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EFFECT OF WASTE GYPSUM FROM CERAMIC SLIP CASTING MOULD ON 

THE PROPERTIES OF PORTLAND CEMENT 

 
 
 

ABSTRACT 
 
 

The aim of this work is to investigate the possibility of using waste gypsum 

(CaSO4.2H2O) which is the waste material from the hydration of plaster of Paris in 

ceramic factory as a replacement or alternative material to natural gypsum 

(CaSO4.2H2O) in cement production. Prior to cement grinding test work, the raw 

materials such as clinker, natural gypsum and waste gypsum had been characterized 

using X-Ray Diffraction, X-Ray Fluorescence, Differential Scanning Calorimetry / 

Thermogravimetry and Field Emission Scanning Electron Microscopy. For cement 

grinding test work, clinker was ground with natural gypsum in differents proportion from 

3% to 6% in laboratory ball mill for 90 minutes and the same process had been 

repeated with waste gypsum for 90 minutes and 120 minutes to produce Portland 

cement with a specific surface area of around 3500 cm2/g with tolerance ± 10%. All 

cement samples were tested by determining the chemical composition, phases, 

fineness, setting time, expansion, strength and heat of hydration. From the results, it 

showed that waste gypsum still contained some amount of plaster of Paris 

(hemihydrate) which had not converted to gypsum (dihydrate). The amount of 

hemihydrate in waste gypsum caused cement to set faster but did not have positive 

effect on the strength (about 50MPa) at the age of 28 days. It could be concluded that 

waste gypsum could be possibly used as a replacement or alternative material to 

natural gypsum in cement production, especially at level of 4% gypsum addition with 

both types of gypsum exhibiting almost the same properties of cement such as setting 

time and strength. 
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KESAN SISA GIPSUM DARIPADA ACUAN TUANGAN SLIP SERAMIK 

TERHADAP SIFAT-SIFAT SIMEN PORTLAND 

 
 

ABSTRAK 
 

 

Tujuan kajian ini dijalankan adalah untuk mengkaji kemungkinan menggunakan 

sisa gipsum yang merupakan bahan terbuang daripada pengeringan plaster Paris 

dalam kilang seramik sebagai bahan ganti atau bahan alternatif untuk gipsum 

semulajadi dalam pembuatan simen. Sebelum kajian pengisaran simen,  bahan 

mentah seperti klinker, gipsum semulajadi dan sisa gipsum telah dicirikan dengan 

menggunakan Pembelauan Sinar X, Pendarfluor Sinar X, Permeteran Kalori 

Pengimbasan Kebezaan/Permeteran Graviti Haba dan Mikroskop Elektron Imbasan. 

Untuk ujian pengisaran simen, klinker telah dikisar bersama gipsum semulajadi dengan 

perkadaran 3% hingga 6% dalam pengisar bebola makmal selama 90 minit. Proses 

yang sama diulang dengan menggunakan sisa gipsum selama 90 minit dan 120 minit 

untuk menghasilkan simen Portland dengan luas permukaan spesifik dalam lingkungan 

3500 cm2/g dengan ±10% kelegaan. Semua produk simen diuji dengan menentukan 

komposisi kimia, fasa-fasanya, kehalusan, masa pensetan, pengembangan, kekuatan 

dan kadar pengeringan haba. Daripada keputusan yang diperolehi, menunjukkan sisa 

gipsum masih mengandungi sejumlah plaster Paris (hemihidrat) yang belum bertukar 

kepada gipsum (dehidrat). Kandungan hemihidrat dalam sisa gipsum menyebabkan 

simen menjadi keras dengan cepat tetapi tidak memberi kesan yang positif pada 

kekuatan (50MPa) simen pada hari ke 28. ini membuktikan kemungkinan sisa gipsum 

boleh digunakan sebagai bahan ganti atau bahan alternatif kepada gipsum semulajadi 

dalam pembuatan simen terutamanya pada 4% penambahan gypsum di mana kedua-

dua jenis gipsum menunjukkan sifat-sifat simen yang hampir serupa seperti masa 

pensetan dan kekuatan. 
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CHAPTER 1 
 

INTRODUCTION 
 

 
 
1.1 Introduction  

Portland cement is a manufactured product made by blending different raw 

materials and firing them at a high temperature in order to achieve precise chemical 

proportions of calcium, silica, alumina and iron in the finished product, known as 

cement clinker. Clinker typically has a composition in the region of 67% CaO, 22% 

SiO2, 5% Al2O3, 3% Fe2O3 and 3% of other components [Taylor, 1997]. Therefore, 

cement is essentially a mixture of calcium silicates and smaller amounts of calcium 

aluminates that react with water and cause the cement to set. The requirement for 

calcium is met by using high calcium limestone (or its equivalent calcareous raw 

material) and clay, mudstone or shale as the source of most of the silica and alumina. 

Finished cement is produced by finely grinding together around 95% of cement clinker 

with 5% gypsum (or anhydrite) which helps to retard the setting time of cement.  

 

The quality of cement clinker is directly related to the chemistry of the raw 

materials used. Around 80-90% of raw material for the kiln feed is limestone. Clayey 

raw material accounts for between 10-15%, although the precise amounts will vary. 

Magnesium carbonate, which may be present in limestone, is the main undesirable 

impurity; the level of magnesia (MgO) in the clinker should not exceed 4%, because 

quantities of this component in excess of about 2% can slow the reaction with water 

and cause destructive expansion of hardened concrete. Free lime can behave similarly. 

Excessive contents of SO3 can also cause expansion, and upper limits, typically is 

around 3.5% for ordinary Portland cement. Alkalis (Na2O and K2O) can undergo 

expansive reactions with certain aggregates, and some specifications limit the content 

to 0.6% [Taylor, 1997].  
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Beside Portland cement, there are other types of cement called blended cement. 

Blended cement is produced by finely grinding Portland cement clinker with other 

constituents, such as blast furnace slag, natural pozzolanas, silica fume, metakaolin, 

siliceous fly ash, calcareous fly ash, limestone fine and shale. According to BS EN 197-

1 standard, there are five main types of cement used for concrete (Table 1.1) [British 

Geological Survey, (2004)]. 

 

Table 1.1 Type of cement for concrete according to EN 197-1 [British Geological 
Survey, (2004)] 

 

CEM I Portland cement 
Comprising of Portland cement and up to 

5% of minor additional constituents. 

CEM II Portland-composite cement 
Comprising of Portland cement and up to 

35% of other single constituents. 

CEM III Blastfurnace cement 
Comprising of Portland cement and 

higher percentages of blastfurnace slag 

CEM IV Pozzolanic cement 
Comprising of Portland cement and 

higher percentages of pozzolana 

CEM V Composite cement 

Comprising of Portland cement and 

higher percentages of blastfurnace slag 

and pozzolana or fly ash. 

  

 

1.2 World Cement Production 

According to European Cement Association (Cembureau), world production of 

cement rose steadily from 1997 to 2003 (Figure 1.1), increasing by almost 436 millions 

tons during this period [JCA, 2005]. According to United States Geological Survey, 

Mineral Resources Program, it was estimated that cement production in 2004 was 
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around 2130 million tons. This was consistent with improving economic conditions and 

population growth in many parts of the world [Index mundi, 2007]. 

 

 

 

 

 

 

 

 

Figure 1.1:  World cement production 1997 – 2003 [JCA, 2005] 

 

Recent economic growth in China has stimulated growth in its construction 

industry, with the result that China’s cement production formed 43.94% of the world’s 

total production in 2003. Actual Chinese cement production increased from 578 million 

tons to 859 millions tons over the period 2000-2003 (Figure 1.2), with an increase of 

32.71% [JCA, 2005]. It is clear that cement production is a function of population and 

economic growth, both at country and world scales. With the global population 

expected to rise to over 9.2 billion in 2050 [UN, 2007] further growth in world cement 

production can be expected. 

 

Malaysia is a developing country and the demand for cement is increasing with 

increasing demand for new schools, hospitals, offices, shops and infrastructure 

development. According to the report by United States Geological Survey, Mineral 

Resources Program, the Malaysian cement production has increased from 11.445 

million tons in 2000 to 18 million tons in 2004 (Figure 1.3) [Index Mundi, 2007]. It shows 

that the cement production increases with the growth of the construction industry. 
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Figure 1.2 World cement production in 2000 and 2003 [JCA, 2005] 

  

 

 

 

 

 

 

 

 

Figure 1.3:  Malaysian cement production 2000 – 2004 [Index Mundi, 2007] 

 

World cement production in 2000

World cement production in 2003
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1.3 The Role of Gypsum in Cement 

Gypsum is a natural mineral which has the formula CaSO4.2H2O. Gypsum is a 

soft, transparent or translucent mineral composed of crystallized calcium sulphate 

(CaSO4), found naturally primarily in sedimentary deposits. It is used in the 

manufacture of wall boards, paper, paints, plasters and cement. According to Gypsum 

Recycling International (2007), in total 80 million tons of plasterboard, wallboard and 

drywall is produced every year.  

 

Gypsum is not a raw material in the kiln feed but is added to clinker at the 

cement grinding stage of Portland cement to regulate extreme setting reaction which 

occurs in the presence of water [Bye, 1999], usually at the level of 5% which is equal to 

approximately 2.1% of SO3. The gypsum content of cement is expressed in terms of its 

sulphate (SO3) content. The maximum SO3 content allowed by European Standard 

ENV 197-1: 1992 is 3.5%. The setting of cement is primarily due to the reaction of 

tricalcium aluminate (C3A), 3CaO.Al2O3. The reaction of pure C3A with water is created 

in the form of interlinking bridge of solid material between the cement particles. These 

interlinking bridges reduce the mobility of the cement particles and produce a firm 

structure that leads to immediate stiffening of the paste, known as flash set. To prevent 

this from happening, gypsum is added to cement clinker to retard the setting of cement. 

Gypsum and C3A react to form insoluble calcium sulfoaluminate 

(3CaO.Al2O3.3CaSO4.32H2O), called ettringite ((AFt) (Equation 1.1). When gypsum is 

dropped and C3A remains, ettringite will react with C3A to form 

3CaO.Al2O3.CaSO4.12H2O, called monosulfate (AFm) (Equation 1.2).  

 

C3A + 3(CaSO4.2H2O) + 26H2O                      3CaO.Al2O3.3CaSO4.32H2O  

(Equation 1.1) 
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3CaO.Al2O3.3CaSO4.32H2O + 2C3A + 4H2O            3(3CaO.Al2O3.CaSO4.12H2O)  

(Equation 1.2) 

 

Gypsum does not only react with C3A, but it also reacts with C4AF to form 

calcium sulfoferrite as well as calcium sulfoaluminate, and its presence may accelerate 

the hydration of the silicates [Neville, 2002]. As well as influencing the setting time, 

gypsum also has an influence on other properties of cement. The more important of 

these are strength development. The addition of gypsum to cement increases the 

strength and reduces shrinkages. However, the addition of excessive amounts of 

gypsum will cause expansion to occur, which is why cement standards place limit on 

the sulphate content. Gypsum also influences the grinding ability of cement, which is 

the grinding energy required to produce cement. Grinding aids such as diols (glycols) 

or triethanolamine at levels of about 0.1% have been found to reduce the energy 

needed in milling to reach a given fineness. Gypsum is more easily ground than clinker 

and sometimes referred to as a grinding aid, possibly only because it is softer than 

clinker [Bye, 1999].  

 

Dehydration of gypsum, CaSO4.2H2O (dihydrate), occurs at relatively low 

temperature from 1000C to 1600C. Such temperatures can occur during the cement 

grinding process and result in the formation of significant quantities of CaSO4.0.5H2O 

(hemihydrate) and CaSO4 (anhydrite). The ratios in which these calcium sulphates 

formed in cement can have a profound effect on the setting behavior, because their 

respective solubilities in water are significantly different from one another. Upon mixing 

with water, hemihydrate and anhydrite react readily with water to form needle-shape 

crystals of gypsum. This leads to gypsum precipitation and some rigidity or stiffening of 

the concrete or mortar, making it necessary to add more water for workability and 

resulting in a lowering of the strength properties. This process is referred to as “False 

Setting''. The dihydrate form is the preferred form required in cement [Strydom and 



7 

Potgieter, 1999]. Thus, this requires controlling the temperature inside the mill during 

the grinding process of clinker and gypsum. 

 

1.4 Problem statement 

In the cement industry, natural gypsum (CaSO4.2H2O) is ground with clinker 

during production of Portland cement to delay the rapid reaction between C3A and 

water and to regulate cement setting properties.  The required amount of gypsum in a 

type of cement increases with the amount of C3A in the clinker and also depends on its 

purity. Instead of gypsum, other forms of calcium sulfate can be used in the 

manufacture of cement such as hemihydrate (CaSO4.0.5H2O) and anhydrite (CaSO4) 

[Neville, 2002]. Natural gypsum may contain anhydrite as impurity, at levels which vary 

widely with source. Gypsum which is too rich in natural anhydrite is unsuitable for use 

alone because this mineral dissolves too slowly in water to retard setting sufficiently.  

 

In some countries, because of the lack of gypsum deposits or due to 

environmental concerns, chemical gypsums may be employed as by-products. 

However, the use of by-products depends on their not being too contaminated by 

residues of the product of the chemical process which will affect the setting and/or 

hardening of concrete. FGD gypsum is industrial by-product derived from flue gas 

desulfurization process [Tzouvalas et al, 2004b]. The chemical reactions that can take 

place to convert flue gases into gypsum are shown in Equations 1.3, 1.4 and 1.5: 

 

SO2   +    H2O       H+   +   HSO3
-           (Equation 1.3) 

 

H+      +    HSO3
-   + 0.5O2    2H+   +   SO4

-2           (Equation 1.4) 

 

2H+   +   SO4
-2      +     Ca(OH)2  CaSO4.2H2O           (Equation 1.5) 
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Beside FGD gypsum, there are other by-products gypsum that have been used 

in cement manufacture such as phosphor-, citro-, desulpho- and boro-gypsum as 

setting retarders [Ozkul, 2000; Papageorgiou et al, 2005; Kavas et al, 2005].  These 

by-products come from the chemical reaction and result in gypsum (CaSO4.2H2O) 

which has similar chemical composition to natural gypsum. That is the reason why 

these by-products can be used to replace natural gypsum in cement manufacture.  

 

On the other hand, in ceramic factory, plaster of Paris has been used as the 

mould for slip casting technique. The hydration of plaster of Paris also results in 

gypsum (CaSO4.2H2O) which has similar chemical composition to natural gypsum and 

also by-product gypsum. The chemical reactions that can take place to convert plaster 

of Paris into gypsum are described as follows: 

 

When gypsum (CaSO4.2H2O) is heated to a temperature of about 1500C, it will 

lose about three quarters of its water to form calcium sulfate hemihydrate 

(CaSO4.0.5H2O) (Equation 1.6) and when it is ground into the powder form, is termed 

as Plaster of Paris (POP).  

 

 CaSO4.2H2O   CaSO4.0.5H2O + 1.5H2O (Equation 1.6) 

 

In the ceramic factory, POP is used as the mould to produce ceramic product in 

slip casting technique. When POP is mixed with water, it is converted into gypsum 

(Equation 1.7) [GPDA 2005; Kotz et al, 2003].  

 

 CaSO4.0.5H2O + 1.5H2O   CaSO4.2H2O (Equation 1.7) 

 

After about 1000 casting, these POP moulds can no longer be used, therefore 

they become waste materials, named as waste gypsum (WG). Based on the high 
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sulphate content of waste gypsum’s mineralogical phases, there are possibilities of 

replacing natural gypsum with waste gypsum as by-product in cement manufacture.   

 

1.5 Objective  

The main objective of this work is to study the effect of waste gypsum (WG) as 

a replacement for natural gypsum (NG) on the quality of Portland cement. The raw 

materials used were characterized using various methods such as XRD, XRF, DSC/Tg 

and SEM. Natural and waste gypsum were added to clinker at 3-6% to produce cement 

with specific surface area of about 3500cm2/g with tolerance ± 10%. The cement 

products were tested for chemical composition, phases, fineness, setting time, 

expansion, strength and heat of hydration. It is hoped that the outcome of this research 

would lead to a better understanding of the properties of waste gypsum and its 

possibility as an alternative material to natural gypsum in cement production. 

 

1.6 Scope of Research 

The scope of research is designed to cover the three essential elements such 

as characterization of raw materials, grinding work, and determining of properties and 

quality of cement product using natural gypsum and waste gypsum: 

i. The properties of waste gypsum and natural gypsum will be 

characterized in terms of their chemical composition, mineral compound, 

morphology, microstructure, and particles size.  

ii. The final product, cement, will be characterized in terms of surface area, 

percent passing 45µm and particle size distribution to study the effect of 

waste gypsum on grinding ability of Portland cement.  

iii. The properties of cement will be characterized in terms of chemical 

composition, morphology, microstructure, setting time, expansion, heat 

of hydration, compressive and flexural strength to study the effect of 

waste gypsum on quality of Portland cement. 
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CHAPTER 2 
 

LITERATURE REVIEW 
 
 
 
2.1  Introduction 

The process of manufacture of Portland cement (Figure 2.1) consists essentially 

of grinding the raw materials, mixing them intimately in certain proportions and burning 

in a large rotary kiln at a temperature of up to about 1450 0C, and the clinker is formed 

when the material sinters and partially fuses into balls. The clinker is cooled and 

ground to a fine powder, with some gypsum added, and the resulting product is the 

commercial Portland cement so widely used throughout the world [Neville, 2002]. 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

Figure 2.1:  Main processes in the manufacture of Portland cement 
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2.1.1 Raw Mix Preparation 

Portland cement consists principally of compounds of calcium and silica with 

smaller amounts of aluminum and iron compounds. There are made from 

homogeneous, balanced mixtures of calcareous and argillaceous materials. Chalk or 

limestone is generally used as the calcareous component and clay or shale as the 

argillaceous component, but such is the simplicity of their raw materials requirement 

that Portland cement can be manufactured from any materials which will provide the 

required balance of compound-forming constituents [Eglinton, 1987]. 

 

The mixing and grinding of the raw materials can be done either in water or in a 

dry condition; hence the names “Wet process” and “Dry process”. The actual methods 

of manufacture depend also on the hardness of the raw materials used and on their 

moisture content [Neville, 2002].  

 

2.1.2 Heat Treatment  

The raw materials are ground finely and blended to produce the raw meal. The 

raw meal is fed at the top of the preheater tower and passes through a series of 

cyclones in the tower (Figure 2.2). About 85%-95% of the raw meal is heated to 10000c 

extremely quickly, “calcining” the calcium carbonate in limestone to calcium oxide 

before being fed into a rotary kiln. In the rotary kiln tube, the feed moves slowly as the 

tube rotates. When the meal passes through the burning zone, it reaches clinkering 

temperatures of about 14000C - 15000C. Nodules form as the burning zone is 

approached. When the clinker has passed the burning zone, it starts to cool at the end 

of the kiln and drops out into the cooler [Understand cement, 2002]. 
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Figure 2.2:  Kiln and preheater tower. At 'A,' the raw meal largely decarbonates; at 
'B,' the temperature is 1000 0C - 1200 0C and intermediate compounds 
are forming and at 'C,' the burning zone, clinker nodules and the final 
clinker minerals form [Understand cement, 2002].  

 

2.1.3 Cement milling 

After it leaves the cooler, clinker is conveyed to a covered store. A quantity (2-

8%, but typically 5%) of calcium sulfate (usually gypsum or anhydrite) is added to the 

clinker and the mixture is finely ground to form the finished cement powder, usually in 

the ball mill, with desired surface area or particle size distribution. To achieve the 

controlled particle size distribution and surface area, it is necessary to use high 

efficiency classifiers in closed circuit grinding of clinker. Then, cement is conveyed by 

belt or powder pump to a silo for storage. The cement is delivered to end-users either 

in bags or as bulk powder blow from a pressure vehicle into the customer's silo.  

 

2.2 Clinker 

Portland cement is made primarily from a calcareous material, such as 

limestone or chalk, and from alumina and silica found as clay or shale. The process of 
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manufacture of cement consists essentially of grinding the raw materials, mixing them 

intimately in certain proportions and burning in a large rotary kiln at a temperature of up 

to about 1450 0C when the material sinters and partially fuses into balls known as 

Clinker [Neville, 2002]. 

 

2.2.1 Control Factors 

We can not make cement if we don’t know all about the raw materials. The raw 

materials are blended in a way of determining the quantities of oxide compositions 

contained such as CaO, SiO2, Al2O3 and Fe2O3. The composition and reactivity of the 

minerals used will determine clinker characteristics. There are three parameters that 

can be used to ensure that the finished product meets the specifications of the type of 

Portland cement to be made. These include: LSF (lime saturation factor), SR (silica 

ratio), AR (alumina ratio). 

 

Lime saturation factor: The formula of lime saturation factor (Equation 2.1) is 

derived from the plane of 100% lime saturation in the quaternary (C-S-A-F) which 

makes possible the calculation of the lime required for saturation of the other oxides at 

the clinkering temperature. 

 

LSF = CaO / (2.8 SiO2 + 1.18 Al2O3 + 0.65 Fe2O3)  …….(Equation 2.1) 

 

LSF is a ratio of CaO to the other three main oxides. It controls the ratio of alite 

to belite in the clinker. The clinker with a higher LSF will have a higher proportion of 

alite to belite than the clinker with low LSF which results in increasing the grinding 

ability and also it will make the raw mix more difficult to burn [Erik, 1994; Kristen, 1993]. 

Typical LSF values in modern clinkers are 0.90 - 0.98. Values above 1.0 indicate that 

free lime is likely to be present in the clinker. This is because, in principle, at LSF=1.0, 
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all the free lime should have combined with belite to form alite. If the LSF is higher than 

1.0, then surplus free lime occur.  

 

Silica ratio: A high silica ratio means that more calcium silicates are present in 

the clinker and less aluminate and ferrite. SR is typically between 2 and 4. Increase in 

SR makes the clinker more difficult to burn [Taylor, 1997]. The SR levels that govern 

the amount of liquid will also affect the alite crystal size. A higher SR implies less liquid 

and will result in larger alite crystal size [Erik, 1994]. The silica ratio (Equation 2.2) is 

defined as: 

 

SR = SiO2 / (Al2O3 + Fe2O3)     …….(Equation 2.2)

       

Alumina ratio: This determines the potential relative proportions of aluminate 

and ferrite phase in the clinker. An increase in clinker AR means there will be 

proportionally more aluminate and less ferrite in the clinker. In ordinary Portland 

cement clinker, the AR is usually between 1 and 4. The alumina ratio (Equation 2.3) is 

defined as: 

 

AR = (Al2O3) / (Fe2O3)     …….(Equation 2.3) 

 

2.2.2 Reaction of Clinker Formation 

In the manufacture of Portland cement clinker, the raw materials, typically 

limestone and clay or shale, are mixed and heated to a temperature of about 1450 0C 

in the kiln. The reactions which take place in the kiln can be conveniently divided into 

three groups [Taylor, 1997], as follows: 
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2.2.2.1 Decomposition of Raw Materials 

Decomposition of raw materials (reactions at temperatures up to about 1300 0C) 

which include: The decomposition of calcite (calcining), the decomposition of clay 

minerals, and reaction of calcite or lime formed from it with quartz and clay mineral 

decomposition products. The initial silicate product is belite. Some calcium aluminate 

and ferrite phases also start to form. Liquid is formed only to a minor extent at this 

stage, but may have an important effect in promoting the reactions. At the end of this 

stage, the major phases present are belite, lime, aluminate and ferrite. The last two 

may not be identical with the corresponding phases in the final product. 

 

2.2.2.2 Clinkering (Reaction at 1300 0C to 1450 0C) 

A melt is formed, mainly from the aluminate and ferrite, and by 1450 0C some 

20 to 30% of the mix is liquid. Much of the belite and nearly all the lime react in the 

presence of the melt to give alite. The material is nodulised to form the clinker. 

 

2.2.2.3 Reactions during Cooling 

During cooling, the liquid crystallizes, giving mainly aluminate and ferrite. 

Polymorphic transition of the alite and belite occur.  

 

2.2.3 Chemical Composition of Clinker 

Typically, clinker consists four main phases such as: 

i. Alite or tricalcium silicate, C3S (3CaO.SiO2) 

ii. Belite or dicalcium silicate or, C2S (2CaO.SiO2) 

iii. Tricalcium aluminate or aluminate, C3A (3CaO.Al2O3) 

iv. Calcium alumino-ferrite, or tetracalcium aluminoferrite or ferrite, C4AF 

(4CaO.Al2O3.Fe2O3) 
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Bogue Calculation 

 
The standard Bogue calculation refers to cement clinker, rather than cement, 

although it can be adjusted for use with cement. This is a very commonly-used 

calculation in the cement industry. The general solution to the calculation is expressed 

in Equations 2.4, 2.5, 2.6 and 2.7 [Bye, 1999]. 

 

C4AF  = 3.04 Fe2O3      …….(Equation 2.4) 

C3A  = 2.65 Al2O3 - 1.69 Fe2O3    …….(Equation 2.5) 

C2S  = 8.6 SiO2 + 1.08 Fe2O3 + 5.07 Al2O3 - 3.07 CaO …….(Equation 2.6) 

C3S  = 4.07 CaO - 7.6 SiO2 - 1.43 Fe2O3 - 6.72 Al2O3 …….(Equation 2.7) 

 

The calculation is simple in principle:  

i. Firstly, according to the assumed mineral compositions, ferrite phase is the 

only mineral to contain iron. The iron content of the clinker therefore fixes 

the ferrite content.  

ii. Secondly, the aluminate content is fixed by the total alumina content of the 

clinker, minus the alumina in the ferrite phase. This can now be calculated, 

since the amount of ferrite phase has been calculated.  

iii. Thirdly, it is assumed that all the silica is present as belite and the next 

calculation determines how much lime is needed to form belite from the total 

silica content of the clinker. There will be a surplus of lime.  

iv. Fourthly, the lime surplus is allocated to the belite, converting some of it to 

alite. 
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2.2.4 Microscopy of Clinker  

Microscopy is a very powerful technique for examining cement clinker. Every 

stage of the cement manufacturing process can be improved through the use of a 

microscope. Some cement manufacturers use microscopy as a technique for kiln 

control, with clinker samples being examined continuously. A photographic microscope 

(Figure 2.3) is used to examine cement clinker and related materials. Specimens are 

usually prepared as polished sections or as powder mounts. Important characteristics 

that the microscope examines are [Campbell, 1999]:  

 

i. Overall nodule microstructure - dense, porous, dense micronodules 

interconnected by tenuous 'bridges'. This gives a broad relative indication of 

burning conditions.  

ii. Alite crystal size – Alite crystal size is an average of measurements on 

approximately 10 selected crystals. Typically, alite crystal sizes range from 

25 to 65µm. Coarse alite may indicate a slow heating rate, excessive 

burning or coarse silica in the raw feed; silicate reactivity may be lower than 

it could be with improved burning conditions. Alite size of less than 15µm in 

1000 tons per day kiln can be indicative of poor burning; a 20µm alite size is 

typical of poor burning in 4000 tons per day kiln. A well burned clinker (Free 

CaO < 0.6%) does not have alite crystals under 20µm [Campbell, 1999]. 

iii. Belite crystal size - larger belite crystals suggest longer time in the burning 

zone. Belite size range from 25 to 40µm is indicative of long burning time 

and belite size less than 10µm is typical of short burning time [Campbell, 

1999].  

iv. Aluminate and ferrite crystal size - coarse flux phases suggest slow cooling; 

finer, intergrown, flux phases indicate faster cooling.  
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v. Belite color also indicates the cooling rate; fast-cooled crystals are clear 

while slower cooling allows impurities to crystallize out along lattice planes 

imparting a yellow color. 

 

 

 

 

 

 

 

 

 

 

 

2.3 Gypsum in Cement 

In the cement industry, gypsum is added to clinker at the cement grinding stage 

in order to delay the rapid reaction between C3A and water. The reaction of pure C3A 

with water is created in the form of interlinking bridge of solid material between the 

cement particles. These interlinking bridges reduce the mobility of the cement particle 

and produce a firm structure that leads to immediate stiffening of the paste, known as 

flash set [Neville, 2002]. Gypsum is added to the clinker, usually at a level of 3 to 5%, 

depending on its purity. The gypsum content of cement can be expressed in terms of 

its sulphate (SO3) content. The maximum SO3 content allowed by European Standard 

ENV 197-1: 1992 is 3.5%. Bye (1999) said that the required addition of gypsum is 

typically taken as that which produces the highest 28 days concrete strength 

determined by standard procedure. The experimentally found optimum SO3 is 

dependent on the chemistry of the clinker so that the level in commercial cement varies 

with source, an upper limit being set to protect consumers from excessive addition. Too 

Figure 2.3:   
Photograph of Polished section 
(Nital on KOH etch) of Portland 
cement. Blue alite C3S, round 
tan to brown belite C2S, matrix 
dark aluminate C3A and brightly 
reflection ferrite C4AF 
(Campbell, 1999). 
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high level introduces a risk of concrete volume instability caused by the formation of the 

sulfoaluminate, ettringite, after the concrete has hardened [Bye, 1999]. 

 

Gypsum may contain anhydrite, and clay, quartz and calcite as impurities, at 

levels which vary widely with source. Deposit may be mined or quarried and separation 

of the purest materials is necessary for white cement. A materials too rich in natural 

anhydrite (> about 70%) is unsuitable for use alone because this mineral dissolves too 

slowly in water to retard setting sufficiently [Bye, 1999]. With the identical amount of 

SO3, cements with anhydrite set faster than those with gypsum. It is evident that the 

addition of anhydrite accelerates the setting of cement. The faster setting of anhydrite 

is caused by the increasing amount of CaSO4 in the admixture [Tzouvalas et al, 

2004a].  

 

Gypsum is more easily ground than clinker and sometimes referred to as a 

grinding aid, possibly only because it is softer than clinker. Iglesias (1999) also studied 

the grindinability of mixtures of 95% clinker and 5% gypsum with two different kinds of 

gypsum (similar chemical composition but different source), and it resulted in grinding 

power consumption differences of up to 15% [Iglesias et al, 1999]. 

 

2.3.1 By-Product Gypsum 

In some countries, because of the lack of gypsum deposits or due to 

environmental concerns, chemical gypsums may be employed. These are by-product 

gypsum, such as phosphor-, citro-, desulpho-, boro- and FGD gypsum as setting 

retarders [Ozkul, 2000; Papageorgiou et al, 2005; Kavas, 2005; Tzouvalas, 2004b]. 

However, the use of these by-products depends on their not being too contaminated by 

residues of a product of the chemical process which will affect the setting and/or 

hardening of a concrete.  
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Desulphogypsum, from desulphurisation process in coal-burning plants, and 

citrogypsum, a by-product of citric acid production, are other important sources of 

chemical gypsum. Ozkul (2000) has showed that the use of citrogypsum and 

desulphogypsum instead of natural gypsum in cement results in a decrease in early 

strength of the mortar. However, agglomeration process increased the strength at all 

ages, suggesting the formation of a new crystal structure after compacting [Ozkul, 

2000].  

 

Borogypsum, a waste material formed during the production of boric acid from 

colemanite, is another important source of chemical gypsum. Several studies were 

made on the possible use of borogypsum instead of natural gypsum in cement 

production. Borogypsum up to 10% of the cement could be used as a set retarder. 

However, increasing the borogypsum level in Portland cement from 5% to 20% causes 

a decrease in compressive strength and tensile strength [Boncukoglu et al, 2002]. 

Calcined borogypsum in cement application decreases soundness and markedly 

increases the setting time and 28-day compressive strength of the mortar compared to 

that of untreated borogypsum [Elbeyli et al, 2003]. But disadvantage of using wastes 

containing boron in cement production is their long setting time and slow early-strength 

development [Kula, 2001; Kula, 2002; Targan, 2003; Singh, 2002]. 

 

Phosphogypsum (PG) is a kind of gypsum that occurs as a by-product and is 

obtained from phosphate rock during the production of phosphoric acid. PG contains 

some impurities such as P2O5 and F cause retarding (delay) in setting time and 

decrease the strength of Portland cement. So in order to use it as a cement retarder 

instead of natural gypsum, purification, drying, and calcination processes must be 

applied [Erdogan, 1994; Smadi, 1999]. Mehta and Brady (1977) reported that addition 

of 2% SO3 to raw mixture decreased temperature of clinkering and the retarding effect 

but increased early strengths.  Altun and Sert (2004) found that PG that was stored in 
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open-air (weathered) residue areas for several years can be used in place of NG for 

Portland cement according to Turkish standards. The highest 28 days compressive 

strength was found in the sample with 3 wt% PG [Altun & Sert, 2004]. 

 

2.3.2 Waste Gypsum 

 Another kind of gypsum can come from the hydration of plaster of Paris and is 

known as waste gypsum. When gypsum (CaSO4.2H2O) is ground to a powder and 

heated at 150 0C to 165 0C, three quarters of its combined water is removed producing 

hemihydrate (CaSO4.0.5H2O), commonly know as plaster of Paris. When this powder is 

mixed with water, it will result in the setting of the paste as the water recombines to 

produce gypsum again. This kind of waste gypsum can be obtained from the ceramic 

factory (plaster mould), gypsum building products and plasterboard [British Geological 

Surver, 2006]. 

 

2.3.3 Dehydration of Gypsum 

When gypsum i.e. calcium sulfates dihydrate (CaSO4.2H2O) is heated to a 

temperature about 1500C, it will lose about three quarters of its water to form calcium 

sulfate hemihydrate (CaSO4.0.5H2O) and total hydration at temperatures 1700C – 

1900C, forming soluble anhydrite (CaSO4) [Papageorgiou et al, 2005]. Such 

temperatures can occur during the cement grinding process and result in the formation 

of significant quantities of CaSO4.0.5H2O (hemihydrate) and CaSO4 (anhydrite). The 

ratios in which these calcium sulphate forms occur in cement can have a profound 

effect on the setting behavior, because their respective solubilities in water are 

significantly different from one another. Upon mixing with water, hemihydrate and 

anhydrite react readily with water to form needle-shape crystals of gypsum. This leads 

to gypsum precipitation and some rigidity or stiffening of the concrete or mortar, making 

it necessary to add more water for workability and resulting in a lowering of the strength 
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properties. This process is referred to as “False Setting''. The dihydrate form is the 

preferred form required in cement [Strydom & Potgieter, 1999]. 

  

The amount of dihydrate, hemihydrate and anhydrite can be determined by 

DSC/Tg (Figure 2.4). The first peak at 140 0C is the dehydration of dihydrate to 

hemihydrate (Equation 2.8), where the mass loss of this peak corresponds to the loss 

of 1.5 moles of H2O. The second peak at 181 0C is the dehydration of hemihydrite to 

anhydrite (Equation. 2.9), where the mass loss of this peak corresponds to the loss of 

0.5 moles of H2O. 

 

 CaSO4.2H2O   CaSO4.0.5H2O + 1.5H2O …….(Equation 2.8) 

  

CaSO4.0.5H2O  CaSO4 + 0.5H2O  …….(Equation 2.9) 

 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4: DSC/Tg of gypsum in a partially sealed container with pinhole in lid 
[Ramachandran et al, 2002] 
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The presence of a pinhole in the crucible lid increases the potential pressure 

sufficiently to give two separate peaks (Figure 2.5), one for the dihydrate to 

hemihydrate conversion and the other for the hemihydrate to anhydrite reactions. Two 

peaks also result when the sample bed thickness increases for the open lid condition 

and mass of sample containing in crucible [Ramachandran et al, 2002]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5:  Infuence of experimental parameters on the DTA curves of gypsum 
[Ramachandran et al, 2002]. 

 

 
2.4 Grinding Clinker and Gypsum to Produce Cement 

After it leaves the cooler, clinker is conveyed to a covered store. Cement is 

produced by grinding clinker and gypsum, usually in the ball mill (Figure 2.6). This is 

essentially a large rotating drum containing grinding media, normally steel ball. As the 

drum rotates, the motion of the balls crushes the clinker. The drum rotates 

approximately once every couple of seconds. The drum is generally divided into two or 

three chambers, with different size grinding media. As the clinker particles are ground 
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down, smaller media are more efficient at reducing the particle size still further. Power 

consumption in ball mill Portland cement is of the order of 45 kWh/t for a surface area 

of 360cm2/g. This may be reduced by employing a closed circuit system, the saving of 

2 – 5 kWh/t depending on the efficiency (fan powder requirement) of the separator. The 

principal variables to be considered in optimizing energy consumption in a ball mill 

include: the speed of rotation of the mill, its ball size grading and loading, and the 

design of its lining.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6:  Cement mill for grinding clinker and gypsum [Understand Cement, 2002] 

 

 For years, ball mills (BM) have been the standard equipment for comminution of 

raw materials and cement production. But today, vertical roller mills (VRM), as shown in 

Figure 2.7, have become the principal choice for both raw materials and cement 

grinding [Ruth et al, 2000; Simmons et al, 2005]. A common characteristic of all vertical 

roller mills is size reduction that is affected by rollers or comparable grinding elements 

traveling over a circular bed of material and that material after passing under the 




