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PERUANG SUAPAN MODUL MEMBRAN “SPIRAL WOUND” UNTUK 
PENURASAN NANO DAN OSMOSIS BALIKAN: PEMODELAN,  

SIMULASI DAN REKABENTUK 
 

ABSTRAK 
 
 

Sejak 1970an, permintaan untuk modul membran “spiral wound” (SWM) 

meningkat dengan mendadak di kedua-dua pasaran tempatan dan antarabangsa. 

SWM yang terdapat di pasaran mempunyai jangka penggunaan di antara satu hingga 

tiga tahun bergantung kepada aplikasi masing-masing. Untuk memanjangkan jangka 

penggunaan SWM, faktor yang paling utama adalah rekebentuk peruang suapan SWM 

yang optimum untuk mengatasi masalah kotoran. Disebabkan masalah kotoran di 

SWM bermula dengan pembentukan pengutuban kepekatan dan peruang suapan yang 

berbeza akan menjana tahap kehilangan tenaga yang berlainan, satu peruang suapan 

yang optimum telah direkabentuk berdasarkan pengutuban kepekatan dan kehilangan 

tenaga dengan menggunakan kaedah Pengkomputeran Bendalir Dinamik (CFD). 

 

Dengan integrasi sifat-sifat penelapan, kod CFD komersial Fluent 6 telah 

digunakan untuk simulasi hidrodinamik di dalam saluran suapan SWM yang kosong. 

Model CFD tersebut telah disahkan secara eksperimen dari segi sifat-sifat penelapan. 

Berdasarkan keputusan kajian, ia membuktikan membran perlu dimodelkan sebagai 

dinding telap dengan fluks telapan berubah. Selain itu, kesan suapan nombor 

“Reynolds” (Ref), tekanan antara membran dan zat terlarut ke atas perkembangan 

pengkutuban kepekatan telah dikaji. Untuk simulasi saluran suapan SWM yang berisi 

peruang, sifat-sifat penelapan telah berjaya diintegrasikan ke dalam penyelasaian 

persamaan-persamaan menakluk dan disahkan secara eksperimen. 

 

Berdasarkan analisa hidrodinamik tidak mantap, pembentukan hidrodinamik 

tidak mantap di saluran suapan SWM yang berisi peruang boleh dikesan pada nombor 

“Reynolds” yang rendah (Ref 100-300) pada jarak peralihan tertentu dari lokasi saluran 
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masuk. Rekebentuk peruang yang berbeza didapati menghasilkan tahap hidrodinamik 

tidak mantap yang berlainan. Dalam kajian ini, kehilangan tenaga di saluran suapan 

SWM yang berisi peruang telah ditentukan dengan menggunakan kuasa penggunaan 

tentu (λ). Rekabentuk peruang yang berbeza didapati menjana tahap λ yang berlainan. 

Berdasarkan keputusan eksperimen dan simulasi, hidrodinamik tidak mantap di 

saluran suapan SWM yang berisi peruang boleh menggangu pembentukan 

pengutuban kepekatan. 

 

Parameter rekabentuk untuk peruang suapan yang terdiri daripada geometri 

filamen peruang (FG), nisbah jarak jejaring (ML), sudut jejaring (α and β) dan nisbah 

filamen telah dioptimumkan berdasarkan faktor pengutuban kepekatan berkesan (Ψ) 

yang minimum, di mana seterusnya disahkan dengan analisa tegasan ricih dinding, 

profil plot kontor dan pengutuban kepekatan setempat. Berdasarkan keputusan kajian, 

filamen silinder yang sama saiz dengan nisbah jarak jejaring 3 dan sudut jejaring (α= 

120° and β=30°) merupakan parameter rekabentuk peruang yang optimum. 

 

Model optimum peruang tersebut telah disahkan secara eksperimen dari segi 

hidrodinamik dan sifat-sifat penelapan. Berdasarkan perbandingan prestasi secara 

eksperimen dengan peruang yang lain, peruang optimum menjana fluks peningkatan 

yang tertinggi dan melebihi 100% berbanding dengan saluran membran kosong. 

Peruang optimum juga menjana peningkatan fluks (lebih kurang 6%-11%) lebih tinggi 

berbanding dengan peruang yang lain dengan nisbah jarak jejaring (ML=3) dan sudut 

jejaring (α=120° dan β=30°) yang sama. Berdasarkan perbandingan penyingkiran 

cerapan, peruang optimum menghasilkan penyingkiran cerapan yang tertinggi 

berbanding dengan peruang yang lain dengan nisbah jarak jejaring dan sudut jejaring 

yang sama. 
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FEED SPACER OF SPIRAL WOUND MEMBRANE MODULE FOR 
NANOFILTRATION AND REVERSE OSMOSIS: MODELING,  

SIMULATION AND DESIGN 
 

ABSTRACT 
 
 

Since 1970s, the demand for spiral wound membrane (SWM) has been rapidly 

increasing in both local and worldwide market. Current market available SWM possess 

lifespan between one to three years depends on the applications. In order to extend 

SWM lifespan, the most influencing factor is the design of optimal SWM feed spacer to 

overcome fouling problem. Since fouling problem in SWM starts with the formation of 

concentration polarization and different feed spacers generates different degree of 

energy loss, an optimal feed spacer was designed based on the concentration 

polarization and energy loss using Computational Fluid Dynamics (CFD) approach. 

 

 With the integration of permeation properties, commercial CFD code Fluent 6 

was employed to simulate the hydrodynamics in the empty SWM feed channel. The 

integrated CFD model was validated experimentally in terms of permeation properties. 

Based on the results of the study, it proved that the membrane interface should be 

modeled as permeable wall with varying permeate flux. Besides that, the effect of feed 

Reynolds number, transmembrane pressure and solutes on concentration polarization 

development was studied. In the spacer filled SWM feed channel simulation, 

permeation properties were successfully incorporated in the solution of governing 

equations and validated experimentally. 

  

Based on the unsteady hydrodynamics analysis, the emergence of unsteady 

hydrodynamics in the spacer filled SWM feed channel can be detected at low feed 

Reynolds number (Ref 100-300) at certain transition length from the channel entrance. 

Different spacer designs were found to produce different magnitude of unsteady 

hydrodynamics. Under current study, energy loss in the spacer filled SWM feed 



 xxx

channel was determined using specific power consumption (λ). Different spacer 

designs were found to generate different degree of λ. Based on the experimental and 

simulated results, the unsteady hydrodynamics in the spacer filled SWM feed channel 

can significantly disrupt the development of concentration polarization.  

 

Feed spacer design parameters which consisted of spacer filament geometry 

(FG), mesh length ratio (ML), mesh angles (α and β) and filament ratio (SFR) were 

optimized based on the minimum effective concentration polarization factor, Ψ which 

further validated by wall shear stress analysis, contour plot profile and localized 

concentration factor. Based on current study, equal cylindrical filaments with mesh 

length ratio 3 and mesh angle (α= 120° and β=30°) was the optimum spacer design 

parameters. 

 

The optimum spacer model was validated experimentally in term of 

hydrodynamics and permeation properties. Based on the experimental performance 

comparison with others spacers, optimum spacer generated the highest flux 

enhancement which was more than 100% as compared to empty membrane channel. 

Optimum spacer generated higher flux enhancement (approximately 6%-11%) as 

compared to spacers with identical mesh length ratio (ML=3) and mesh angles (α=120° 

and β=30°). Based on the observed rejection comparison, optimum spacer yielded the 

highest observed rejection as compared to the spacers with identical mesh length ratio 

or mesh angles. 
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CHAPTER 1 
 

INTRODUCTION 
 
 
1.1 Membrane processes 
 

A membrane is a permeable or semi-permeable phase, often a thin polymeric 

solid, which restricts the motion of certain species. This membrane or barrier controls 

the relative rates of transport of various species through itself and thus, as with all 

separations, gives one product depleted in certain components and second product 

concentrated in these components. The membrane processes can be categorized 

based on its separation mechanism which mainly consist of size exclusion, solubility 

and diffusivity and charge (van Rijn, 2004). Table 1.1 shows the major membrane 

processes arranged according to the mechanism of separation. Membrane separation 

processes that occur based on size exclusion involve microfiltration, ultrafiltration and 

nanofiltration. Microfiltration membrane consists of the largest membrane pores (which 

typical range from 0.1 -10 μm) as compared to the nanofiltration and ultrafiltration 

membrane. These types of membranes commonly applied in prefiltration in water 

treatment, sterile filtration, beverage clarification, screening of bacteria and etc. 

 

Table 1.1: Membrane processes arranged according to the mechanism of separation 
(van Rijn, 2004) 

 
Separation Mechanism Major membrane separation process 
Size exclusion (filtration) 
Solubility/ diffusivity 
Charge 
 

Nanofiltration, ultrafiltration, microfiltration 
Reverse osmosis, gas separation, pervaporation 
Electrodialysis 

 

Ultrafiltration mainly used to remove particles in the size range 0.001-0.1μm. 

Solvents and salts of low molecular weight will pass through the membranes whilst 

larger molecules are retained. Generally, ultrafiltration membrane is classified by 

molecular weight cut-off and by notional pore size. These type of membrane commonly 

used in separation of macromolecular solutes and colloidal material from 
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macromolecular solutes and solvents. The applications of these membranes include 

concentration of protein/enzyme for pharmaceutical and biomedical industries, food 

and dairy, pulp and paper and etc (Scott and Hughes, 1996). 

 

Nanofiltration is a relatively young description for filtration processes using 

membrane with a pore ranging 0.5 to 1nm. In general, nanofiltration is used to separate 

relatively small organic compound and (multivalent) ions from a solvent. Nanofiltration 

systems typically operate at lower pressure than reverse osmosis but yield higher 

flowrates of water with a different quality to reverse osmosis. The application areas for 

nanofiltration cover purification of sugar from acids, salts from dyes, water treatment, 

electroplating and etc (Baker, 2000). 

   

In order to facilitate the separation process on molecular scale, a relatively 

dense membrane is required. The transportation mechanism of solute through this 

denser membrane is controlled by solution-diffusion process instead of size exclusion. 

This process involves dissolve and transportation, diffusion of solvent in the membrane 

through the membrane with driving force acting inside the membrane.  The driving 

force is solely activated by properties of the membrane material like chemical affinity 

instead of porosity of the membrane. Major membrane processes that exhibit solution-

diffusion mechanism include reverse osmosis, gas separation and pervaporation.  

 

Reverse osmosis membranes can essentially separate all solutes species, both 

inorganic and organic from the solution. The particle size range for the applications of 

reverse osmosis is approximately 0.2 – 0.5nm. Reverse osmosis has been widely 

applied in aqueous solution processing like desalination of brackish and seawater, 

production of ultra pure water for semiconductor, concentration of solutions of food 

products, pharmaceutical solutions and chemical streams, wastewater treatment and 

etc (Baker et al., 1991). 
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Gas separation processes mainly conducted using gas permeation membrane 

(non-porous membrane) which essentially depends on the differences in permeability 

and diffusity of the gaseous components. The solubility of gaseous component in the 

membrane will combine with diffusion to determine the permeability and selectively of 

separation. Gas permeation membranes find their major applications in chemical and 

petrochemical industries like separation and recovery of hydrogen from refinery gas 

and purification of natural gas. Other applications include the separation of oxygen and 

nitrogen from air, dehydration of gases, methane recovery from biogas and etc (Nunes 

and Peinemann, 2001).  

 

Third type of membrane process that exhibits solution-diffusion mechanism is 

pervaporation. This process essentially applied in separation of liquid-liquid mixture 

with an azeoptropic composition with relatively small difference in volatility. Applications 

that use this process include dehydration of ethanol, acetic acid, removal of ethanol for 

fermentation products and etc. 

 

During separation process, the charge of a molecule may affect its transport 

properties through a medium, or a charged molecule may selectively be exchanged for 

another charged molecule. The incorporation of ion-exchange groups in the membrane 

material produces a semi-permeable barrier that allows passage of either positively 

charged ions or negatively charged ions while excluding passage of ions of the 

opposite charge. These semi-permeable barriers are commonly known as 

electrodialysis membranes. The major applications for electrodialysis are in desalting 

and concentrating seawater in salt production, concentration or dilution of electrolyte 

solutions in desalination of brackish water, effluent treatment for salt solution in food, 

pharmaceutical and electroplating industry and etc (van Rijn, 2004). 
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1.2 Membrane module 

 The feasibility of a membrane process depends on the design of membrane 

module since the active separation membrane area is directly influenced by the 

membrane module configuration. The cost reduction of membrane module has led to 

the commercialization of membrane process in the 1960s and 1970s (Baker et al., 

1991). Plate-and-frame and tubular membrane module are two of the earliest module 

design that based on simple filtration technology. Both systems are still available until 

today, but due to their relatively high cost and inefficiency, they have been mainly 

substituted by hollow fiber and spiral wound membrane. 

 

1.2.1 Plate-and-frame module 

Plate-and-frame modules were among the earliest types of membrane systems 

and the design is principally based on conventional filter press. Membrane feed 

spacers and product spacers are layered together between two end plates, as shown 

in Figure 1.1. The comparatively high production cost (as compared to others 

membrane modules) and leaks caused by the numerous gasket seals in the system 

has restricted the usage of this system to small scale application. The use of plate-and-

frame is now generally limited to electrodialysis and pervaporation systems (Baker et 

al., 1991). 

 

Figure 1.1: Plate-and-frame membrane module (Baker et al., 1991) 
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1.2.2 Tubular module 

Polymeric tubular membranes are usually made by casting a membrane onto 

the inside of a pre-formed tube, which is referred to as the substrate tube (Figure 1.2). 

These are mainly made from non-woven fabrics such as polyester or polypropylene. 

The diameter of tubes range from 5-25mm, with 12.5mm in common usage. There are 

mainly two types of housing system for tubular membrane module which known to be 

the supported and unsupported tubes housing system. Basically, in supported housing 

system, membrane tube is supported by perforated or porous stainless steel tubes. A 

bundle of these membrane tubes is mounted into a vessel that collect permeation and 

caps are fitted to the end to give different flow pattern. Exhibiting high mechanical 

strength, this type of module can be used at high pressure (up to 60 bar) separation 

process like reverse osmosis. In the unsupported housing design, the membrane is 

supported only by substrate tube and a cartridge is constructed by potting the ends of a 

bundle of tubes in an epoxy resin. These types of designs offer lower capital cost than 

the supported tube module but, it has a reduced tolerance to pH, pressure and 

temperature (Baker et al., 1991). 

 

Figure 1.2: Tubular membrane module (Baker et al., 1991) 

 

1.2.3 Hollow fiber module 

There are two basic configurations for hollow-fiber membrane module. The first 

is the closed-end design as shown in Figure 1.3. In this module, a loop of fiber or a 

closed bundle is contained in a pressure vessel. The system is pressurized from the 

shell side and permeate passes through the fiber wall and exits via the open fiber ends. 
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This design allows large fiber membrane areas to be contained in an economical 

system. Since the fiber wall supports a considerable hydrostatics pressure, these fibers 

usually have a small diameter, around 100μ ID and ~200μm OD (Baker et al., 1991). 

The second basic design for hollow fiber module is more common (Figure 1.4). In this 

case, the fibers are laid out parallel to each other in bundles and the open ends are 

then cast into two resin blocks which are bonded into shrouds to form a cartridge. I 

order to minimize the pressure drops in the inside of the fibers, the fibers often have 

larger diameters than fine fibers used in closed loop system. Membrane in these 

configurations are available for reverse osmosis, ultrafiltration and microfiltration 

applications such as seawater desalination, water clarification, fruit clarification, 

eletrophoretic paint recovery, oil waste water treatment and etc (Scott et al., 1996). 

 

 

Figure 1.3: Hollow fiber module with closed-end design (Scott et al., 1996) 

 

 

Figure 1.4: Hollow fiber module with opened-end design (Scott et al., 1996) 
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1.2.4 Spiral wound module 

The designs of a spiral wound membrane consist of membrane envelopes 

(leaves) and feed spacers which wound around a perforated central collection tube.  A 

schematic diagram of an open spiral wound membrane is shown in Figure 1.5. Based 

on the figure, feed solution passes axially down the module across the membrane 

envelope. A portion of the feed solution permeates into the membrane envelope, where 

it spirals toward the center and exits through the collection tube (Scott et al., 1996).  

 

 

Figure 1.5: Spiral Wound Membrane Module (Scott et al., 1996) 

 

These modules were designed in an effort to pack as much membrane surface 

as possible into a given volume (Senthilmurugan et al., 2005). Small scale spiral-

wound modules consist of a single membrane leaf wrapped around the collection tube. 

In the large membrane area module, using single membrane leaf might generate large 

pressure drop due to the longer path taken by the permeate to reach the central 

collection tube. Multiple short leaves have been utilized to keep the pressure in the 

module in a manageable level (Van der Meer and van Dijk, 1997).   

 

 

 

 



 8

1.3 Membrane module market demand 

Since 1960s, the search for viable alternatives to traditional energy-intensive 

separation methods such as distillation, has led to the introduction of processes based 

on membranes. Membrane technology often offers cheaper capital and utility costs and 

has displaced conventional separation techniques in many areas (Avlonitis et al., 1995; 

Nunes and Peinemann, 2001). The demand for more efficient and reliable membranes 

is directing research towards producing new membranes with higher water flux, better 

salt rejection properties and better resistance to chemical attack (Baker, 2000). The 

rapid expansion is to be ascribed to the simplicity, economy and improved reliability of 

present industrial installation. This in turn is due to both better membrane performance 

and improved module design (Scott and Hughes, 1996; van Rijn, 2004). 

 

Based on a recent business survey, the market for cross-flow membrane 

modules and equipment to purify water and other liquids will grow from USD7.6 billion 

in 2006 and predicted to excess USD10 billion in 2010. The annual growth rate for 

membrane markets is estimated at around 10-15% (Filtration Industry Analyst, 2006). 

The cross-flow membrane modules market is divided into three major segments. The 

largest is reverse osmosis (RO) accounting for 50% of the total sales. Most of the 

reverse osmosis membranes are manufactured in spiral wound membrane module and 

hollow fiber membrane module. This is the most efficient membrane and is used for 

desalination, creation of ultrapure water for electronics and pharmaceutical 

applications. The other 50% of the market is almost evenly split between ultrafiltration 

and microfiltration. Besides, in 2009, it is predicted that the leading segment for cross-

flow membranes will be desalination with sales of equipment and membranes in excess 

of $2.2 billion worldwide (Membrane Technology, 2006) as shown in Figure 1.6. 

Besides, the price of spiral-wound modules has decreased almost 50% in the past 

decade (Semiat, 2001) and new energy recovery devices with efficiencies as high as 

98% have been introduced in the desalination industries for the last few years (Drablos, 
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2001; Geisler et al., 2001). With cheaper capital cost and improved efficiencies, spiral 

wound membrane has been used intensively in the desalination industries and is 

predicted to dominate the desalination industries in the near future (Semiat, 2001). 
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Figure 1.6: World membrane market at 2009 (Membrane Technology, 2006) 

 

The Asian membrane market will grow at a faster rate than other regions due to 

the lack of clean water and the rapid growth of the electronics and pharmaceutical 

industries. As the leading export sector in Malaysia, electrical and electronic products 

made up 52.9% of total Malaysian Exports in 2003 (Aseansources, 2006). The biggest 

export item is semiconductor devices used in a diverse range of industries, such as 

automotive and telecommunications. The growth of semiconductor industries has 

promoted a high demand for ultrapure water, which subsequently contributes to the 

growth of local membrane market. Spiral wound membrane has been widely used in 

the semiconductors industries to produce ultrapure water for wafer rinsing process. 

 

 At present, the demand for spiral wound membrane is considerable high in both 

local and worldwide market. In the near future, it is also being forecasted to the most 

demanding membrane module. The extensive usage of spiral wound membrane is 

contributed by its added features in term of configurations and designs. 
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1.4    Advantages in spiral wound membrane  

 In reverse osmosis, nanofiltration and ultrafiltration, most membrane modules 

are fabricated in hollow fiber or spiral wound design. High packing density and low 

manufacturing cost are the major factors that contribute to the extensive usage of these 

membrane modules in various industries (refer to Table 1.2). Plate-and-frame and 

tubular modules solely used in a few applications where membrane fouling is 

particularly severe, for example, food applications or processing of heavily 

contaminated industrial water (Chaabane et al., 2006 ).  

 

Fouling resistance is one of the major factors to determine the module selection 

(Schwinge et al., 2002). Generally, membrane fouling is a critical problem in liquid 

separations such as reverse osmosis, nanofiltration and ultrafiltration. Although plate-

and-frame and tubular modules have better fouling control ability, these types of 

modules are not preferable due to high selling price except for severe fouling 

separation process. Comparing between the hollow fiber and spiral wound modules, 

spiral wound modules appear to be displacing hollow fiber design because they have 

more fouling resistance which apparently reduces the cost for the feed pretreatment 

(Pavlova et al., 2005).  

 

Table 1.2: Characteristics of major membrane module designs (Baker et al., 1991) 

 Hollow 
Fibers 

Spiral 
Wound 

Plate-and-Frame Tubular 

Manufacturing 
cost ($USD/m2) 
 
Packing density 
 
Resistance to fouling 
 
Parasitic pressure drops 
 
Suitability for high 
pressure operation 
 
Limitation to specific 
types of membranes 

5-20 
 
 

high 
 

very poor 
 

high 
 
 

yes 
 
 

yes 

30-100 
 
 

moderate 
 

moderate 
 

moderate 
 
 

yes 
 
 

no 

100-300 
 
 

low 
 

good 
 

moderate 
 
 

can be done with 
difficulty 

 
no 

50-200 
 
 

low 
 

very good 
 

low 
 
 

can be done 
with difficulty 

 
no 
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Besides, the fabrication of spiral wound membrane also has less limitation to 

specific types of membranes as compared to the hollow fiber membrane. This added 

feature principally allows more types of membrane to be fabricated in spiral wound 

design. Enhanced stability under high pressure and moderate parasitic pressure drops 

in spiral wound membrane has also promoted the wide-ranging usage of this module in 

various sectors (Roth et al., 2000; Champlin et al. 2000; Al Wazzan et al., 2002; 

Bergen et al., 2004). 

 

 

1.5 Problem statement 

Membrane fouling is a critical problem in liquid separations such as reverse 

osmosis, nanofiltration and ultrafiltration. The occurrence of these phenomenon 

constraints the normal membrane separation process and reduce the lifespan of the 

spiral wound membrane module. The fouling problem in spiral wound membrane 

basically starts with the formation concentration polarization phenomenon. 

Concentration polarization is normally formed rapidly at the beginning of filtration and 

causes a reduction in flux predominantly due to the increased osmotic pressure of 

retained ions and the formation of gels by retained organic molecules. Colloidal 

deposits can further increase concentration polarization by forming an unstirred layer 

that increases the boundary layer concentration. The intensive development of 

concentration polarization at the membrane surface will contribute to more problematic 

fouling mechanism such as gel polarization, adsorption and scaling of solute. 

 

Although spiral wound membranes have better fouling resistance as compared 

to hollow fiber membrane, yet due to their unique design and construction, the fouling 

control methods for spiral wound membranes are limited to hydrodynamics, 

pretreatment and operational method as demonstrated in Table 1.3.  Chemical 

cleaning and backflushing are inappropriate for spiral wound membranes since the 
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tightly wrapped structures are not easily to be opened for cleaning or to be operated in 

reverse direction. Pretreatment and operational method can control the fouling problem 

in spiral wound membranes, but these methods principally increase the overall 

operating cost for the separation processes with spiral wound membranes. Moreover, 

to overcome the fouling problem due to concentration polarization, these methods are 

inappropriate to be employed in the spiral wound membrane.  

 
Table 1.3: Foulants and their control strategies in spiral wound membrane module for 

nanofiltration and reverse osmosis processes (Schafer et al., 2005) 
 

Foulant Fouling control 
General/ Concentration 
Polarization 
 
Inorganic (Scaling) 
 
 
Organics  
 
 
Biological solids 

Hydrodynamics/ shear (novel spacer design or higher 
cross flow velocity) 
 
Operate below solubility limit, pretreatment, reduce pH 
4-6 (acid addition), low recovery, anti-scalants 
 
Pretreatment using biological processes, activated 
carbon, ion exchange, ozone, enhanced coagulation. 
 
Pretreatment using disinfection (i.e. chlorination), 
filtration, coagulation, microfiltration, ultrafiltration. 

 

Alternatively, concentration polarization and fouling problem can be effectively 

controlled by varying the hydrodynamics conditions in the spiral wound membrane 

channel. This can be achieved by the introduction of higher cross flow velocity or by the 

incorporation of an optimized feed spacer in the membrane channel. The increment of 

operational cross flow velocity can directly produce higher scouring force and reduces 

the development of concentration polarization and fouling on the membrane surface. 

The drawback of using this method is the requirement of higher pumping energy to 

facilitate the energy loss generated across the spacer-filled feed channel. In order to 

suppress concentration polarization and fouling problem with moderate energy loss, 

optimized feed spacer is needed in the spiral wound membrane feed channel. An 

optimized feed spacer is capable to generate unsteady hydrodynamics in the 

membrane channel, which subsequently reduce the occurrence potential of 

concentration polarization and fouling at minimum level of energy loss.  
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In order to design and optimize the feed spacer, detail understanding on the 

hydrodynamics and permeation properties in spacer-filled spiral wound feed channel is 

crucial to balance the trade-off between concentration polarization reduction and 

energy loss generation. The flow and permeation properties should be modeled or 

simulated locally with the consideration of actual hydrodynamics. Computational Fluid 

Dynamics (CFD) simulation and modeling approach have been conducted to predict 

hydrodynamics in the spacer filled membrane channel parallel with the development of 

special numerical CFD codes and CFD simulation software (Rosen and Tragardh, 

1993; Ghidossi et al., 2006). This method potentially offers faster approach to 

determine the optimum feed spacer design parameters if compared with experimental 

methods. This attempt had also been supported by the improvement of the 

computational power which offers potential solution for millions of numerical grids. 

Spacer designs conducted by CFD can be subdivided into two categories which are 

CFD simulation and CFD mathematical modeling.  

 

Generally, CFD simulation approaches are conducted using commercial CFD 

simulation code. The improvements in CFD simulation technique and methodology had 

accelerated the simulations speed and offer the visualization of fluid’s flow pattern in 

the complex 3-D spacer-filled SWM feed channel domain. However, CFD simulations 

for fluid’s flow in the membrane channel are found to be restricted to hydrodynamics 

conditions whereby the membrane interface is treated as an impermeable wall. Due to 

this limitation, permeation properties such as permeation flux and true rejection were 

neglected in the design and optimization of the feed spacers (Karode and Kumar, 

2001; Li et al., 2002b; Schwinge et al., 2003; Ranade and Kumar 2006b). These 

assumptions have neglected the mass transport across the membrane and might lead 

to the incorrect assessment of the concentration polarization phenomenon. 
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In order to give a better description for concentration polarization, CFD 

mathematical modeling have been applied as a rigorous tool to model concentration 

polarization through the solution of the continuity, Navier–Stokes and solute continuity 

equations (Geraldes et al., 1998; Geraldes et al., 2000; Geraldes et al., 2001; Ma et al. 

2004; Ma et al., 2005). Permeation properties such as permeation flux and true 

rejection were incorporated in the membrane boundary condition. Since CFD 

mathematical modeling employed special numerical code, this method was technically 

restricted to empty or simple 2D spacer filled membrane channel. Thus, CFD 

mathematical modeling was insufficient to model the actual hydrodynamics and 

concentration polarization in the spiral wound membrane feed channel. 

 

Thus, a CFD simulation approach (which uses commercial CFD codes) which 

integrated with permeation properties is needed to model and simulate the actual 

hydrodynamics and permeation properties in the spiral wound membrane feed channel 

for designing and optimizing the feed spacer based on concentration polarization and 

energy loss. The comparisons of different CFD approaches to model and simulate the 

SWM feed channel are listed in Table 1.4. 

 

Table 1.4: Comparison of different CFD approaches to model SWM feed channel 

CFD Approaches Advantages Limitations 
CFD Simulation 
 
 
 
 
CFD Mathematical 
Modeling 
 
 
CFD Simulation 
integrated with 
permeation 
properties 

Simulate and visualize the 
hydrodynamics for the complex 
2D and 3D spacer filled 
membrane channel. 
 
Model the hydrodynamics and 
permeation properties in the 
membrane channel. 
 
Simulate and visualize the 
hydrodynamics and permeation 
properties for the complex 2D 
and 3D spacer filled membrane 
channel. 

Permeation properties are 
neglected. Membrane is 
treated as non-permeable 
wall. 
 
Limited to empty or simple 
2D spacer filled membrane 
channel. 
 
No limitation. 
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1.6 Project objectives 

The objectives of this project are subdivided into the main objective and the 

measurable objectives. 

 

1.6.1 Main objective 

To design and optimize feed spacer of spiral wound membrane (SWM) module based 

on concentration polarization and energy loss using integrated Computational Fluid 

Dynamics (CFD) simulation approach for nanofiltration and reverse osmosis process. 

 

1.6.2 Measurable objectives 

To achieve the main objective, the measurable objectives for current study consist of: 

• To incorporate permeation properties in the empty SWM feed channel simulation 

and validate this integrated CFD model experimentally. 

- To validate the permeation properties for the empty SWM channel. 

- To study the effect of feed Reynolds number, transmembrane pressure and 

solutes on the concentration polarization development. 

 

• To incorporate permeation properties in the spacer filled SWM feed channel 

simulation and validate this integrated CFD model experimentally. 

- To validate the hydrodynamics properties for the spacer filled SWM channel. 

- To validate the permeation properties for the spacer filled SWM channel. 

 

• To study the unsteady hydrodynamics and energy loss in the spacer filled SWM 

feed channel. 

- To study the effect of spacer design parameters on unsteady hydrodynamics. 

- To study the effect of spacer design parameters on energy loss. 

- To study the effect of unsteady hydrodynamics on concentration polarization. 
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• To optimize the feed spacer design parameters in terms of concentration 

polarization factor and energy loss based on the following design parameters: 

- Spacer filament geometry 

- Spacer mesh length ratio 

- Spacer mesh angles 

- Spacer filament ratio 

 

• To validate the optimum feed spacer’s designs experimentally and compare the 

performance of the optimized spacer with other feed spacers. 

- To validate the hydrodynamics properties for the optimum spacer filled 

membrane channel. 

- To validate the permeation properties for the optimum spacer filled 

membrane channel. 

- To conduct performance comparison between optimum spacer and other 

spacers based on permeation flux and observed rejection. 

 

 

1.7 Scope of research project 

Current study employed commercial CFD code Fluent 6 for simulating the 

hydrodynamics in the empty membrane channel to design and optimize the feed 

spacer. In order to estimate the concentration polarization accurately, permeation 

properties which consisted of permeation flux and membrane wall concentration were 

integrated as the membrane boundary conditions in the solution of the governing 

equations (mass conservation equation, Navier-Stokes equations and solute 

conservation equation). These permeation properties were written in “C” language and 

incorporated in the commercial CFD simulator as User Defined Function (UDF). This 

integrated CFD model for empty membrane channel was validated experimentally in 

terms of permeation properties. Effects of feed Reynolds number, transmembrane 
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pressure and solutes on the development of concentration polarization were studied for 

empty SWM channel. 

 

Using similar approach, permeation properties were incorporated in the spacer 

filled SWM channel simulation. In order to confirm the validity of the integrated CFD 

model for the spacer filled membrane channel, the simulated hydrodynamics and 

permeation properties were further verified by experimental data. Under the simulated 

hydrodynamics validation, simulated channel pressure drop data were compared with 

the experimental results. Under the permeation properties validation, simulated 

permeation fluxes were compared with the experimental permeation fluxes. 

 

Generally, the typical operational feed Reynolds number for spiral wound 

membrane ranges from 50 to 500 (Li et al., 2002b). Since the hydrodynamics in the 

confined space of feed spacer can achieve unsteady state within this range of feed 

Reynolds number, it is appropriate to employ unsteady simulation to investigate the 

unsteady hydrodynamics and its influence on concentration polarization alleviation in 

the spiral wound membrane feed channel. The unsteady hydrodynamics analysis 

included the effects of entrance transition length, spacer filament geometries, mesh 

length ratio, mesh angles and filament ratios on the development of unsteady 

hydrodynamics. Energy loss analysis was also conducted based on specific power 

consumption generated by different spacer designs in the spiral wound membrane 

channel. Taking into account the presence of unsteady hydrodynamics, the influence of 

unsteady hydrodynamics on the development of concentration polarization was studied 

through wall shear stress analysis.  

 

Based on the detail analysis on the hydrodynamics and permeation properties 

in the spacer filled SWM feed channel, the design and optimization of feed spacer were 

carried out in the subsequent study. Under current work, spacer design parameters 
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consisted of spacer filament geometry, mesh length ratio, mesh angles and spacer 

filament ratio. These design parameters were optimized in term of concentration 

polarization factor and specific power consumption. The desired criterion for optimum 

feed spacer’s designs depends on the ability of the feed spacer to generate the lowest 

concentration factor under the specific range of power consumption. 

 

In order to further confirm the validity of current optimum spacer designs, 

experimental validation and performance comparison for optimum spacer were 

conducted. Under experimental validation, hydrodynamics and permeation properties 

for the simulated optimum spacer filled membrane channel were verified based on 

experimental channel pressure drop and permeation flux. Besides, the performance of 

the optimized spacer was compared with other spacers (with different designs) in terms 

of permeation flux and observed rejection to further validate the optimum designs. 

 

 

1.8 Organization of the thesis 

This thesis consists of six chapters. In Chapter One (Introduction), a brief 

introduction about different types of membrane modules and the world market 

demand on membrane module especially spiral wound membrane (SWM) was 

given. The advantages of spiral wound membrane module were also highlighted 

through the comparison with other types of membrane module. This chapter also 

included the problem statements that provide some basis and rationale to identify 

the research direction to be followed in this study. Besides, the specific objectives of 

the present study were elaborated in detail together with the scopes of the current 

study to be covered. The organization of the contents of this thesis was also given in 

the last section of this chapter.  
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Chapter Two (Literature Review) reviewed the detail design, construction 

material for spiral wound membrane module (SWM). Besides, concentration 

polarization and fouling problem in the SWM coupled with the solutions for these 

problems were discussed in this chapter. This chapter also demonstrated detail 

description about the function and the design parameters for feed spacer. Then, the 

existing design methods for feed spacer which carried out by others researchers in 

their published literature and patents were elaborated. In the final part of this chapter, 

a summary was given to exhibit the uniqueness of current study as compared to other 

similar studies reported in the literature. 

 

Chapter Three (Materials and Methods) was subdivided into two parts which 

were the modeling & simulation method and the experimental method. In the earlier 

part of the modeling and simulation method, discretization and solution methods for 

the governing equations were included. Next, permeation properties modeling, 

simulation approach, boundary condition, simulation condition, computational grid 

optimization and model validation approach were elaborated. In the experimental 

method, detail elaboration about the experimental set-up, material used and 

experimental procedures together with analytical method were incorporated in final 

part of this chapter. 

 

Chapter Four (Results and Discussions) which is the main body of this thesis 

was outlined by three main sections. The first section discussed on the hydrodynamics 

and permeation properties in the narrow membrane channel. In order to estimate the 

concentration polarization accurately, permeation properties were integrated in the 

commercial CFD simulator for simulating the hydrodynamics and permeation properties 

in narrow empty membrane channel. This section also demonstrated the validation for 

the integrated CFD model and studied the influence of permeation flux on 

concentration polarization factor prediction. With the predicted concentration 
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polarization factor, the effect of feed Reynolds number, transmembrane pressure and 

different solutes on the development of concentration polarization were studied and 

discussed under this section. The capability of current integrated CFD model was 

extended to second section to study the hydrodynamics and permeation properties for 

the spacer filled SWM feed channel. In this section, the integrated CFD model for the 

spacer filled membrane channel was validated in term of hydrodynamics and 

permeation properties. After the model validation, unsteady hydrodynamics analysis 

was conducted for the spacer filled SWM feed channel. Besides, energy loss in the 

different spacers filled SWM feed channel was also determined using specific power 

consumption. Taking into account the presence of unsteady hydrodynamics, the 

influence of unsteady hydrodynamics on the development of concentration polarization 

factor was studied based on wall shear stress analysis. In the final section, design and 

optimization of feed spacer approaches were carried out based on the earlier analysis 

on the hydrodynamics and permeation properties in the spacer filled SWM feed 

channel. The feed spacer design parameters for current study consist of spacer 

filament geometry, mesh length ratio, mesh angles and spacer filament ratio. These 

design parameters were optimized in term of concentration polarization factor and 

specific power consumption. The optimized feed spacer model was validated 

experimentally and its performance was compared with other spacers with different 

designs in this section.  

 

Chapter Five (Conclusions and Recommendations) contains the main 

conclusion of the current study. This chapter was written in the form of paragraph 

which discussing the conclusion based on the measurable objectives of this study. In 

the second part of this chapter, it consists of a list of recommendations for future 

studies in this related field. 
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CHAPTER 2 
 

LITERATURE REVIEW 
 

 
This chapter reviews the detail construction and material of spiral wound 

membrane module (SWM). Concentration polarization and fouling problem in the 

SWM coupled with the solutions for these problems were discussed in this chapter. 

This chapter also gives detail description about the function and design parameters 

for feed spacer. Then, the existing design methods for feed spacer which have been 

carried out by others researchers in their published literature and patents were 

elaborated. In the final part of this chapter, a summary was given to exhibit the 

uniqueness of current study as compared to other similar studies reported in the 

literature. 

 

2.1 Construction and material of spiral wound membrane module 

Spiral wound membrane (SWM) envelope/leaf consists of 2 flat sheet 

membranes which are sealed on three edges of a permeate spacer. Figure 2.1 depicts 

a schematic diagram for a membrane envelope. The fourth open edge is attached to 

the perforated permeate tube (refer to Figure 2.2). A permeate spacer is a material 

which create the permeate channel in the membrane envelope and direct the liquid 

flow of permeate solution to the permeate tube. Meanwhile, a feed spacer or 

sometimes known as retentate spacer, is placed on either side of the membrane 

envelope and wounded with the membrane leaf around the central tube (Schafer et al., 

2005). Important parts for the spiral wound membrane in a pressure vessel are 

illustrated in Figure 2.3. 
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Figure 2.1: Membrane envelope (leaf) 
 
 

 

 

 

Figure 2.2: Spiral wound module: (a) basic element; leaves connected to a permeate 
tube, feed spacers between leaves; (b) leaves wound around permeate 
tube; (c) flows paths in SWM (Schafer et al., 2005). 
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Figure 2.3: Important parts for spiral wound membrane in pressure vessel 

(Dow Water Solutions, 2007) 

 

2.1.1 Permeate collection tube 

The permeate collection tube is the center of the element which membrane 

leaves, permeate spacer and feed spacer are wound. This component is also known as 

center tube. It is perforated to allow the permeate flow spirally through the permeate 

spacer to the center of the element. The center tube provides structural strength to the 

element, as well as integrity toward thermal and chemical impact from the working 

environment (Schafer et al., 2005). The common materials for the center tube are 

tabulated in Table 2.1. 

 

Table 2.1: Material for permeate collection tube (Dow Water Solutions, 2007) 
 

Material Application 
Noryl/ABS 
 
 
PVC 
 
Polysulfone 
 
 
Aluminum 
 
Stainless Steel 

Low pressure, ambient temperature environments with few 
chemical compatibility problems. 
 
High pressure seawater application. (Inexpensive) 
 
Wider temperature and pH range with chemical resistant required 
environment. 
 
Extremely high pressure environment. 
 
Extremely high pressure environment with chemical resistant 
required environment. 

 

SWM Modules 

Pressure Vessel 
(Module Housing) 

Interconnector 

Anti Telescoping 
Device (ATD) 

Manifold 
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2.1.2 Permeate spacer 

The permeate spacer a sheet of material inserted between the backsides of the 

membranes, forming a membrane envelope to promote the flow of permeate towards 

the center tube for discharge at the ends of the pressure vessel. The permeate spacer 

material must be able to withstand the pressure of operation without collapsing and 

blocking the flow, and the surface of the permeate spacer must smooth to prevent 

intrusion of the membrane backing material into the permeate spacer. A polyester knit 

tricot stiffened with polymeric materials is used for normal operating pressures up to 

600 psi (40.8 bar). At pressure up to 1500 psi (102 bar), combinations of tricot and 

other polymeric materials are used. Under extreme conditions of pressure, temperature 

or aggressive environments, various patterns of a metallic web or netting can be used 

(Lien, 1989). 

 

2.1.3 Feed Spacer 

Unlike permeate spacer, feed spacer plays an important role in membrane 

systems referring to problems of mass transfer, homogenizing and mixing behaviour. In 

spiral wound modules, these spacers have several functions as supporting nets and as 

turbulence promoters to increase mass transfer rates and reduce fouling layers 

(Fakova, 1991, Millward et al., 1995; Zimmerer and Kottke, 1996; Sablanli et al., 2002; 

Gimmerlshtein and Semiat, 2005; Auddy et al., 2004). Plate 2.1 shows the 

photographic view of a commercial feed spacer. Various types of feed spacer are 

currently available in the market due to the wide-ranging of feed conditions such as 

high viscosity, suspended solids, high temperature, and presence of fouling species, 

and precipitation or crystal formation (Fulk, 1989; Feimer, 1994).  The geometries and 

configuration of the feed spacer determine its suitability and performance in particular 

applications. The most common types of feed spacer that varies in term of 

configuration include diamond pattern spacer, parallel pattern spacer and corrugated 
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