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PENILAIAN INTEGRATOR MASA-SUHU MENGGUNAKAN TINDAK BALAS 
MAILLARD UNTUK MENGKAJI IMPAK TERMAL TERHADAP PERUBAHAN 

KUALITI MAKANAN TERPROSES TERMAL 
 

ABSTRAK 
 
Fenomenon kejatuhan nilai pH yang didorong oleh tindak balas Maillard 

sebagai asas pembinaan integrator masa-suhu (TTI) telah dikajisiasat. Melalui rawatan 

pada suhu tetap dalam lingkungan suhu 80°C sehingga 100°C, sifat-sifat kinetik TTI 

telah dikaji untuk kedua-dua sistem Maillard: 3%(w/v)BSA+3%(w/v)Xylose dan 

3%(w/v)BSA+5%(w/v)Xylose. Kejatuhan nilai pH didapati mengikut tindak balas tertib 

pertama dan tenaga pengaktifan (Ea) untuk 3%BSA+3%Xylose dan 

3%BSA+5%Xylose masing-masing adalah 111.89 kJ/mol dan 93.65 kJ/mol. 

Seterusnya, TTI ini telah disahkan dalam pemprosesan termal melalui uji kaji hubung-

kait dengan penyusutan kualiti makanan seperti  kehilangan kualiti secara keseluruhan, 

penahanan asid askorbik (AA) dan penyusutan kekerasan ubi kentang. Tahap impak 

termal semasa pemprosesan telah dijangkakan dengan menggunakan TTI yang nilai 

Ea-nya dekat dengan sifat sasaran dan kemudiannya, dibandingkan dengan nilai yang 

diperoleh daripada eksperimen. Untuk mengurangkan ralat ramalan, graf penentu-

ukuran telah digunakan untuk menghubungkaitkan nilai pemprosesan yang dibaca 

daripada TTI dengan nilai pemprosesan yang berdasarkan profil masa-suhu. Selain itu, 

hubungkait juga dilakukan antara perubahan nilai relatif pH dengan perubahan nilai 

sifat sasaran. Kehilangan kualiti secara keseluruhan adalah diwakili oleh nilai-C di 

mana nilai Ea adalah 76.17 kJ/mol dan suhu rujukan (Tref) adalah 100°C. Manakala, 

nilai Ea untuk penahanan AA dan penyusutan kekerasan ubi kentang masing-masing 

adalah 69.05 kJ/mol dan 170.20 kJ/mol. Semua hubung-kait yang dilakukan antara TTI 

dengan sifat-sifat sasaran menunjuk persetujuan yang baik (R2 > 0.9). Selain daripada 

nilai pengukuran TTI yang konsisten dan jitu (CV = 0.49%), TTI ini adalah senang 

disedia dan mudah diguna. Prestasi dan sifat-sifat TTI ini telah mencadangkan bahawa 

TTI ini merupakan satu alat yang berkesan dan cekap dalam pengesahan proses 

termal. 
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EVALUATION OF MAILLARD REACTION-BASED TIME-
TEMPERATURE INTEGRATOR FOR THE ASSESSMENT OF THERMAL 

IMPACT ON QUALITY CHANGES OF THERMALLY PROCESSED FOODS 
 

ABSTRACT 

 

The Maillard reaction-induced pH decrease as the basis of a time-temperature 

integrator (TTI) development was investigated. The kinetic behaviours of two Maillard-

systems of 3%(w/v)BSA+3%(w/v)Xylose and 3%(w/v)BSA+5%(w/v)Xylose were 

obtained through isothermal treatments in the range form 80°C to 100°C. The pH 

decrease followed first-order reaction and the Ea-values of 3%BSA+3%Xylose and 

3%BSA+5%Xylose were 111.89 kJ/mol and 93.65 kJ/mol, respectively. These TTIs 

were then validated through correlation studies with respective food quality 

degradations (overall quality loss, ascorbic acid (AA) retention and hardness 

degradation in potatoes) during thermal processing. The intensity of thermal impact 

was predicted with the TTI with closer Ea-value with the target attribute and then 

compared with the obtained experimental values. In order to reduce error in prediction, 

calibration graphs were used for the correlations between processing values read from 

TTI with processing values based on time-temperature profiles; and for the mere 

correlation between relative pH change with the changes of target attributes. The 

overall quality loss was assigned as C-value with the Ea-values of 76.17 kJ/mol and Tref 

= 100°C. The Ea-values for AA retention and hardness degradation in potatoes were 

69.05 kJ/mol and 170.20 kJ/mol, respectively. All the correlations showed good 

agreements (R2 > 0.9) between TTI and target attributes. The good performances of 

these TTIs with high reproducibility of measurements (CV = 0.49%) as well as its ease 

of preparation and use; suggest that the Maillard-based TTIs can be a very promising 

tool for thermal process validation.  
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CHAPTER 1 
 INTRODUCTION 

 
 
1.1 Background 

Over the years, thermal processing persists as the most widely used method of 

preserving and extending the useful shelf-life of foods. In addition, it has gained a 

vibrant market place relying on the impressive record of food safety. Traditionally, the 

heating process is set to achieve specific lethality to ensure that the target food-borne 

pathogen has been destroyed to an acceptable level. On the contrary, this has led to a 

common practice where foods are over-processed and hence brought detrimental 

effects on product quality by altering the nutritional as well as the organoleptic 

properties. 

 

Nowadays, the demand for processed foods goes beyond the basic 

requirements, despite safety and shelf life-stability, consumers now expect varieties of 

value-added foods with higher quality and more convenient end use (Awuah et al., 

2006). On the other hand, in conjunction with the globalization of food trade, the 

national or international legislatures recommend and/or enforce performance standards 

or methods for achieving safety and quality assurance through the scientific rationale 

(Awuah et al., 2006). This phenomenon can be observed through the evolving shift 

from a command-and-control paradigm, which relies on the scheduled process where 

the specific endpoint temperature is held for predetermined time intervals; to lethality 

performance standards, where newly developed or altered thermal processes must be 

validated by “scientific supportable means” (Marks, 2001).  

 

Besides, the introduction of new thermal technologies in the industry requires 

regulatory approval. From this point of view, a scientific basis to assess quantitatively 

the impact of thermal process is indispensable (Claeys et al., 2003). It is of key 
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importance for food companies to measure accurately the impact of heat processes in 

terms of food safety and quality. Failing to accurately verify a process increases legal 

liability (Awuah et al., 2006). 

 

Unfortunately, the current state-of-knowledge is insufficient for reliable lethality 

predictions in commercial processes. Therefore, ‘scientifically supportable means’ do 

not currently exist for reliable and robust predictions of thermal process lethality in food 

industry. The continued development of new products and processes (and the ongoing 

regulatory changes) necessitate a proactive stance in ensuring proper evaluation of 

thermal process lethality (Marks, 2001). 

 

This has inspired researchers and the food industry to explore alternative 

methods as replacement for the traditional processing methods. The food industry is 

poised to adopt new concepts and technologies that offer competitive advantages over 

the conventional systems. Each of these alternatives has to be challenged in terms of 

microbiological capabilities, safety, efficiency and overall quality for acceptance as a 

mainstream technology (Awuah et al., 2006).  

 

For the time being, there are two well-documented techniques which have long 

been used in the industry to evaluate thermal impact on food safety and quality. They 

are: (1) the in-situ method, which measures a selected target attribute of the food 

before and after the process; and (2) the physical-mathematical method, which thermal 

impact is calculated based on the interpretation of time-temperature history of the 

product combined with the knowledge of priori determined kinetic parameters for the 

selected target attribute (VanLoey et al., 1996a, VanLoey et al., 1999). 
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Nevertheless, these two methods have serious limitations with regard to 

modern heating processes. For the former method, it is too laborious, time- and cost-

consuming. As for the latter, under certain circumstances it is impractical to incorporate 

a temperature logger to register the time-temperature history of the product. Limitations 

of both methods have promoted the development of time-temperature integrators (TTIs) 

as alternative tool in process design to measure the thermal impact of heat processes 

in terms of food safety and quality (VanLoey et al., 1996a, VanLoey et al., 1996b, 

Stoforos and Taoukis, 1998, VanLoey et al., 1999). 

 

The use of TTI involves the measurement of a response status before and after 

processing. The TTI response refers to a change in the concentration of a heat 

sensitive substance or device, either present in the product itself or introduced into the 

food samples, as to mimic the thermal degradation of the target attribute of interest. 

The TTI response should be an easily measurable, irreversible and time-temperature 

dependent change that can be attributed to a biological, chemical or physical 

phenomenon (Stoforos and Taoukis, 1998). The major advantage of TTI is the ability to 

quantify the impact of time-temperature exposure on the target attribute without having 

the information on the actual time-temperature history of the product (VanLoey et al., 

1996a). 

 

During the last decade, the development of TTIs has received considerable 

attentions. The application of TTI in thermal process validation has been investigated 

intensively by Katholike Universiteit Leuvan, Belgium (Hendrickx et al., 1993, VanLoey 

et al., 1996a, VanLoey et al., 1997, Haentjens et al., 1998, VanLoey et al., 1998, 

VanLoey et al., 1999, Guiavarc’h et al., 2003) and Campden & Chorleywood Food 

Research Association Group (CCFRA) (Tucker et al., 2002, Tucker et al., 2006a, 

Tucker et al., 2006b). All the mentioned projects involve the use of enzyme, particularly 

α-amylase, in the developing of TTIs for thermal process evaluation. However, it 



 
 

4

requires lots of effort in the enzyme extraction and TTI fabrication in order to match 

with the processing conditions as well as the kinetic behaviours of the target attributes. 

Moreover, the heat sensitivity of enzyme is rather low, which makes the development 

of enzymatic TTI a much complicated work.  

 

In this study, Maillard reaction was proposed as the basis of developing a new 

TTI for thermal process evaluation. This was based on the notion by the US Army 

Natick Soldier Center, where Maillard reaction products have been developed as 

intrinsic chemical markers in food during thermal process (Lau et al., 2003, Wong et al., 

2004). In general, three chemical markers were recognized. The first marker is 2,3-

dihydro-3,5-dihydroxy-6-methyl-4(H)-pyran-4-one (M-1), which is formed at sterilization 

temperatures from D-glucose and amines through 2,3-enolization under weak acidic or 

neutral conditions. The second marker is 4-hydroxy-5-methyl-3(2H)-furanone (M-2) that 

is similarly formed from D-ribose or D-ribose-5-phosphate. Another thermally produced 

compound is 5-hydroxymethylfurfural (M-3). The formation of these markers is directly 

proportional to the heating time at a given temperature; hence they are suitable as TTI 

in estimating the extent of thermal process. However, the application of this approach 

is limited to high temperature treatments (110 – 130°C) because the chemical markers 

form rather slowly under 100°C (Wnorowski and Yaylayan, 2002, Eliot-Godereaux et al., 

2003, Lau et al., 2003, Wong et al., 2004). 

 

Despite of the chemical marker formation, there are several physical changes 

that occur along with the Maillard reaction; for instance, brown colour formation, pH 

decrease and changes in rheological properties (Easa et al., 1996b, Manzocco and 

Maltini, 1999, Gerrard et al., 2002, Delgado-Andrare et al., 2004). Regardless of the 

mentioned situation for chemical marker formation, in this study, Maillard reaction-

induced pH decrease was used to monitor food quality changes during thermal process 

at temperature ranging from 80 to 100°C. This was to reveal another site of TTI 
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application since most of the TTI responses were often related to microbiological 

quality (VanLoey et al., 1997, VanLoey et al., 1999, Tucker et al., 2002). With quality 

loss being a function of time–temperature history and with TTI giving the measure of 

that history, TTI response could presumably be correlated to quality level of the food 

model systems. Moreover, the analytical approach used for chemical markers 

formation was complicated and required specific equipments (i.e. HPLC), whereas only 

pH meter was needed in this study. 

 

1.2 Rationales of this study 

Thermal processing is one of the utmost important processes in producing safe 

and high quality food products. However, without the application of an appropriate 

evaluation method, the meaning of safe and high quality food product is totally obscure.  

 

The purpose of this study was to evaluate the possibility of Maillard reaction-

induced pH decrease as a potential TTI response. One further aim was the estimation 

of kinetic parameters for TTI response as well as the target attributes. Finally, the 

potential of Maillard-based TTI as thermal process evaluation tool was determined.  

 

By introducing a Maillard-based TTI in food thermal processing, the problem of 

lacking suitable validation method will be solved and this is important to control the 

quality management of thermal processing especially for Small-Medium Industries 

(SMIs) in food processing, which lack of financial support and technical knowledge.  

 

Furthermore, the scientific knowledge generated through this study will 

contribute to the development of a new thermal process validation tool for the food 

industry. With the development of new and better controlled validation tools, it will 

permit production of safe products with higher quality.  
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1.3 Hypotheses and research questions 

Some Maillard systems have been used as TTIs for the assessment of efficacy 

of food thermal processing. However, there is no study that reveals the application of 

Maillard reaction-induced pH decrease as the response status of a TTI. Most of the 

studied Maillard-based TTIs relied on the formation of by-products as chemical markers 

to indicate the extent of a thermal process. On the other hand, Maillard reaction-

induced pH decrease has been well established, thus it was hypothesized that Maillard 

reaction-induced pH decrease could be applied to the development of a rapid and 

inexpensive tool for monitoring thermal impact on food quality changes during thermal 

processing. In conducting this study, another specific hypothesis was tested, that was 

the kinetic parameters for a response function of TTI could be manipulated in order to 

suit the kinetic behaviour of the selected target attribute from food model system. 

 

This study addressed a number of issues in relation to the implementation of 

the Maillard-based TTI in food thermal processing. Specific questions addressed in this 

study include: 

1. Whether the Maillard reaction fits the basic criteria as a TTI for thermal process 

validation? 

 

2. Whether the kinetic parameters of the Maillard-TTIs match with those of target 

attributes?  

 

3. How accurate/reliable is this Maillard-based TTI in estimating the thermal 

impact on food quality?  

 

4. What are the potential applications of Maillard-based TTI in thermal processing? 

 

Lastly, the advantages and disadvantages of the Maillard-based TTI were 

highlighted.  
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1.4 Objectives 

The main objective of this study was to develop a Maillard-based time-

temperature integrator (TTI) for the assessment of thermal impact on quality changes 

of thermally processed foods. This TTI was further validated to predict the changes on 

quality characteristics of foods, i.e. nutritional properties and textural attributes.  

 

 The measurable objectives of this study were: 

- to study the feasibility of Maillard reaction-induced pH decrease as the basis of 

TTI development in terms of theoretical considerations and kinetic behaviours  

 

- to estimate the thermal kinetic parameters under isothermal conditions for TTI 

response as well as the selected target attributes in food model systems 

 

- to construct prediction graphs or equations that correlate thermal inactivation of 

the TTI with the thermal inactivation of target attributes  

 

- to evaluate the performance and the reliability of TTI in predicting the changes 

on target attributes of food model systems 

 

  

 

 

 

 

 

 

 

 

 

 

 



 
 

8

1.5 Dissertation outline 

The evaluation of the Maillard reaction as time-temperature integrators (TTI) for 

the assessment on food quality changes is presented in this dissertation. The main 

body of this dissertation consists of a general introduction and background, literature 

reviews, material and methods, results and discussions, general conclusions as well as 

recommendations for future studies.  

 

Chapter One is a general introduction on the background of this study in which 

the current situations and the challenges faced by the food industry regarding thermal 

process validation techniques are discussed. It also presents the proposed method (by 

using Maillard-based TTI) to overcome the limitations with detailed background that 

supports the application of TTI in thermal processing. Besides, the purpose and the 

rationales of this study are discussed briefly. Finally, the hypotheses and objectives of 

the study are stated together with a series of research questions. 

 

The first stage of this study deals with the identification of the basic 

requirements and theoretical considerations in developing a TTI for thermal process 

validation and the kinetic modelling of food quality during thermal processing.  The 

general literature review of each topic is illustrated in Chapter Two. 

 

Chapter Three lists down all the used materials as well as the methodology for 

every single assay conducted throughout the whole study.  

 

In Chapter Four, the experimental results with discussions are presented. 

Before the experimental results are analyzed, the theoretical considerations on 

characteristics of Maillard reaction-induced pH decrease which fulfill the basic criteria 

of a TTI are interpreted. Basically, the experimental results are divided into three sub-

sections: (1) preliminary studies on the Maillard reaction, (2) the development of 
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Maillard-based TTI; and (3) the applications of TTIs in monitoring the quality attributes. 

Each subsection describes and summarizes the results and statistical analyses used to 

evaluate the proposed research questions and hypotheses established in Chapter One. 

At the end of this chapter, the advantages and limitations of this Maillard-based TTI will 

be reviewed. In addition, the potential use of this Maillard-based TTI at elevated 

temperatures (> 100°C) will be identified. 

 

The last chapter (Chapter Five) consists of general conclusions on the whole 

study, limitations of this study and recommendations for future studies of the Maillard-

based TTI in the aspect of food safety and other processing conditions.  
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CHAPTER 2 
LITERATURE REVIEW 

 

2.1 Food thermal processing 
 

2.1.1 Introduction 

Since around 70 000 years ago, heat has been used to prepare foods. Down 

the millennia, food revolution occurred through the development of cooking methods 

with increasing scientific knowledge, whereby nowadays thermal treatment has 

become the most widely used method in food processing and preservation. Although 

numerous novel technologies (e.g. irradiation, ultra high pressure, and pulsed electric 

fields) loom on the horizon for the broader food industry, the application of heat 

certainly continue to be the dominant means to impart desirable characteristics, add 

economic value and ensure product safety. Additionally, major shifts in consumer 

demand and regulatory burden certainly increase the importance of thermal treatment 

in the field of food processing (Hardy et al., 1999, Marks, 2001, Stoforos, 2005). 

 

The methods and the extent of heat treatment vary upon the specific objectives 

as well as the nature of the food products. One of the main purposes of thermal 

processing is to improve the attractiveness, digestibility as well as eating properties of 

food products. Thermal treatments which have been applied for this purpose are like 

cooking, baking, roasting, boiling, frying and stewing. Whereas, blanching, 

pasteurization and sterilization are meant for preserving purposes in order to ensure 

the product safety and prolong the storage-life. In this case, heat treatment can either 

be used as the single preserving technique such as commercial sterilization or it can be 

used in conjunction with other preserving factors or processes. For instance, blanching 

and pasteurization are normally applied prior the further processing or refrigerated 

storage (Stoforos, 2005).  
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2.1.2 Effects of heat on food quality 

Heat imposes both desirable and undesirable changes in foods. Although heat 

is essential to stabilize foods, the heating conditions applied are beyond the level of 

retaining the desired food quality. Moreover, under certain circumstances, the 

formation of mutagenic and carcinogenic compounds may even occur and 

consequently poses public health issues (Hardy et al., 1999, Stoforos, 2005). 

 

The major drawback of thermal processing is the significant destruction on 

nutritional quality such as the loss of vitamins; and organoleptic quality such as the 

changes of taste, colour and texture of food products. This is because thermal 

treatment induces or even accelerates several biological, chemical and physical 

modifications that eventually lead to these destructions. Therefore, the processing 

conditions that give the maximization of the final nutritional and organoleptic quality are 

needed (Silva, 1996, Teixeira and Tucker, 1997, Hardy et al., 1999, Eliot-Godereaux et 

al., 2003).  

 

In most situations, thermal processing results in changes that lead to food 

quality losses. These changes are mainly due to biological, chemical and physical 

reactions, which proceed at certain rates and with certain kinetics. In order to evaluate 

and monitor the thermal impact on food quality, it is required to reveal the kinetics of 

these changes. Obviously, kinetic modelling is a powerful tool in relation to food 

processing and quality control. It can describe the changes and their rates 

quantitatively, which is vital for quality modelling and control. Thus, kinetic modelling is 

gaining increasing interest and scientists attempt to derive basic kinetic information for 

a system in order to predict changes in a particular food during processing and storage 

(VanBoekel, 1996, Martins et al., 2001, VanBoekel and Tijskens, 2001). 
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2.1.3 Food quality attributes 

To predict food quality deterioration, the knowledge on kinetics for the quality 

degradation is required. The kinetic of quality degradation has been studied extensively 

in model systems (Appendix D). Nevertheless, data available for the quality losses 

(ascorbic acid destruction, texture softening, etc.) in actual food systems are 

insufficient to calculate the kinetic parameters during heat treatment. Hence, it is 

necessary to study the effect of different processing temperatures on the retention of 

quality in the product and then the kinetic modelling is applied to predict the losses 

during processing (Vikram et al., 2005).  

 

2.1.3.1 Overall quality loss 

During a thermal process, some quality degradations occur along with the 

achievement of process sterilization values (F0 -value). This relative thermal impact on 

food quality can be quantified by using the concept of “cook value” (C-value). 

Specifically, cook value is related to the quality loss during a high temperature thermal 

process to an equivalent cooking process at 100°C (stove temperature) and assigned 

as C0 (Lund, 1986). This is a standard nomenclature that originated by Manfield (1962) 

and it has been used as an overall index of quality degradation. The calculation of C-

value is similar with the calculation of F-value and the equation as expressed in Eq. 2.1: 

 

 

where zc is the thermal destruction rate analogous to the z-value for microbial 

inactivation. 

 

This value characterizes the product cooking degree and enables the 

comparison of the quality changes caused by the thermal degradation for a given 

product at certain levels of heat treatment. The method comes from the presupposition 

Eq. 2.1dt10C
t

0

z100T
0

c∫ −=
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that the considered quality changes occur according to the first order reaction kinetics 

(Mraz, 2001). It appears that the dependence of quality degradation rate on 

temperature can be expressed in the same way as for microorganisms and enzymes – 

by using the Arrhenius model or Bigelow model.  

 

The cook value parameters zc and Tref vary according to the target attribute of 

interest. According to Holdsworth (1997), the value of z for quality degradation varies 

between 17 to 45°C, corresponds to sensory attributes, texture softening and colour 

changes in food (Holdsworth, 1997). Generally, zc-value equals 33˚C (or Ea of 76.17 

kJ/mol for temperature range from 80 – 100°C) is mostly used as an overall quality loss 

from the approximation for chemical changes based on the deterioration of chemical 

components such as thiamine, vitamin C and chlorophyll (Mraz, 2001, Lau and Tang, 

2002). The higher the zc (lower the Ea-value), the more resistant is the given food 

component against the influence of thermal energy. In fact, very few experimental 

measurements of C- and zc- values for different foods have been reported in the 

literature. Minimum C-value is determined on the basis of z-value for the selected 

components (Mraz, 2001). A maximum range in the region of 100 – 200 min is 

commonly considered as the range beyond which quality is said to be impaired (Awuah 

et al., 2006). 

 

On the other hand, optimization of a thermal process is based on the fact that 

the rate of destruction of nutrients is less dependent on the temperature than the rate 

of destruction of microbial spores. It is often desirable to assume an acceptable sterility 

(F0 -value) and a maximum cook value, both of which give the desired product. A safe 

product will then require that the actual lethality will exceed sterility while the cook 

value will be less than Cmax (Awuah et al., 2006). 
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2.1.3.2 Ascorbic acid degradation 

Ascorbic acid (vitamin C) is a water-soluble vitamin that plays such a vital role 

in our health and well being. Despite its nutritional value, ascorbic acid has been widely 

used in food industry for its many functional contributions to product quality. Based 

upon its oxidation-reduction properties, ascorbic acid is used as nutritional food 

additives, antioxidant, browning inhibitor, reducing agent, flavour and colour stabilizer, 

dough modifier as well as food enhancer (Etenmiller and Landen, 1999). 

 

During processing of foods, the loss of nutritional quality has become a big 

concern. Since ascorbic acid is known to be thermo-liable, its retention is often 

regarded as a significant index of nutritional quality of a product. Particularly in fruit and 

vegetable canning industry, products have been fortified with ascorbic acid as to 

restore the nutritional loss during thermal process. Simultaneously, the loss of ascorbic 

acid can also be used as an indicator of the loss of other nutrients and organoleptic 

properties after thermal processes (Abdelmageed et al., 1995, Esteve et al., 1998, 

Karhan et al., 2004, Erenturk et al., 2005). 

 

However the available analytical methods often show certain limitations that 

affect the accuracy of determination such as being time-consuming, easily interfered by 

colouring substances and lack of specificity or good sensitivity. On the other hand, lack 

of information about the mechanism and degradation kinetics of ascorbic acid causes 

the determination even more complicated (Vikram et al., 2005). Therefore, there has 

been considerable interest in alternative methods for determining ascorbic acid content 

in food products (Abdelmageed et al., 1995, Zeng et al., 2005).  

 

In this study, the direct colorimetric method was used instead of the classic 

titration method and HPLC methods for the titration method is time-consuming and the 

endpoint determination is very subjective (Abdelmageed et al., 1995, Zeng et al., 2005). 
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On the other hand, the implementation of HPLC methods requires specialized 

equipment and the procedures may be rather lengthy although they have good 

sensitivity and specificity (Zeng et al., 2005).  

 

2.1.3.3 Texture of potato 

Texture is one of the most important quality parameters, which is crucial to 

ensure the product acceptability. According to Nisha et al. (2005), texture can be 

defined as “the way which the structural components of a food are arranged in a micro- 

and macro-structure and the external manifestations of this structure” (Nisha et al., 

2005).  

 

In raw produce, the present of physiological processes maintains cell turgor 

pressure, which imparts textural characteristics to fruits and vegetables. As a 

consequence of thermal processing, the hydrostatic pressure responsible for 

maintaining turgor is absent in processed plant tissues and usually they are softer than 

the original raw produce. After the loss of turgor brought by heating, the remaining 

mechanical properties of the tissues depend on the structure, arrangement and 

chemical composition of the cell wall (Corzo and Ramirez, 2005). 

 

On the other hand, during thermal process a variety of enzymatic and chemical 

reactions occur and hence alter the texture in processed fruits and vegetables. The 

chemical changes such as solubilization and depolymerization of pectic 

polysaccharides, affect the constituents of the cell wall and middle lamella, and hence 

bring a major change in the firmness of fruits and vegetables (Nisha et al., 2005, Smout 

et al., 2005). 

In this study, potato had been chosen as a model system which represents the 

changes in texture due to thermal processing. In consumer’s perception, textural 

property is the main consideration in determining the quality and acceptability of 
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cooked potatoes (Thybo et al., 2000, Corzo and Ramirez, 2005). The preference of 

cooked potatoes varies with age, with and between countries and is highly dependent 

on processing; therefore there is a need for sensory texture characterization of cooked 

potatoes (Thybo et al., 2000).  

  

Not only consumers are concerned about the texture of potatoes, but also the 

potato processing industry which produces various products which are highly 

dependent on the rheological properties of the cooked product. Measurement of quality 

characteristics by sensory method is in general time-consuming and not well suited for 

industrial routine control. For this reason, the industry is demanding on-line 

instrumental methods which are able to predict sensory texture quality of the processed 

product or, even better, to predict sensory texture quality of the product directly from 

the raw material (Thybo et al., 2000). 
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2.1.4 Food quality modelling 

Food is a very complex physicochemical system involving many biological, 

chemical and physical variables. In today highly competitive market, high quality of 

product is the key factor in determining the success of a modern food industry. Food 

quality is more difficult to specify than safety, but it basically means the control of 

chemical and physical changes during processing and storage (VanBoekel, 1996).  

 

Generally, food quality change may be expressed as a function of composition 

and environmental factors:  

  

 

 

where A is the quality attribute; t is the time; and Ci are the composition factors, such 

as concentration of reactive compounds, inorganic catalysts, enzymes, reaction 

inhibitors, pH, water activity, and microbial populations. Whereas, Ej are environmental 

factors such as temperature, relative humidity, total pressure and partial pressure of 

different gases, light and mechanical stresses (Taoukis, 2001).  

 

Although it is possible to express food quality change explicitly in terms of 

measurable parameters, but no analytical solution is available to consider all the 

parameters in a single function and the possible numerical solutions attainable are too 

elaborate for any practical purpose. Therefore, the first requirement for this type of 

study is the identification of the reactions that have the most critical impact on the 

quality degradation. Moreover, before a model of quality changes due to processing 

can be developed, kinetics of the relevant reactions must be ascertained (Taoukis et al., 

1997, Taoukis, 2001).   

 

 

( )ji E,CF
td
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= Eq. 2.2
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Due to the complexity of food systems, the quality degradation is practically 

represented by the loss of desirable quality factors (e.g. nutritional and organoleptic 

properties) or the formation of undesirable factor (e.g. off flavour and discoloration). 

The general equation for studying the kinetic of these reactions is expressed as:  

 

 

 

 

 

The quality attributes [A] are usually quantifiable chemical, physical, microbiological or 

sensory parameters characteristics of the particular food system, n is the apparent 

reaction order and k is the reaction rate constant (positive values represent formation 

of [A ] while negative values represent degradation of [A]).  

 

 

2.1.4.1 Reaction order determination 

The order of reaction is a parameter, which describes mathematically that a 

reaction is either time- or concentration- dependence. It does not necessarily give 

information on the reaction mechanism but it is suitable for modelling changes in food 

during processing (Martins et al., 2001). When studying the kinetics of thermal 

treatment, firstly, it is necessary to determine the apparent reaction order, so that an 

appropriate kinetic equation can be obtained for subsequent use. The apparent 

reaction order (n) and rate constants (k) are determined by fitting the change with time 

of the experimentally measured values of [A] to Eq. 2.3. This can be done by using 

either differential methods or integral methods (Taoukis et al., 1997, Taoukis, 2001). 

 

 

[ ] [ ]nAk
dt
Ad

= Eq. 2.3
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For the integral method, variables are separated and integration is carried out 

for Eq. 2.3. Hence, the following equation is obtained:  

 

 

 

Regardless to the apparent reaction order (n), Eq. 2.4 can be expressed in the form of 

quality function f (A) of the food system as: 

 

 

The form of quality function of food for different apparent reaction orders (usually 0   

≤ n ≤ 2) can be derived from Eq. 2.5 by substituting with different value of n and the 

change of quality factors [A] and are shown in Table 2.1.  

 

Table 2.1: Quality function for the change of quality factor [A]. 
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To determine the correct apparent reaction order, experimental data can be 

fitted tentatively to Eq. 2.5 according to the quality function for different apparent 

reaction orders in Table 2.1. A linear regression analysis can be carried out to 

determine the best-fitted lines by comparing the coefficient of determination (R2). The 

correct apparent order is that for which the R2 is closer to unity (Taoukis et al., 1997).  

 

 

2.1.4.2 Temperature dependence models 

In order to quantify the influence of temperature on the reaction rate constants, 

two temperature dependence models are usually applied: the Arrhenius model and the 

Bigelow model as illustrated in Figure 2.1.  

 

The Arrhenius model, expressed in rate constants (k) and activation energy 

(Ea), has been extensively used to modelling the effect of temperature on chemical 

reaction kinetics and can be used for thermal death. In this model, the logarithm of the 

reaction rate constants is related to the reciprocal of the absolute temperature with the 

activation energy (Ea) representing the slope index if the semi-logarithm curve 

(Holdsworth, 1997, Tantchev et al., 1997) and it can be expressed as: (Hendirckx et al., 

1992) 

 

 

 

 

 

where Ea is the activation energy (J/mol), kref is the rate constant at a reference 

temperature (Tref) and R is the universal gas constant (8.314 Jmol-1K-1).  
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The Bigelow model, which is also known as thermal death time (TDT) model, is 

expressed in decimal reduction time (D) and z-value, usually is used in microbiology 

and specifically for the case of first-order kinetics. In this model, decimal reduction 

times are described as a direct exponential function of temperature with the z-value as 

the negative reciprocal slope of the semi-logarithmic curve (Holdsworth, 1997, 

Tantchev et al., 1997). According to this model the rate constants can be expressed as: 

(Hendirckx et al., 1992) 

 

 

 

 

where z is the z-value and Dref is the D-value at reference temperature. 
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Figure 2.1: Graphical representation for estimating kinetic parameters for Arrhenius (k- 

and Ea-value) and Bigelow models (D- and z-value). 
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2.1.5 Concept to express thermal impact (Thermal process calculation) 

It is of utmost importance to determine thermal impact quantitatively in terms of 

food safety and quality in order to evaluate, control, and optimize a thermal process. 

The impact of a thermal treatment on a product safety or quality attribute relies on the 

rates of the heat-induced reactions that affect this attribute and on the time interval 

during which these reaction rates occur (VanLoey et al., 1996a).  

 

In thermal processing, the impact of time and variable temperatures on a 

specific food quality attribute (microbial load, vitamin content, colour, etc.) is usually 

expressed as the equivalent time at a chosen constant reference temperature which 

causes the same change in the quality attribute (Maesmans et al., 1995). 

 

In this study, the definition of F-value is only referring to the thermal impact on a 

selected target attribute. It must be stated that in most of the published journals, F-

values are mostly related to food safety and used to represent the necessary 

processing time at a constant temperature for a certain level of microorganisms 

inactivation, which normally referred as sterility or lethality. However, in this study, F-

value is just a simple cumulative thermal effect (cumulative time-temperature effect of a 

thermal process) that represents the effectiveness of a thermal process based on the 

changes of certain quality factors. 

 

The impact of heat treatment can be assigned as processing value (F-value). 

The processing values can be written mathematically in terms of time-temperature 

history of the product(Ft-T); or in terms of a change in response status before and after 

thermal processing (Fresponse) (VanLoey et al., 1996b).  
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The processing value (Fresponse) in terms of a change in response status is 

based on the actual measurement of the initial and final loads of heat-liable substance 

and is defined as the integral of the rate constants over time at each encountered 

temperature relative to the rate constant at a chosen reference temperature (Tref) that is 

denoted as subscript in Eq. 2.8: 

 

 

 

 

where F is the processing value, k the rate constant at T and kref the rate constant at 

reference temperature Tref. 

 

The processing value Fresponse in the case of first-order reaction (n = 1) can be 

written as Eq. 2.9; and in the case of n th-reaction order (n ≠ 1) Fresponse is expressed as 

Eq. 2.10: 
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