will 

cause competitive interactions between different series of fatty acids, for example n-3 

and n-6 series, and also between fatty acids of different chain lengths and degrees of 

unsaturation within the same series such as C20:5n-3 (EPA) and C22:6n-3 (DHA). 

Competitions will occur between C18:2n-6 (LA) and C18:3n-3 (LNA) for delta-6 fatty acid 

desaturase and between C18:3n-6 and C18:4n-3 for fatty acid elongase.  C20:4n-6 (AA) 

and C20:5n-3 (EPA) will compete for cyclo-oxygenases that synthesize 2-series 

prostanoids, 4-series leukotrienes and lipoxygenasis that synthesize 3-series 

prostanoids and 5-series leukotrienes.  These eicosanoids produced from AA are 

biologically more active than those produced from EPA and they compete for the same 

cell membrane receptors.  High level of EPA competitively inhibits the formation of 

eicosanoids formed from AA.  Therefore, high tissue ratio of AA:EPA results in enhanced 
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