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SUATU KAEDAH YANG DICADANGKAN UNTUK MEMILIH 
ALGORITMA BERKELOMPOK DALAM FUNGSI ASAS RADIAL  

 

ABSTRAK 

 

Rangkaian Fungsi Asas Radial telah digunakan dengan meluas untuk 

menganggarkan dan mengelaskan data. Model biasa bagi Fungsi Asas  Radial 

menentukan pusat, serakan dan menyesuaikan pemberat sehingga ia dapat 

menganggarkan data. Dalam penyelidikan terdahulu, terdapat beberapa 

masalah wujud dalam mencari pusat terbaik bagi lapisan tersembunyi dalam 

Rangkaian Fungsi Asas Radial. Walaupun beberapa kaedah berkelompok 

seperti K-min atau K-median digunakan untuk mencari pusat, namun tidak 

terdapat keputusan yang konsisten yang menunjukkan keputusan terbaik untuk 

taburan data yang berbeza. Objektif utama tesis ini adalah untuk menentukan 

kaedah yang lebih baik untuk mendapatkan pusat dalam Rangkaian Fungsi 

Asas  Radial dan juga model yang lebih maju yang dikenali sebagai Rangkaian 

Pautan Fungsi Asas Radial untuk mengelaskan data. Tiga jenis kaedah 

digunakan dalam kajian ini untuk mencari pusat bagi kedua-dua model di atas, 

antaranya pemilihan pusat secara rawak, algoritma berkelompok K-min dan 

juga algoritma berkelompok K-median. Andaian-andaian yang dibuat dalam 

kedua-dua kaedah algoritma berkelompok akan membantu meningkatkan 

prestasi kedua-dua model daripada menggunakan kaedah pemilihan rawak. 

Oleh itu, kesan kedua-dua jenis algoritma berkelompok dalam pemilihan pusat 

bagi kedua-dua model tersebut, iaitu Rangkaian Fungsi Asas Radial dan 

Rangkaian Pautan Fungsi Asas Radial, dari segi kejituan dan kelajuan 

ditunjukkan dalam kajian  ini. Untuk menentukan kaedah kelompok yang dapat 



 xiii

memberikan penyelesaian yang lebih baik, kami menggunakan pengiraan 

kepencongan Mardia awal untuk mencari kaedah yang terbaik bagi 

mendapatkan pusat terbaik bagi kedua-dua model mencapai satu penyelesaian 

yang lebih baik untuk pengelasan data. Oleh itu, kepencongan data dikira 

sebelum memutuskan untuk memilih sama ada kaedah berkelompok K-min 

atau K-median dalam pencarian pusat bagi Rangkaian Pautan Fungsi Asas 

Radial. Di samping itu, suatu kriteria pemilihan awal ini digunakan untuk 

menunjukkan peningkatan keberkesanan dalam pengelasan data. Kami juga 

menggunakan dua set data sebenar untuk mengemukakan kaedah cadangan 

kami.  
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A PROPOSED METHOD FOR SELECTING THE CLUSTERING 
ALGORITHM IN RADIAL BASIS FUNCTION  

 

ABSTRACT 

 

Radial Basis Function Networks have been widely used to approximate 

data and classify data. In the common model for radial basis function, the 

centres and spreads are fixed while the weights are adjusted until it manages to 

approximate the data. From past research, there exist some problems in finding 

the best centres for the hidden layer of Radial Basis Function. Eventhough 

some clustering methods like K-means or K-median are used in finding the 

centres, there are no consistent results that show which one is better due to the 

different distributions of the data. The main objective in this thesis is to 

determine the better method to be used to find the centres in Radial Basis 

Function and the more advanced model which is Radial Basis Functional Link 

Nets for data classification. There are three types of method used in this study 

to find the centres of both models above; these include random selections, K-

means clustering algorithm and also K-median clustering algorithm. The 

assumptions made in both clustering methods will help to enhance the 

performance of both models rather than using random selections. Therefore, 

the effects of the two types of clustering algorithm on centres selection for both 

models which are Radial Basis Function and Radial Basis Functional Link Nets 

in terms of accuracy and speed are shown in this study. To determine which 

clustering methods is the best solution, we apply preliminary Mardia’s skewness 

calculation to find the best method to obtain the centres of both models in order 

to achieve a better solution for the data classification. Therefore, the skewness 



 xv

of the data is calculated before deciding to choose between the K-means or K-

median clustering method in finding the centre of Radial Basis Function 

Network. Besides, an initial selection criterion is used to show the improvement 

of efficiency in data classification. We use two sets of real data to demonstrate 

our proposed method. 
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 CHAPTER 1 
 

INTRODUCTION  

 

1.1 The Human Brain and Artificial Neurons 
 
In the human brain, there are approximately 1011 to 1013 neurons in the 

nervous system (Nauck et al., 1997 and Patterson, 1995). A neuron is a small 

cell which receives input or more precisely stimuli in electrical signal from 

multiple sources such as the sensory or other types of cells and responds by 

generating electrical impulses which are transmitted to other neurons or 

effectors organs such as muscles and glands (Patterson, 1995). A neuron is 

composed of a nucleus, a cell body, dendrites and synapses (refer to Figure 

1.1).  

 

 

Figure 1.1: Components of a Neuron 
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The neurons are connected to each other by axons which are projected 

from their cell body or soma. The electrical signal in a neuron is sent through 

the axons to other neurons. Signal is also received from other neurons and 

passed to a neuron via the axons’ connections and its dendrites. Joints which 

exist in between the axons are called synapses and the distance of the tiny gap 

is about 200 nm wide (Muller et al., 1995). A synapse allows interchange of 

nerve impulses from one neuron to another neuron (refer to Figure 1.2).  

 
 

 
 

Figure 1.2: Structure of a Synapse 
 

 

If the electrical inputs’ signal received from other cell is large and 

continuously accumulated, a neuron sends a spike of electrical activity down to 

its axon to other neurons to excite or inhibit other neurons via synapses.  
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1.2 A Brief Introduction on Artificial Neural Networks 
 

Artificial neural networks are simulated and simplified models of the 

central nervous system which are based on the structure of a real biological 

neuron system. These networks are highly interconnected by a group of artificial 

neurons in which each of them acts as small processing unit to process 

information. The artificial neurons react to the input stimuli, learn from training 

examples of information and adapt to various kinds of information. There are 

synaptic weights or weighted connections which link all the artificial neurons so 

that these neurons are able to communicate with each other and to work in a 

parallel way to solve problems.   

 

1.3 The Multilayered Perceptrons Neural Networks  

The multilayered perceptrons neural networks had been used widely in 

function approximation, control, forecasting and pattern recognition (Looney, 

1997 and Haykin, 1999). The reason for using multilayered perceptrons neural 

networks in these applications is due to their properties and advantages. The 

advantages of the multilayered perceptrons neural networks are stated as 

follows. 

i. The assumptions on the model are not necessary because the 

multilayered perceptrons neural networks are able to train and produce 

results for any numerical problem which is generated from pattern 

recognition or function approximation problem. On the other hand, 

different kinds of problems (linear or non-linear) can be solved only by 

using the same multilayered perceptrons neural networks with small 
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adjustments in numbers of the input nodes and output nodes together 

with the parameters in the networks. 

ii. The complexity of solving non-linear problems using multilayered 

perceptrons neural networks is reduced compared to linear regression 

analysis. If we apply linear regression method (Fukunaga, 1990) in 

non-linear problem, we are demanded to verify the non-linearity of the 

system. In inserting the square of some input variable or product of two 

input variables causes the linear regression model to become more 

complicated. In contrast, the multilayered perceptrons neural networks 

do not face the same limitations as these models do not acquire the 

analysis of the non-linearity of the problem given (Abe, 1995).  

iii. The multilayered perceptrons neural networks are packed with high 

generalization of the activation functions. As the sigmoid function in 

multilayered perceptrons neural networks is a global approximator 

(Looney, 1997), the output depends on any input from the feature 

space. We can replace the sigmoid function with the local 

approximator such as Gaussian function in order to train the data 

efficiently (Hagan et al., 1995). Since the structure in multilayered 

perceptrons neural networks is constructed with many layers, the time 

to compute the results using different activation functions is distinct.  

iv. Based on the mapping connectivity which exists in multilayered 

perceptrons neural networks, the neural networks are able to run in a 

parallel way. The key to compute the training in a parallel way is 

according to the neurons in the same layer which stand independent of 

one another. Therefore, no matter how the data set is processed in 
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forward propagation or backpropagation, the neural networks are still 

able to go through the training in a parallel style. The parallel learning 

algorithm is time saving and powerful (Looney, 1997). 

 

Despite the application of the multilayered perceptrons neural networks in 

many areas, there are some issues on the implementation of the neural 

networks. The weak points of the neural networks are summarized as below. 

i. Determination of the number of hidden layers is one of the crucial 

problems in applying multilayered perceptrons neural networks. Since 

the number of hidden layers is determined by trial and error or heuristic 

way (Looney, 1997 and Haykin, 1999), it is hard to obtain the optimum 

solution from the training of multilayered perceptrons neural networks. 

The number of hidden layers plays an important role in the efficiency of 

the neural networks because the neurons which lie on each of the 

hidden layers have direct impact on the convergence of training and 

generalization ability. Optimal number of hidden layers is required to 

enhance the performance of the multilayered perceptrons neural 

networks. Overtraining due to too many hidden layers or under training 

caused by too few hidden layers is mostly not encouraged in building 

the structure of the neural networks (Looney, 1997 and Looney, 2002). 

ii.   The number of hidden neurons to be used in each layer in the 

multilayered perceptrons neural networks is hard to be optimized. Some 

researchers had been trying hard to search for the optimum number of 

hidden neurons during training and after training. The determination of 

the number of neurons made during training is usually divided into three 
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methods. The first method adds hidden neurons during training as 

mentioned in Ash (1989), Azimi-Sadjadi et al. (1993), Wang et al. (1994) 

and Fahlman and Lebiere (1990) but the papers in Sietsma and Dow 

(1991) and Oshino et al. (1993) proposed the deletion of the neurons. 

Another alternative way is found in Bartlett (1994) which proposed the 

deletion and addition of neurons during training. The determination of 

neurons after training was discussed in Xue et al. (1990), Fogel, (1991), 

Wada and Kawato (1991) and Kayama et al. (1990). Derivation is also 

made upon the upper and lower bounds of the number of hidden 

neurons of the three-layered neural network by Huang and Huang 

(1991). 

iii.   Since the training of multilayered perceptrons neural networks is based 

on error backpropagation algorithm which is a hill climbing technique 

(Haykin, 1999), it has a risk of being trapped in a local minimum where 

every little changes in the weights increase the error function. This 

problem is exposed in a simple demonstration by Gori and Tesi (1992). 

They had shown that in a non-linear example where the error 

backpropagation algorithm in a single layered neural network failed to 

converge due to being trapped in local minimum. If one single layer can 

fulfill the requirements to converge, then there are chances for the 

multilayered perceptrons neural networks to have bad convergence and 

the solution may be faulty. Even though some may adjust the initial 

parameter such as weights until we yield the most satisfactory outcome 

with the lowest sum of squared error, Rumelhart concluded that the 
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outcome with the lowest sum of squared error does not guarantee the 

learning is the best (Rumelhart et al., 1986). 

 

1.4 A Brief Introduction on the Radial Basis Function  Neural 
Networks 

 
Radial basis function neural networks (RBFNN) are robust and powerful 

feedforward artificial neural networks (Looney, 1997). This neural network 

model originated in the 1960s and started to gain popularity since late 1980s 

(Patterson, 1995). The basic idea is that from M continuous number of radial 

basis functions which cover the feature space [0, 1] N where N is the dimension 

of the input data, it is necessary that every input vector be mapped to each 

centre of the radial basis function or the Gaussian function (Looney, 1997). The 

approach to this neural network can be viewed as curve fitting on a 

multidimensional space (Bishop, 1995). Radial basis function neural networks 

are used in function approximation and interpolation (Sgarbi et al., 1998), 

pattern classification and recognition (Haykin, 1999), protein sequence residue 

spatial distance prediction (Zhang and Huang, 2004), data mining applications 

(Buchtala et al., 2005), and the training is faster than its rival, the multilayered 

perceptrons neural networks (Bishop, 1995). In general, a radial basis function 

neural network has three major parts in its structure:  

i. The first layer of the RBFNN is normally known as the input layer 

where each input neuron represents a feature vector. 

ii. The second layer which is the hidden layer consists of hidden nodes 

where each node has the centre corresponding to any input that is 

near to it. 
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iii. The output layer where the output we obtain from the hidden layer is 

compared with the target values (refer to Figure 1.3). 

 
 

 
 

Figure 1.3:  Structure of RBF 

 

The activation function used in this thesis is the Gaussian function. The 

Gaussian function is well-known for its robustness as a universal approximator 

(Lo, 1998). Therefore, the Gaussian function is suitable to be used as the kernel 

function in the radial basis function neural networks. 

 

In between the first layer and the second layer, in non-linear 

approximation, the input data are fed into the Gaussian functions for further 

processing. When the input data become closer to the activation function, the 

activation function will be activated. Then by a weighted sum of the output of the  
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hidden units, output z which is located at the last layer of the neural networks 

will be compared with the target values. The training processes continue as 

long as the differences between the output and the target values have not reach 

a stopping criterion. In order to obtain the differences between output and the 

target values, we use the sum of squared error since it is the most efficient 

method for calculation of differences (Bishop, 1995). 

 
 
1.5 The Rationale for Using Radial Basis Function Neural Networks 

In this section, we state the reasons for using radial basis function neural 

networks instead of multilayered perceptrons neural networks. There are several 

aspects where radial basis function neural networks outperform multilayered 

perceptrons neural networks. The advantages are as follows: 

i. Radial basis function neural networks learn without getting trapped in 

local minima as compared to multilayered perceptrons neural networks 

(Bianchini et al., 1995) 

ii. The training time for radial basis function neural networks is much less 

than the multilayered perceptrons neural networks. 

iii. Restraining of the weight value is not necessary when training the radial 

basis function neural networks. However, for multilayered perceptrons 

neural networks, the weights have to be restrained (Looney, 1997). 

iv. The parameters need not have to undergo non-linear optimization of the 

neural network to be determined (Bishop, 1995). In applications using 

neural networks, there are possible cases where the input data has no 

target values. The process to label the input data with corresponding 

target variables may be time consuming especially when the input data 
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are huge. Therefore, radial basis function neural networks which 

perform two stage training processes have the advantage of 

determining the non-linear representation given by first layer of the 

neural network. This process leaves a comparatively smaller number of 

parameters in the second layer to be determined by using the labelled 

input data. For good generalization, the number of data points is 

required to be huge compared with the number of parameters which are 

determined by the labelled data. 

 

Hence, we use the radial basis function neural networks as our training 

network based on the accuracy of the output, simplicity in structure and faster 

learning concepts rather than multilayer perceptrons neural networks (Moody 

and Darken, 1989; Hassoun, 1995; Hwang and Bang, 1997; Haykin 1999; Li et 

al.,2002; Sing et al., 2003 and Pang, 2005) .  

 

1.6 Major Problems of Radial Basis Function Neural Networks 
 

In our study, we only focus on the centre of each Gaussian function in 

each feature region of interest, which is one of the main keys for boosting the 

performance of the radial basis function. As the performance of the radial basis 

function neural networks can be improved in terms of speed and accuracy, the 

selection of centres for each hidden node becomes very significant.  

 

Researches had been done to find the best centres for the hidden nodes 

which are situated at the hidden layer. Since the centre of the Gaussian function 

plays the most important role for non-linear approximation, the method for 
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finding these centres so that the input data is able to map to the right circular 

disks becomes a challenge to many researchers (Schwenker et al., 2001 and 

Sing et al., 2003). In order to choose the best centres, some researchers use 

clustering methods such as K-means (Sing et al., 2003), dynamic clustering 

(Looney,1997), K-nearest-neighbor algorithm which combines with fuzzy c-

mean algorithm (Wang et al., 2002), clustering-based symmetric (Chen et al., 

2007) and density based clustering algorithms to solve the problem.  

 

The most promising results can be obtained if the distance for each input 

vector in the feature space from the core centres of the Gaussian functions 

reduce to a minimum value. On the other hand, when a good set of centres in 

radial basis function is obtained, it means that all input data are covered by the 

Gaussian Function with its good position of centre and its optimum spread.  

 

Different clustering methods lead to different quality of the outcome 

obtained from the neural networks. Among the clustering algorithms applied in 

finding the centres of the Gaussian function, K-means clustering algorithm is 

widely used for selection of centres. Another method, using K-median algorithm 

to choose the centres of the Gaussian function can also work since there are a 

lot of similarities in the structure of both K-means and K-median clustering 

methods.  

 

 However, the determination of which clustering method should be used 

in different distributions of data set remains to be identified. Therefore, we are 
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motivated to search for a good solution to determine which clustering method is 

better in partitioning the different types of data set. 

 

1.7 Hierarchical and Non-Hierarchical Clustering Methods 
 

Clustering methods can be divided into two major groups which are 

hierarchical and non-hierarchical. In hierarchical clustering algorithm, it is 

divided again into two different types of methods. The first method is the 

agglomerative hierarchical methods. This hierarchical method starts with the 

individual object so that we have a lot of clusters in the data space. Next, the 

most similar objects are assigned into the same partition and form the first 

grouped set of clusters. The process is repeated by combining the new set of 

clusters according to their similarities. Therefore, we obtain a few clusters at the 

end by setting the stopping criteria. Some of the examples of agglomerative 

hierarchical methods are single linkage, complete linkage and average linkage 

which can found in Patterson (1995). Another hierarchical type of clustering is 

the divisive hierarchical methods which work in a contradictory way to the 

agglomerative hierarchical methods. The whole object is first assigned into a big 

group which is then separated into two subgroups where the objects in the two 

subgroups have different attributes to each other. The clustering steps are 

carried on by assigning more dissimilar objects into further subgroups until the 

stopping criterion is matched. Examples of divisive hierarchical methods can be 

seen in Anderberg (1973) and Everit (1993). 

 

The classical K-means was first found by MacQueen (1967). It is a non-

hierarchical and unsupervised clustering method which separates the data sets 
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into their different clusters according to the number of K and also depending on 

the distances between each input data from the K centroids. The K-means 

clustering algorithm is used in data mining and data exploring areas such as 

protein synthesis and genes expression data analysis.  

 

Somehow there are certain drawbacks about the K-means clustering 

algorithm from Johnson and Wichern (1998) and Cheung (2003). The first 

drawback is the priori knowledge on the number of K is heuristic and will 

undergo the process of trial and error. The preliminary number of K is crucial in 

determining the quality of the clustering results. The second drawback is the 

initial centre of each cluster is hard to choose for getting good results. The initial 

centres of each cluster must be chosen in such a way that it is sufficient to 

cover the input feature space and attract those input data which are close 

enough to it and group the particular input data into the respective clusters. This 

process goes on until there is no more assignment of input data to other 

clusters. The third drawback of K-means clustering algorithm is the sensitivity of 

the mean to the outliers. The outliers influence the process of cluster 

assignment and result in wrong data classification. Due to the weaknesses as 

stated, most researchers argue that K-means may not give the best solution for 

the data clustering.  

 

However, some researchers propose the opposite opinion on K-means 

clustering method (Looney, 1997; Johnson and Wichern, 1998 and Chen et al., 

2005). The simplicity of the K-means clustering structure is efficient in reducing 

the time of processing as compared to other clustering methods such as density 
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based clustering and hierarchical clustering. Moreover, the efficiency of K-

means clustering method is proven in terms of computational cost (Chen et al., 

2005). Since the basic data sets do not have to be stored during the compilation 

of K-means, K-means clustering method can be applied to much larger data 

sets than the hierarchical clustering method (Johnson and Wichern, 1998).  

 

The K-median algorithm is a hybrid of the K-means clustering algorithm. 

In K-median algorithm, we have to rearrange the order of input data inside the 

cluster in ascending order. Then only can we apply the median for obtaining the 

new centre of each cluster. There is also another attribute that distinguishes 

between the K-means from the K-median clustering algorithm which is the 

sensitivity of outliers. In handling the outliers which are far away from all the 

centre of the clusters, K-median algorithm performs better when compared with 

K-means algorithm. The outliers will not have great influences on the results 

obtained.  

 

Both clustering methods partition the data set into linearly separable 

classes (Fisher and Van Ness, 1971). 

 

1.8 Objectives of the Study 

There are three major objectives in this study: 

i. To improve the performance of radial basis function by applying K-

means and K-median clustering method in the selection of centres of 

the hidden nodes in the aspects of number of iterations and accuracy. 
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ii. To determine the clustering method to be chosen from either K-means 

or K-median by doing preprocess calculation of multivariate data 

skewness. The value of the calculation will show which method is 

better to be used to increase the efficiency of radial basis function. 

iii. To extend the above results from the radial basis function neural 

networks to the radial basis functional link nets and to show the same 

principle applies. 

 

1.9 Format of Thesis 

There are all together five chapters in the thesis. The structure of radial 

basis function neural networks is briefly introduced in Chapter 1.  Radial basis 

function neural networks use the Gaussian Function as their activation function. 

The types of different clustering methods on the selection of centres are 

explained. Having briefly explained on the hierarchical and non-hierarchical 

clustering methods, we provide a clear reason for applying the methods in 

selection of centres for both models. Besides, we state the objectives which we 

aim to achieve in our study.  

 

Chapter 2 gives literature review on the artificial neural networks, radial 

basis function neural networks and radial basis functional link nets. The 

literature review also covers K-means and K-median clustering methods and 

Mardia’s Multivariate Skewness.  

 

The preprocessing methodology is explained in Chapter 3. For the 

contents of Chapter 3, we present the formulae which are used for the training 
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models, the radial basis function neural networks and the radial basis functional 

link nets. We also show every step involved in K-means and K-median in finding 

the centres for the activation function in these two training models. By looking 

into the measure of Mardia’s Multivariate Skewness, we summarize the flow of 

the calculation steps involved in determining the skewness of the data set. 

 

Chapter 4 begins with the introduction for the case studies. The data sets 

which we used in our proposed method are discussed. We also state our 

objective of case studies to achieve better performance in terms of accuracy 

and speed for radial basis function. We extend our study by using the more 

powerful radial basis functional neural networks. We separate each data set into 

the test data set and training data set. The way to use Mardia’s multivariate 

skewness in measuring the skewness for the data sets is explained. We also 

explained the method to obtain the centres of the Gaussian functions. 

Guidelines for classification are stated to determine whether an output is 

correctly classified or wrongly classified. The results obtained are shown in the 

form of tables and graphs. We first show the results of radial basis function 

neural network and radial basis functional link nets under the effects of the 

clustering methods. We then show the results that support the aim of the 

research which is the determination of the clustering methods used in both 

models by Mardia’s multivariate skewness. Then, we discuss the results which 

we obtained based on the two real data sets. Conclusions are stated in the last 

section of Chapter 4 where we summarize the clustering method which is 

suitable to be used and the effectiveness of the radial basis functional link nets. 
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In the last chapter, we present the conclusions and future work. The 

conclusions are summarized while the future work will give some idea and 

directions which are useful for further research in the area of the radial basis 

function neural networks. Our contributions in this study are stated clearly in the 

last part of this chapter. 
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1 Artificial Neural Networks 

Based on the knowledge about biological neurons, the first artificial 

neuron was created by McCulloch and Pitts (1943) in their work which starts the 

new era of artificial neural networks. This synthetic neural device modelled the 

human intelligence in decision making and also thinking abilities in solving 

problems such as pattern recognition and combinatorial problems. This simple 

artificial neuron was formulated using the studies of neurophysiology, which is 

the research on the central and peripheral nervous system by recording of 

bioelectrical activity, whether spontaneous or stimulated, and the methods of 

mathematical logic and become the disciplines of neural networks. 

 

In this model, there are some major components such as input neurons, 

input lines which consist of adaptive weights or synaptic weights, threshold or 

activation functions, and output. The input of the artificial neuron can be either 

excitatory or inhibitory.  The input lines lead the input to be summed up and 

activate the output. The threshold functions are labelled with a set of fixed 

threshold values to determine the condition for the sum of input to activate the 

output and the output that we obtained is the class identifier (refer to Figure 2.1). 
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Figure 2.1:  A McCulloch-Pitts Neuron 

 

Even though the artificial neuron was created, there are some limitations 

compared to the real biological neuron. The first limitation is that the artificial 

neuron does not contain any mechanism for learning but functions by just 

setting the threshold value for activation function. The model of McCulloch and 

Pitts did not explain sufficiently on the functionality of human brain including the 

learning ability of the brain and the physical changes in the neural connections. 

The second limitation is that the artificial neuron only represents a type of 

neuron whereas there are other types of neuron. One example of different types 

of neuron is the pyramid cell (Nauck et al., 1997).  

 

 In 1949, an important achievement in the development of neural 

networks was made by Donald O. Hebb. Hebb postulated that a learning 

process which states that the effectiveness of a variable synapse between two 

Output 
Threshold 
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neurons is increased by continued activation of one neuron by the other across 

the synapse (Hebb, 1949). For instance, if Neuron A is stimulated continuously 

by Neuron B while Neuron A is still active, then Neuron A will become more 

sensitive to stimuli from B (Looney, 1997). Hebb’s studies provide the learning 

rule for artificial neural networks but his studies did not contribute much in 

engineering of the artificial neural networks (Haykin, 1999). 

 

 Computer simulations on artificial neural networks were done in 1956 by 

Rochester’s research group (Rochester et al., 1956). They generalized the 

model of artificial neural networks by including inhibition, so that active cell or 

input could inhibit others from turning active. The normalization of synaptic 

weights is made to prevent unbounded growth in the weights of the neural 

networks model (Patterson, 1995). Nevertheless, the neural networks were too 

small and not conclusive to have any chance to exhibit behaviour that could 

reasonably be identified with thinking.  

 

The first artificial neural network was developed in 1958 by Rosenblatt, 

Wightman and Martin. They devised a machine called the perceptrons which 

operate almost the same way as the human mind (Rosenblatt, 1958). It was a 

progression after the work of McCulloch and Pitts and Hebb’s research. The 

perceptrons were built by two major layers which are the input layer and the 

output layer. Each layer is fully connected to each other but there is no 

connection for the neurodes in the same layer. The input layer was connected 

to output layer via the associated weights. By using the perceptrons model, the 

field of the neural networks started to boom based on the assumption that the 
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perceptrons model was able to guarantee the learning process of the input 

which would lead to the output or the solutions of the given problem.  

 

Having almost the same structure and learning ability of the perceptron 

model, Bernard Widrow and Ted Hoff proposed the first practical application of 

artificial neural networks which is called ADALINE (ADAptive LInear NEuron) 

(Widrow and Hoff, 1960). If a number of ADALINEs built up the networks, then 

he named the ADALINEs as MADALINE (Multiple ADALINEs). They also 

contributed in introducing the new learning rule which is called the LMS (Least 

Mean Square) or also known as Widrow-Hoff learning method. LMS algorithm 

was applied into the famous error backpropagation learning method used in 

multilayered perceptrons neural networks (Patterson, 1995). The difference 

between the perceptrons model with ADALINE model is only at the part where 

the transfer function is linear for ADALINE networks while the hard-limiting 

transfer function is for Perceptrons networks. Both models were outstanding in 

solving the linearly separable problems which is used in pattern recognition 

where the patterns must be sufficiently and linearly separable from each other 

to make sure that the decision surface consists of a hyperplane (Hagan et al., 

1995 and Haykin, 1999).  

 

However, perceptrons network was later heavily critiqued by Minsky and 

Papert in 1969. These researches pointed out the failure of a single layer of the 

perceptrons to learn the XOR logic (Exclusive Or) (Minsky and Papert, 1969). 

XOR logic can be viewed as the logic in classifying points where each of them 

is either in the class 0 or class 1 in the unit hypercube (Haykin, 1999). The 
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limitation of perceptrons which was only applicable in solving linearly separable 

problems disappointed the researcher of neural networks for almost two 

decades (Looney, 1997). Nevertheless, the researches on neural networks 

were carried on by several researchers such as Stephen Grossberg who 

concentrated his work on cooperative–competitive learning systems and the 

recall of spatial-temporal patterns (Grossberg, 1968 and 1969), Teuvo Kohonen 

and James Anderson on Associative memory (Kohonen, 1972; Anderson, 1968 

and Anderson, 1977), Fukushima who investigated into the Cognitron 

(Fukushima, 1975) and Werbos who contributed in investigating the adjustment 

of the weights in multilayered perceptrons neural networks (Werbos, 1974). 

 

 The researches on neural networks had a turning point in 1980s when 

John Hopfield proposed the Hopfield network (Hopfield, 1982). In Hopfield 

network, Hopfield applied a feedback neural network with threshold units and a 

mutually connected, symmetrical links. Inside the neural network, the rule of the 

linear associator became the learning rule for input data. The associated energy 

function was based on the use of Lyapunov energy function for the nonlinear 

equations. The energy function dissipated with elapse of time and converged to 

a state where minimum energy was used. The patterns of the learning process 

memory were stored as dynamically and stable attractors (Patterson, 1995).  

 

 Four years later, Rumelhart, Hinton and Williams came out with the idea 

of error backpropagation algorithm which replaced the model of McCulloch and 

Pitts with a model which consisted of continuous and differentiable activation 

functions (Rumelhart et al., 1986). This helped to solve the constraints of the 
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single layer perceptron which was not able to solve the XOR logic problem. 

Therefore, the neural networks had made a big step forward to a more stable 

model of neural networks that was able to overcome the non-linear problem.  

 

The neural networks not only inherited some properties from the real 

biological neuron networks, it is also strongly related to statistics (Sarle, 1994).  

Linear neural networks and perceptrons are almost similar to the linear 

regression which is one of the statistical models. For the non-linear part, 

multilayered perceptrons neural networks are considered as another model 

which is also strongly related to statistics. The highlight of the multilayered 

perceptrons neural networks compared to the statistical model in non–linear 

problem solving aspect is that the multilayered perceptrons neural networks 

need not have any knowledge of the relationship of the input which stands for 

the independent variable and the output which is the dependent variable. 

Moreover, we can easily extend the capability of the model by adding more 

input and output without having difficulties unlike some of the statistical models 

such as splines or polynomials which suffer from an exponential increase in the 

parameters used in the equations for overcoming the regression problems 

(Nauck et al., 1997).  

 

2.1.1 Architecture of Artificial Neural Networks 

Basically, there are two architectures which build the artificial neural 

networks. One is feedforward artificial neural networks while the other one is 

feedback artificial neural networks. In feedforward artificial neural networks, 

input signals are allowed to travel from input layer to output layer via the middle 
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layer in one way mode (Hagan et al., 1995; Patterson, 1995 and Looney, 1997).  

Since the input signals are moving in one direction, we can associate the input 

to output in straight forward networks. Multilayered perceptrons neural networks 

and radial basis function neural networks are the examples of feedforward 

artificial neural networks.    

 

In contrast to the feedforward artificial neural networks, feedback artificial 

neural networks or recurrent artificial neural networks can have signals that 

propagate in a lateral, forward or backward manner among the neurons (Hagan 

et al., 1995; Patterson, 1995 and Looney, 1997). Recurrent artificial neural 

networks can be very complicated since the neurons of these artificial neural 

networks compete to determine an output. At the end, only one neuron will have 

the desired output (Hagan et al., 1995 and Looney, 1997). Hopfield neural 

network is one of the examples of feedback artificial neural networks. 

 

2.1.2 Learning Paradigms of Artificial Neural Networks 

Supervised learning, which is also known as learning with a teacher, is 

one of the learning paradigms in artificial neural networks (Haykin, 1999). In this 

method, each output has the knowledge about its response to the input signals. 

By following the desired response of outputs, the neural network will learn in 

such a way to perform optimum action to input signals (Bishop, 1995). The 

neural networks are trained and the parameters of the neural networks are 

adjusted under the influences of the training vector and the error minimization 

effect (Haykin, 1999).  
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