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SUBORDINASI DAN SUPERORDINASI PEMBEZA UNTUK FUNGSI

ANALISIS DAN FUNGSI MEROMORFI YANG TERTAKRIF OLEH

PENGOPERASI LINEAR

ABSTRAK

Suatu fungsi f yang tertakrif pada cakera unit terbuka U dalam satah kompleks C

disebut univalen jika fungsi tersebut memetakan titik berlainan dalam U ke titik berlainan

dalam C. Suatu fungsi f disebut subordinat terhadap suatu fungsi univalen g jika

f(0) = g(0) dan f(U) ⊂ g(U). Fungsi ternormalkan f disebut bak-bintang Janowski

jika zf ′(z)/f(z) adalah subordinat terhadap (1 + Az)/(1 + Bz), (−1 ≤ B ≤ A ≤ 1).

Dengan menggunakan teori subordinasi pembeza peringkat pertama, beberapa syarat

cukup untuk fungsi f menjadi bak-bintang Janowski diperoleh. Syarat-syarat cukup ini

diperoleh dengan mengkaji implikasi

p(z) +
zp′(z)

βp(z) + γ
≺ 1 +Dz

1 + Ez
⇒ p(z) ≺ 1 + Az

1 +Bz

dimana simbol ≺ menandai subordinasi antara fungsi analisis dan implikasi-implikasi lain

yang serupa yang melibatkan 1 + βzp′(z), 1 + β zp′(z)
p(z)

dan 1 + β zp′(z)
p2(z)

. Keputusan-

keputusan ini digunakan kemudian untuk memperoleh syarat-syarat cukup bagi fungsi

analisis menjadi bak-bintang Janowski.

Andaikan Ω sebagai set dalam C, fungsi q1 adalah univalen dan q2 adalah analisis

dalam U . Juga andaikan ψ : C3×U → C. Miller dan Mocanu [Differential Subordinations,

Dekker, New York, 2000.] telah mengkaji teori subordinasi pembeza peringkat pertama

dan kedua. Baru-baru ini, Miller dan Mocanu (Subordinants of differential superordina-

tions, Complex Var. Theory Appl. 48(10) (2003), 815–826.) mengkaji konsep kedualan

superordinasi pembeza dan berjaya mendapat beberapa keputusan ‘tersepit’. Dengan

menggunakan teori subordinasi pembeza, kami menentukan kelas fungsi sedemikian

ψ

(
zf ′(z)

f(z)
, 1 +

zf ′′(z)

f ′(z)
, z2{f, z}

)
≺ h

mengimplikasikan zf ′(z)/f(z) ≺ q(z), dimana simbol {f, z} menandai terbitan Schwarz

fungsi f . Beberapa keputusan serupa yang melibatkan nisbah antara fungsi yang tertakrif

melalui operator linear Dziok-Srivastava dan transformasi pendarab bagi fungsi analisis

vi



juga telah diperoleh. Kami juga memperoleh bagi superordinasi yang sepadan beberapa

keputusan tersepit. Tambahan pula, kajian telah dijalankan bagi masalah yang serupa bagi

fungsi meromorfi yang tertakrif melalui pengoperasi linear Liu-Srivastava dan transformasi

pendarab.

Bagi fungsi analisis g(z) = z +
∑∞

n=2 gnz
n yang tetap dan tertakrif pada cakera

unit terbuka dan γ < 1, andaikan Tg(γ) sebagai kelas semua fungsi analisis f(z) =

z+
∑∞

n=2 anz
n yang memenuhi syarat

∑∞
n=2 |angn| ≤ 1− γ. Bagi fungsi f ∈ Tg(γ) dan

fungsi cembung h, kami menunjukkan bahawa

g2

2g2 + 1− γ
(f ∗ h) ≺ h,

dan menggunakan keputusan ini untuk memperoleh batas bawah bagi <f(z). Keputusan

ini merangkumi beberapa keputusan awal sebagai kes khas.

Andaikan ϕ(z) fungsi analisis dengan bahagian nyata positif pada cakera unit U ,

dengan ϕ(0) = 1 and ϕ′(0) > 0, yang memetakan U secara keseluruh kesuatu rantau bak-

bintang terhadap 1 dan simetri terhadap paksi nyata. Ma dan Minda (A unified treatment

of some special classes of univalent functions, in Proceedings of the Conference on Com-

plex Analysis (Tianjin, 1992), 157–169, Int. Press, Cambridge, MA.) memperkenalkan ke-

las S∗(ϕ) yang terdiri daripada semua fungsi analisis ternormalkan f(z) = z+
∑∞

n=2 anz
n

sedemikian zf ′(z)/f(z) ≺ ϕ(z). Andaikan Ap menandakan kelas semua fungsi analisis

berbentuk f(z) = zp +
∑∞

k=p+1 akz
k (z ∈ U, p ∈ N := {1, 2, 3 . . .}). Andaikan S∗p(ϕ)

sebagai subkelas Ap yang ditakrifkan sebagai

S∗p(ϕ) =

{
f ∈ Ap :

zf ′(z)

pf(z)
≺ ϕ(z)

}
.

Bagi fungsi f ∈ S∗p(ϕ), batas atas tepat bagi fungsian pekali |ap+2 − µa2
p+1| dan

|ap+3| telah diperoleh; batas-batas ini menghasilkan batas atas tepat bagi pekali kedua,

ketiga dan keempat. Seterusnya dikaji masalah pekali yang serupa bagi fungsi-fungsi

dalam subkelas yang tertakrif dengan ungkapan 1 + 1
b

(
1
p

zf ′(z)
f(z)

− 1
)
, 1 + 1

b

(
f ′(z)
pzp−1 − 1

)
,

1+α(1−p)
p

zf ′(z)
f(z)

+ α
p

z2f ′′(z)
f(z)

, 1−α
p

zf ′(z)
f(z)

+ α
p

(
1 + zf ′′(z)

f ′(z)

)
dan 1

p

(
zf ′(z)
f(z)

)α (
1 + zf ′′(z)

f ′(z)

)1−α

.

Keputusan-keputusan ini digunakan kemudian untuk memperoleh ketaksamaan bak Fekete-

Szegö bagi beberapa kelas fungsi yang tertakrif melalui konvolusi.
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DIFFERENTIAL SUBORDINATION AND SUPERORDINATION FOR

ANALYTIC AND MEROMORPHIC FUNCTIONS DEFINED BY LINEAR

OPERATORS

ABSTRACT

A function f defined on the open unit disk U of the complex plane C is univalent

if it maps different points of U to different points of C. The function f is subordinate

to an univalent function g if f(0) = g(0) and f(U) ⊂ g(U). A normalized function f is

Janowski starlike if zf ′(z)/f(z) is subordinated to (1 +Az)/(1 +Bz), (−1 ≤ B ≤ A ≤

1). By making use of the theory of first order differential subordination, we obtain several

sufficient conditions for a function f to be Janowski starlike. These sufficient conditions

are obtained by investigating the implication

p(z) +
zp′(z)

βp(z) + γ
≺ 1 +Dz

1 + Ez
⇒ p(z) ≺ 1 + Az

1 +Bz

where ≺ denotes subordination between analytic functions and other similar implications

involving 1+βzp′(z), 1+β zp′(z)
p(z)

and 1+β zp′(z)
p2(z)

. These results are then applied to obtain

sufficient conditions for analytic functions to be Janowski starlike.

Let Ω be any set in C and the functions q1 be univalent and q2 be analytic in U .

Let ψ : C3×U → C. Miller and Mocanu [Differential Subordinations, Dekker, New York,

2000.] have investigated the theory of first and second order differential subordination.

Recently Miller and Mocanu (Subordinants of differential superordinations, Complex Var.

Theory Appl. 48(10) (2003), 815–826.) investigated the dual concept of differential

superordination to obtain several sandwich results. By using the theory of differential

subordination, we determine the class of functions so that

ψ

(
zf ′(z)

f(z)
, 1 +

zf ′′(z)

f ′(z)
, z2{f, z}

)
≺ h

implies zf ′(z)/f(z) ≺ q(z), where {f, z} denotes the Schwarzian derivative of the func-

tion f . We also obtain similar results involving the ratios of functions defined through the

Dziok-Srivastava linear operator and the multiplier transformation of analytic functions.

We also obtain the corresponding superordination and sandwich type results. Further, we

viii



investigate similar problems for meromorphic functions defined through the Liu-Srivastava

linear operator and the multiplier transformation.

For a fixed analytic function g(z) = z +
∑∞

n=2 gnz
n defined on the open unit disk

and γ < 1, let Tg(γ) denote the class of all analytic functions f(z) = z +
∑∞

n=2 anz
n

satisfying
∑∞

n=2 |angn| ≤ 1− γ. For a function f ∈ Tg(γ) and a convex function h, we

show that
g2

2g2 + 1− γ
(f ∗ h) ≺ h

and use this to obtain the lower bound for <f(z). These results includes several earlier

results as special cases.

Let ϕ(z) be an analytic function with positive real part in the unit disk U with

ϕ(0) = 1 and ϕ′(0) > 0, maps U onto a region starlike with respect to 1 and symmetric

with respect to real axis. Ma and Minda (A unified treatment of some special classes

of univalent functions, in Proceedings of the Conference on Complex Analysis (Tianjin,

1992), 157–169, Int. Press, Cambridge, MA.) introduced the class S∗(ϕ) consisting of all

normalized analytic functions f(z) = z+
∑∞

n=2 anz
n satisfying zf ′(z)/f(z) ≺ ϕ(z). Let

Ap denote the class of all analytic functions of the form f(z) = zp +
∑∞

k=p+1 akz
k (z ∈

U, p ∈ N := {1, 2, 3 . . .}). Let S∗p(ϕ) be a subclass of Ap defined by

S∗p(ϕ) =

{
f ∈ Ap :

zf ′(z)

pf(z)
≺ ϕ(z)

}
.

For the function f ∈ S∗p(ϕ), the sharp upper bounds for the coefficient functionals |ap+2−

µa2
p+1| and |ap+3| are obtained; these bounds yield the sharp upper bounds for the second,

third and fourth coefficients. Further we investigate a similar coefficient problem for func-

tions in the subclasses defined by the expressions 1+ 1
b

(
1
p

zf ′(z)
f(z)

− 1
)
, 1+ 1

b

(
f ′(z)
pzp−1 − 1

)
,

1+α(1−p)
p

zf ′(z)
f(z)

+ α
p

z2f ′′(z)
f(z)

, 1−α
p

zf ′(z)
f(z)

+ α
p

(
1 + zf ′′(z)

f ′(z)

)
and 1

p

(
zf ′(z)
f(z)

)α (
1 + zf ′′(z)

f ′(z)

)1−α

.

These are then applied to obtain Fekete-Szegö-like inequalities for several classes of func-

tions defined by convolution.

ix



SYMBOLS

Symbol Description

Ap Class of all p-valent analytic functions of the form

f(z) = zp +
∑∞

k=1+p akz
k (z ∈ U)

A := A1 Class of analytic functions of the form

f(z) = z +
∑∞

k=2 akz
k (z ∈ U)

(a)n Pochhammer symbol or shifted factorial

arg Argument

C Complex plane

C Class of normalized convex functions in U

C(α) Class of normalized convex functions of order α in U

f ∗ g Convolution or Hadamard product of functions f and g

{f, z} Schwarzian derivative of f

1F1(a, b, c; z) Confluent hypergeometric functions

2F1(a, b, c; z) Gaussian hypergeometric functions

lFm

 α1, . . . , αl;

β1, . . . , βm; z

 Generalized hypergeometric functions

H(U) Class of analytic functions in U

H[a, n] Class of analytic functions in U of the form

f(z) = a+ anz
n + an+1z

n+1 + · · · (z ∈ U)

H0 := H[0, 1] Class of analytic functions in U of the form

f(z) = a1z + a2z
2 + · · · (z ∈ U)

H := H[1, 1] Class of analytic functions in U of the form

f(z) = 1 + a1z + a2z
2 + · · · (z ∈ U)

H l,m
p Dziok-Srivastava / Liu-Srivastava linear operator

≺ Subordinate to

= Imaginary part of a complex number

Ip(n, λ), (λ+ p > 0, n ∈ N ) Multiplier transformation from Ap → Ap

K Class of close-to-convex functions in A

x



k(z) Koebe function

N Set of all positive integers

R Set of all real numbers

R[A,B] {f ∈ A : f ′(z) ≺ 1+Az
1+Bz

( −1 ≤ B < A ≤ 1)}

R[α] {f ∈ A : |f ′(z)− 1| < 1− α (z ∈ U, 0 ≤ α < 1)}

< Real part of a complex number

S Class of all normalized univalent functions of the form

f(z) = z + a2z
2 + · · · z ∈ U

S∗ Class of normalized starlike functions in U

S∗α Class of normalized starlike functions of order α in U

S∗[A,B] {f ∈ A : zf ′(z)
f(z)

≺ 1+Az
1+Bz

( −1 ≤ B < A ≤ 1)}

Tg(γ) {f(z) ∈ A :
∑∞

n=2 |angn| ≤ 1− γ,

g(z) = z +
∑∞

n=2 gnz
n, gn ≥ g2 > 0, n ≥ 2, γ < 1}

Σp Class of all p-valent functions of the form

f(z) = 1
zp +

∑∞
k=1−p akz

k (z ∈ U∗)

Σ := Σ1 Class of all functions of the form

f(z) = 1
z

+
∑∞

k=0 akz
k (z ∈ U∗)

U Open unit disk {z ∈ C : |z| < 1}

U∗ Punctured unit disk U \ {0}

Ur Open disk of radius r, {z ∈ C : |z| < r}

∂U Boundary of unit disk U , {z ∈ C : |z| = 1}

Ψn[Ω, q], ΦH [Ω, q], ΦI [Ω, q]

ΘH [Ω, q], ΘI [Ω, q], ΘI [Ω,M ] Classes of admissible functions

Z Set of all integers
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CHAPTER 1

INTRODUCTION

1.1. UNIVALENT FUNCTIONS

Let C be the complex plane and U := {z ∈ C : |z| < 1} be the open unit disk

in C. Let H(U) be the class of functions analytic in U . Let H[a, n] be the subclass of

H(U) consisting of functions of the form f(z) = a + anz
n + an+1z

n+1 + · · · and let

H0 ≡ H[0, 1] and H ≡ H[1, 1]. Let A denote the class of all analytic functions defined

in U and normalized by f(0) = 0, f ′(0) = 1. A function f ∈ A has the Taylor series of

the form

(1.1.1) f(z) = z +
∞∑

k=2

akz
k (z ∈ U).

More generally, let Ap denote the class of all analytic functions of the form

(1.1.2) f(z) = zp +
∞∑

k=p+1

akz
k (z ∈ U, p ∈ N := {1, 2, 3 . . .}).

A function f ∈ H(U) is univalent if it is one-to-one in U . The function f ∈ H(U) is

locally univalent at z0 ∈ U if it is univalent in some neighborhood of z0. The function

f(z) is p-valent (or multivalent of order p) if for each w0 with infinity included, the

equation f(z) = w0 has at most p roots in U , where the roots are counted with their

multiplicities, and for some w1 the equation f(z) = w1 has exactly p roots in U [31].

The subclass of A consisting of univalent functions is denoted by S. Thus S is the class

of all normalized univalent functions in U .

In 1916, Bieberbach [12] studied the second coefficient a2 of a function f ∈ S of

the form (1.1.1). He has shown that |a2| ≤ 2, with equality if and only if f is a rotation

of the Koebe function k(z) = z/(1− z)2 and he mentioned “|an| ≤ n is generally valid”.

This statement is known as the Bieberbach conjecture. The Koebe function

k(z) =
z

(1− z)2
=

1

4

[(
1 + z

1− z

)2

− 1

]
=

∞∑
n=1

nzn (z ∈ U)(1.1.3)

1



which maps U onto the complex plane except for a slit along the half-line (−∞,−1/4]

is the “largest” function in S. The function e−iβk(eiβz), (β ∈ R) also belongs to S and

is referred to as a rotation of the Koebe function. These functions play a very important

role in the study of the class S and are the only extremal functions for various extremal

problems in S.

In 1923, Löwner [53] proved the Bieberbach conjecture for n = 3. Schaeffer

and Spencer [96], Jenkins [37], Garabedian and Schiffer [29], Charzyński and Schiffer

[16, 17], Pederson [76, 77], Ozawa [66] and Pederson and Schiffer [78] have investigated

the Bieberbach conjecture for certain values of n. Finally, in 1985, de Branges proved the

Bieberbach conjecture for all coefficients with the help of the hypergeometric functions.

Since the Bieberbach conjecture was difficult to settle, several authors have con-

sidered classes defined by geometric conditions. Notable among them are the classes

of convex functions, starlike functions and close-to-convex functions. A set D in the

complex plane is called convex if for every pair of points w1 and w2 lies in the interior

of D, the line segment joining w1 and w2 lies in the interior of D. If a function f ∈ A

maps U onto a convex domain, then f is called a convex function. Let C denotes the

class of all convex functions in A. An analytic description of the class C is given by

C := {f ∈ A : < (1 + zf ′′(z)/f ′(z)) > 0} [24, 30, 31, 32, 80]. Let w0 be an inte-

rior point of D. A set D in the complex plane is called starlike with respect to w0 if

the line segment joining w0 to every other point w ∈ D lies in the interior of D. If

a function f ∈ A maps U onto a domain starlike, then f is called a starlike function.

The class of starlike functions with respect to origin is denoted by S∗. Analytically,

S∗ := {f ∈ A : < (zf ′(z)/f(z)) > 0} [24, 30, 31, 32, 80].

A function f ∈ A is said to be close-to-convex if there is a convex function g(z)

such that < (f ′(z)/g′(z)) > 0 for all z ∈ U . The class of all close-to-convex functions

in A is denoted by K.

A function in any one of these classes is characterized by either of the quantities

1 + zf ′′(z)/f ′(z), zf ′(z)/f(z) or f ′(z)/g′(z) lying in a given region in the right half

plane; the region is often convex and symmetric with respect to the real axis [54]. Let

2



f and F be members of H(U). The function f(z) is said to be subordinate to F (z),

or F (z) is superordinate to f(z), if there exists a function w(z), analytic in U with

w(0) = 0 and |w(z)| < 1 (z ∈ U), such that f(z) = F (w(z)). In such a case, we

write f(z) ≺ F (z). If F is univalent, then f(z) ≺ F (z) if and only if f(0) = F (0) and

f(U) ⊂ F (U).

Let ϕ be an analytic function with positive real part in the unit disk U, ϕ(0) = 1

and ϕ′(0) > 0, and map U onto a region starlike with respect to 1 and symmetric with

respect to real axis. Ma and Minda [54] introduced the classes S∗(ϕ) and C(ϕ) by

S∗(ϕ) =

{
f ∈ A :

zf ′(z)

f(z)
≺ ϕ(z)

}
,(1.1.4)

C(ϕ) =

{
f ∈ A : 1 +

zf ′′(z)

f ′(z)
≺ ϕ(z)

}
.(1.1.5)

The classes S∗(ϕ) and C(ϕ) include the subclasses of starlike and convex functions as

special cases. When

ϕ(z) =
1 + Az

1 +Bz
(−1 ≤ B ≤ A ≤ 1),

the classes S∗(ϕ) and C(ϕ) reduce to the class S∗[A,B] of Janowski starlike functions

and the class C[A,B] of Janowski convex functions respectively [35, 79]. Thus

S∗[A,B] =: S∗
(

1 + Az

1 +Bz

)
and C[A,B] =: C

(
1 + Az

1 +Bz

)
.

Also

S∗ = S∗[1,−1] = S∗
(

1 + z

1− z

)
and C = C[1,−1] = C

(
1 + z

1− z

)
are the familiar classes of starlike and convex functions respectively.

For 0 ≤ α < 1, the class S∗[1 − 2α,−1] is the class S∗α of starlike functions of

order α. An equivalent analytic description of S∗α is given by

S∗α :=

{
f ∈ A : <

(
zf ′(z)

f(z)

)
> α, (0 ≤ α < 1)

}
.

For 0 ≤ α < 1,

S∗(α) := S∗[1− α, 0] =

{
f ∈ A :

∣∣∣∣zf ′(z)f(z)
− 1

∣∣∣∣ < 1− α (z ∈ U, 0 ≤ α < 1)

}
.

3



For 0 < α ≤ 1, Parvatham [74] introduced and studied the class S∗[α] where

S∗[α] := S∗[α,−α] =

{
f ∈ A :

zf ′(z)

f(z)
≺ 1 + αz

1− αz

}
=

{
f ∈ A :

∣∣∣∣zf ′(z)f(z)
− 1

∣∣∣∣ < α

∣∣∣∣zf ′(z)f(z)
+ 1

∣∣∣∣ (z ∈ U, 0 < α ≤ 1)

}
.(1.1.6)

For 0 ≤ α < 1, C(α) := C[1− 2α,−1] is the class of convex functions of order α.

Equivalently

C(α) =

{
f ∈ A : 1 +

zf ′′(z)

f ′(z)
≺ 1 + (1− 2α)z

1− z

}
=

{
f ∈ A : <

(
1 +

zf ′′(z)

f ′(z)

)
> α, (0 ≤ α < 1)

}
.

The transform ∫ z

0

f(t)

t
dt

is called the Alexander transform of f(z). It is clear that f ∈ C(α) if and only if zf ′ ∈ S∗α
or equivalently f ∈ S∗α if and only if the Alexander transform of f(z) is in C(α).

For real α, let

M(α, f ; z) ≡ (1− α)
zf ′(z)

f(z)
+ α

(
1 +

zf ′′(z)

f ′(z)

)
.

The class of α-convex functions is defined by

Mα = {f ∈ A : <M(α, f ; z) > 0}.

This class Mα is a subclass of S, and was introduced and studied by Miller et al. [56].

It has the additional properties that Mα ⊂ Mβ ⊂ M0 = S∗ for 0 ≤ α/β ≤ 1, and

Mα ⊂M1 ⊂ C for α ≥ 1.

More information on univalent functions can be found in the text books [24, 30,

31, 32, 33, 58, 80].

1.2. HYPERGEOMETRIC FUNCTIONS

The use of the hypergeometric functions in the celebrated de Branges proof of the

Bieberbach conjecture prompted renewed interest in the investigation of special functions.
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Prior to this proof, there had been only a few articles in the literature dealing with the

relationships between these special functions and univalent function theory.

Let a and c be any complex numbers with c 6= 0,−1, · · · , and consider the function

defined by

(1.2.1) Φ(a, c; z) = 1F1(a, c; z) = 1+
a

c

z

1!
+
a(a+ 1)

c(c+ 1)

z2

2 !
+
a(a+ 1)(a+ 2)

c(c+ 1)(c+ 2)

z3

3 !
+ · · · .

This function, called a confluent (or Kummer) hypergeometric function is analytic in C

and satisfies Kummer’s differential equation

zw′′(z) + (c− z)w′(z)− aw(z) = 0.

The Pochhammer symbol (a)n is defined by

(1.2.2)

(a)n :=
Γ(a+ n)

Γ(a)
=


1, if n = 0 and a ∈ C \ {0};

a(a+ 1)(a+ 2) . . . (a+ n− 1), if n ∈ N and a ∈ C

where Γ(a), (a ∈ C) denotes the Gamma function. Then (1.2.1) can be written in the

form

(1.2.3) Φ(a, c; z) =
∞∑

k=0

(a)k

(c)k

zk

k !
=

Γ(c)

Γ(a)

∞∑
k=0

Γ(a+ k)

Γ(c+ k)

zk

k !
.

Let a, b and c be any complex numbers with c 6= 0,−1, · · · , and consider the

function defined by

(1.2.4) F (a, b, c; z) = 2F1(a, b, c; z) = 1 +
ab

c

z

1!
+
a(a+ 1)b(b+ 1)

c(c+ 1)

z2

2 !
+ · · · .

This function, called a (Gaussian) hypergeometric function is analytic in U and satisfies

the hypergeometric differential equation

z(1− z)w′′(z) + [c− (a+ b+ 1)z]w′(z)− abw(z) = 0.

Using the notation (1.2.2) in (1.2.4), F can be written as

(1.2.5) F (a, b, c; z) =
∞∑

k=0

(a)k(b)k

(c)k

zk

k !
=

Γ(c)

Γ(a)Γ(b)

∞∑
k=0

Γ(a+ k)Γ(b+ k)

Γ(c+ k)

zk

k !
.
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More generally, for αj ∈ C (j = 1, 2, . . . , l) and βj ∈ C \ {0,−1,−2, . . .} (j =

1, 2, . . .m), the generalized hypergeometric function

lFm(z) := lFm(α1, . . . , αl; β1, . . . , βm; z)

is defined by the infinite series

lFm(α1, . . . , αl; β1, . . . , βm; z) :=
∞∑

n=0

(α1)n . . . (αl)n

(β1)n . . . (βm)n

zn

n!

(l ≤ m+ 1; l,m ∈ N0 := N ∪ {0}, z ∈ U)

where (a)n is the Pochhammer symbol defined by (1.2.2). The absence of parameters is

emphasized by a dash. For example,

0F1(−; b; z) =
∞∑

k=0

zk

(b)kk !
,

is the Bessel’s function. Also

0F0(−;−; z) =
∞∑

k=0

zk

k !
= exp(z)

and

1F0(a;−; z) =
∞∑

k=0

(a)kz
k

k !
=

1

(1− z)a
.

Similarly,

2F1(a, b; b; z) =
1

(1− z)a
, 2F1(1, 1; 1; z) =

1

1− z
,

2F1(1, 1; 2; z) =
− ln(1− z)

z
, and 2F1(1, 2; 1; z) =

1

(1− z)2
.

For two functions f(z) given by (1.1.2) and g(z) = zp+
∑∞

k=p+1 bkz
k, the Hadamard

product (or convolution) of f and g is defined by

(1.2.6) (f ∗ g)(z) := zp +
∞∑

k=p+1

akbkz
k =: (g ∗ f)(z).

Corresponding to the function

hp(α1, . . . , αl; β1, . . . , βm; z) := zp
lFm(α1, . . . , αl; β1, . . . , βm; z),

the Dziok-Srivastava operator [25] (see also [107])

H(l,m)
p (α1, . . . , αl; β1, . . . , βm) : Ap → Ap
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is defined by the Hadamard product

H(l,m)
p (α1, . . . , αl; β1, . . . , βm)f(z) := hp(α1, . . . , αl; β1, . . . , βm; z) ∗ f(z)

= zp +
∞∑

n=p+1

(α1)n−p . . . (αl)n−p

(β1)n−p . . . (βm)n−p

anz
n

(n− p)!
.(1.2.7)

For brevity,

H l,m
p [α1]f(z) := H(l,m)

p (α1, . . . , αl; β1, . . . , βm)f(z).

The linear (convolution) operator H l,m
p [α1]f(z) includes, as its special cases, many

earlier linear (convolution) operators investigated in geometric function theory. Some of

these special cases are described below.

The linear operator F(α, β, γ) defined by

F(α, β, γ) = H2,1
1 (α, β; γ)f(z)

is Hohlov linear operator [34]. The linear operator L(α, γ) defined by

L(α, γ) = H2,1
1 (α, 1; γ)f(z) = F(α, 1, γ)

is the Carlson and Shaffer linear operator [15]. The differential operator Dλ : A → A

defined by the Hadamard product:

Dλf(z) :=
z

(1− z)λ+1
∗ f(z) = H2,1

1 (λ+ 1, 1; 1)f(z), (λ ≥ 1, f ∈ A)

is the Ruscheweyh derivative operator [92]. This operator can also be defined by,

Dnf(z) :=
z(zn−1f(z))(n)

n !
, (n ∈ N0, f(z) ∈ A).

In 1969, Bernardi [10] considered the linear integral operator F : A → A defined by

(1.2.8) F (z) :=
c+ 1

zc

∫ z

0

tc−1f(t)dt.

When c = 1, this operator was investigated by Libera [47] and Livingston [48]. Therefore

the operator in (1.2.8) is called the generalized Bernardi-Libera-Livingston linear operator.

Clearly

F (z) = H2,1
1 (c+ 1, 1; c+ 2)f(z), (c > −1, f ∈ A).

It is well-known [10] that the classes of starlike, convex and close-to-convex functions

are closed under the Bernardi-Libera-Livingston integral operator.
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Definition 1.2.1. [67, 71] The fractional integral of order λ is defined by

D−λ
z f(z) :=

1

Γ(λ)

∫ z

0

f(ζ)

(z − ζ)1−λ
dζ (λ > 0)

where f(z) is an analytic function in a simply connected region of the complex z-plane

containing the origin, and the multiplicity of (z−ζ)1−λ is removed by requiring log(z−ζ)

to be real when z − ζ > 0.

Definition 1.2.2. [67, 71] The fractional derivative of order λ is defined by

Dλ
z f(z) :=

1

Γ(1− λ)

d

dz

∫ z

0

f(ζ)

(z − ζ)λ
dζ (0 ≤ λ < 1)

where f(z) is constrained, and the multiplicity of (z − ζ)−λ is removed as in Definition

1.2.1 above.

Definition 1.2.3. [67, 71] Under the hypothesis of Definition 1.2.2, the fractional

derivative of order n+ λ is defined, by

Dn+λ
z f(z) :=

dn

dzn
Dλ

z f(z) (0 ≤ λ < 1, n ∈ N0).

In 1987, Srivastava and Owa [105] studied a fractional derivative operator Ωλ :

A → A defined by

Ωλf(z) := Γ(2− λ)zλDλ
z f(z).

The fractional derivative operator is a special case of the Dziok-Srivastava linear

operator since

Ωλf(z) = H2,1
1 (2, 1; 2− λ)f(z)

= L(2, 2− λ)f(z), (λ 6∈ N \ {1}, f ∈ A).

1.3. MULTIPLIER TRANSFORMATIONS

The Sălăgean [95] derivative operator Dmf(z) of order m (m ∈ N ) is defined by

Dmf(z) := f(z) ∗

(
z +

∞∑
n=2

nmzn

)
= z +

∞∑
n=2

nmanz
n (m ∈ N , f ∈ A).

Clearly D0f(z) = f(z), D1f(z) = zf ′(z) and in general

Dmf(z) = z(Dm−1f(z))′ (m ∈ N , f ∈ A).
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In 1990, Komatu [42] introduced a certain integral operator Iλ
a (a > 0, λ ≥ 0)

defined by

Iλ
a f(z) :=

aλ

Γ(λ)

∫ 1

0

ta−2

(
log

1

t

)λ−1

f(zt)dt,

= z +
∞∑

n=2

(
a

a+ n− 1

)λ

anz
n (z ∈ U, a > 0, λ ≥ 0, f ∈ A).(1.3.1)

When a = 2, the integral operator Iλ
a f(z) is essentially the multiplier transformation

studied by Flett [27]. Subsequently Jung et al. [38] studied the following one-parameter

families of integral operators:

Pαf(z) :=
2α

zΓ(α)

∫ 1

0

(
log

z

t

)α−1

f(t)dt (α > 0),

Qβ
αf(z) :=

(
α+ β

α

)
β

zα

∫ 1

0

tα−1

(
1− t

z

)β−1

f(t)dt (β > 0, α > −1),

and

F (z) :=
α+ 1

zα

∫ z

0

tα−1f(t)dt (α > −1),

where Γ(α) is Gamma function, α ∈ N . The operator Pα, Qβ
α and F (z) were considered

by Bernardi [10, 11]. Further, for a real number α > −1, the operator F (z) was used

by several authors [70, 74, 103, 104].

For f ∈ A given by (1.1.1), Jung et al. [38] obtained

Pαf(z) = z +
∞∑

n=2

(
2

n+ 1

)α

anz
n (α > 0),(1.3.2)

Qβ
αf(z) = z +

Γ(α+ β + 1)

Γ(α+ 1)

∞∑
n=2

Γ(α+ n)

Γ(α+ β + n)
anz

n (β > 0, α > −1),(1.3.3)

and

F (z) = z +
∞∑

n=2

(
α+ 1

α+ n

)
anz

n (α > −1).(1.3.4)

By virtue of (1.3.1), (1.3.2), (1.3.3) and (1.3.4), we see that

Iλ
2 f(z) = P λf(z) (λ > 0)

and

F (z) = Q1
αf(z) (α > −1).
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Ali and Singh [4] and Fournier and Ruscheweyh [28] have studied integral operators

Vλ of functions f ∈ A by

(1.3.5) Vλf(z) :=

∫ 1

0

λ(t)
f(zt)

t
dt (λ(t) ∈ Φ),

where

Φ :=

{
λ(t) : λ(t) ≥ 0 (0 ≤ t ≤ 1) and

∫ 1

0

λ(t)dt = 1

}
.

Recently, Li and Srivastava [46] have studied an integral operator V α
λ of functions

f ∈ A defined by

(1.3.6) V α
λ f(z) :=

∫ 1

0

λα(t)
f(zt)

t
dt,

where the real valued functions λα and λα−1 satisfy the following conditions:

(i) For a suitable parameter α,

λα−1 ∈ Φ, λα ∈ Φ and λα(1) = 0;

(ii) There exists a constant c (−1 < c ≤ 2) such that

cλα(t)− tλ′α−1(t) = (c+ 1)λα−1 (0 < t < 1;−1 < c ≤ 2).

Further Li and Srivastava [46] found a relation between V α
λ f(z), Pαf(z) and Qβ

αf(z)

by setting particular values of λα(t). By setting

λα(t) =

(
α+ β

α

)
α(1− t)α−1tβ (α > 0, β > −1)

in (1.3.6), they obtained V α
λ f(z) = Qα

βf(z); similarly by setting

λα(t) =
2α

Γ(α)
t

(
log

1

t

)α−1

(α > 0),

in (1.3.6), they obtained V α
λ f(z) = Pαf(z).

Motivated by these operators , Cho and Kim [20, Definition, p. 400] introduced a

more general linear operator called the multiplier transformation. For any integer n, the

multiplier transformation In
λ : A → A is defined by

(1.3.7) In
λf(z) := z +

∞∑
k=2

(
k + λ

1 + λ

)n

akz
k (λ ≥ 0, n ∈ Z).
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For λ = 1, the operator In
λ was studied by Uralegaddi and Somanatha [111]. The

operator In
λ is closely related to the Komatu integral operators [42] and the differential

and integral operators defined by Sǎlǎgean [95].

Motivated by the multiplier transformation on A, we define the operator Ip(n, λ)

on Ap by the following infinite series

(1.3.8) Ip(n, λ)f(z) := zp +
∞∑

k=p+1

(
k + λ

p+ λ

)n

akz
k (λ ≥ −p, n ∈ Z).

The operator I1(m, 0) is the Sǎlǎgean derivative operator Dm [95]. The operator I1(n, λ)

was studied recently by Cho and Srivastava [19] and Cho and Kim [20]. The operator

I1(n, 1) was studied by Uralegaddi and Somanatha [111]. The operator I1(−1, c) is the

generalized Bernardi-Libera-Livingston linear operator [10, 11].

1.4. SUBORDINATION AND SUPERORDINATION

Let ψ(r, s, t; z) : C3 × U → C and let h(z) be univalent in U . If p(z) is analytic in

U and satisfies the second order differential subordination

(1.4.1) ψ(p(z), zp′(z), z2p′′(z); z) ≺ h(z),

then p(z) is called a solution of the differential subordination. The univalent function

q(z) is called a dominant of the solution of the differential subordination or more simply

dominant, if p(z) ≺ q(z) for all p(z) satisfying (1.4.1). A dominant q1(z) satisfying

q1(z) ≺ q(z) for all dominants q(z) of (1.4.1) is said to be the best dominant of (1.4.1).

The best dominant is unique up to a rotation of U . If p(z) ∈ H[a, n], then p(z) will be

called an (a, n)-solution, q(z) an (a, n)-dominant, and q1(z) the best (a, n)-dominant.

Let Ω ⊂ C and let (1.4.1) be replaced by

(1.4.2) ψ(p(z), zp′(z), z2p′′(z); z) ∈ Ω, for all z ∈ U.

Even though this is a “differential inclusion” and ψ(p(z), zp′(z), z2p′′(z); z) may not be

analytic in U , the condition in (1.4.2) will also be referred as a second order differential

subordination, and the same definition of solution, dominant and best dominant as given
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above can be extended to this generalization. See [58] for more information on differential

subordination.

Let ψ(r, s, t; z) : C3 × U → C and let h(z) be analytic in U . If p(z) and

ψ(p(z), zp′(z), z2p′′(z); z)

are univalent in U and satisfies the second order differential superordination

(1.4.3) h(z) ≺ ψ(p(z), zp′(z), z2p′′(z); z),

then p(z) is called a solution of the differential superordination. An analytic function

q(z) is called a subordinant of the solution of the differential superordination or more

simply subordinant, if q(z) ≺ p(z) for all p(z) satisfying (1.4.3). A univalent subordinant

q1(z) satisfying q(z) ≺ q1(z) for all subordinants q(z) of (1.4.3) is said to be the best

subordinant of (1.4.3). The best subordinant is unique up to a rotation of U . Let Ω ⊂ C

and let (1.4.3) be replaced by

(1.4.4) Ω ⊂ {ψ(p(z), zp′(z), z2p′′(z); z)|z ∈ U}.

Even though this more general situation is a “differential containment”, the condition in

(1.4.4) will also be referred as a second order differential superordination and the definition

of solution, subordinant and best subordinant can be extended to this generalization. See

[59] for more information on the differential superordination.

Denote by Q the set of all functions q(z) that are analytic and injective on U \E(q)

where

E(q) = {ζ ∈ ∂U : lim
z→ζ

q(z) = ∞},

and are such that q′(ζ) 6= 0 for ζ ∈ ∂U \ E(q). Further let the subclass of Q for which

q(0) = a be denoted by Q(a), Q(0) ≡ Q0 and Q(1) ≡ Q1.

Definition 1.4.1. [58, Definition 2.3a, p. 27] Let Ω be a set in C, q ∈ Q and n be

a positive integer. The class of admissible functions Ψn[Ω, q] consists of those functions

ψ : C3 × U → C that satisfy the admissibility condition

(1.4.5) ψ(r, s, t; z) 6∈ Ω
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whenever r = q(ζ), s = kζq′(ζ), and

<
{
t

s
+ 1

}
≥ k<

{
ζq′′(ζ)

q′(ζ)
+ 1

}
,

z ∈ U, ζ ∈ ∂U \ E(q) and k ≥ n. We write Ψ1[Ω, q] as Ψ[Ω, q].

If ψ : C2 × U → C, then the admissible condition (1.4.5) reduces to

(1.4.6) ψ(q(ζ), kζq′(ζ); z) 6∈ Ω,

z ∈ U , ζ ∈ ∂U \ E(q) and k ≥ n.

In particular when q(z) = M Mz+a
M+az

, with M > 0 and |a| < M , then q(U) =

UM := {w : |w| < M}, q(0) = a, E(q) = ∅ and q ∈ Q. In this case, we set

Ψn[Ω,M, a] := Ψn[Ω, q], and in the special case when the set Ω = UM , the class is

simply denoted by Ψn[M,a].

Definition 1.4.2. [59, Definition 3, p. 817] Let Ω be a set in C, q(z) ∈ H[a, n]

with q′(z) 6= 0. The class of admissible functions Ψ′
n[Ω, q] consists of those functions

ψ : C3 × U → C that satisfy the admissibility condition

(1.4.7) ψ(r, s, t; ζ) ∈ Ω

whenever r = q(z), s = zq′(z)
m

, and

<
{
t

s
+ 1

}
≤ 1

m
<
{
zq′′(z)

q′(z)
+ 1

}
,

z ∈ U, ζ ∈ ∂U and m ≥ n ≥ 1. When n = 1, we write Ψ′
1[Ω, q] as Ψ′[Ω, q].

If ψ : C2×U → C If ψ : C2×U → C, then the admissible condition (1.4.7) reduces

to

(1.4.8) ψ(q(z), zq′(z)/m; ζ) 6∈ Ω,

z ∈ U , ζ ∈ ∂U and m ≥ n.
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1.5. SCOPE AND MOTIVATION OF THIS WORK

In the present work, certain properties of analytic functions and meromorphic func-

tions are investigated. In particular, certain sufficient conditions for Janowski starlikeness

are obtained for various classes of analytic functions. Certain general differential subor-

dination and superordination results are also obtained. These are then used to obtain

differential sandwich results. Also non-linear coefficient problems involving the first three

coefficients of a p-valent function are discussed.

In 1969, Bernardi [10] introduced and studied a linear integral operator

F (z) :=
c+ 1

zc

∫ z

0

tc−1f(t)dt (c > −1),

now called the Bernardi integral operator. He proved that the classes of starlike, convex

and close-to-convex functions are closed under the Bernardi integral operator. In the

year 2000, Parvatham [74] extended Bernardi’s results for functions in S∗[α] defined in

(1.1.6). We have extended the results of Parvatham [74] by considering a more general

subordinate function. In the year 1999, Silverman [99] introduced and studied classes

of functions obtained by the quotient of expressions defining the convex and starlike

functions. Later Obradovič and Tuneski [64] and Tuneski [109] improved the results of

Silverman [99]. Further many researchers [61, 62, 63, 85, 88] have studied these classes.

These results are extended by considering a more general subordinate function. Sufficient

conditions for Janowski starlikeness for functions in several subclasses of analytic functions

are also obtained. These results are presented in Chapter 2.

By using differential subordination, Miller and Mocanu [58] found some sufficient

conditions relating the Schwarzian derivative to the starlikeness or convexity of f ∈ A.

Aouf et al. [7] and Kim and Srivastava [41] derived several inequalities associated with

some families of integral and convolution operators that are defined for the class of nor-

malized analytic functions in the open unit disk U . Recently Aghalary et al. [2] obtained

some inequalities for analytic functions in the open unit disk that are associated with

the Dziok-Srivastava linear operator and the multiplier transformation. Similar results

for meromorphic functions defined through a linear operator are considered by Liu and
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Owa [49]. These results motivate our main results in Chapters 3 and 4. Chapter 3 deals

with the applications of differential subordination and superordination to obtain sufficient

conditions on the Schwarzian derivative of normalized analytic functions. Subordination

and superordination results for analytic functions associated with the Dziok-Srivastava

linear operator and multiplier transformation are obtained. Additionally sandwich results

are obtained. In Chapter 4, we consider the Liu-Srivastava linear operator for the case of

meromorphic functions [51, 52] and also the multiplier transformation for meromorphic

functions. Differential subordination and superordination results are obtained for mero-

morphic functions in the punctured unit disk that are associated with the Liu-Srivastava

linear operator and the multiplier transformation. These results are obtained by inves-

tigating appropriate class of admissible functions. Certain related sandwich-type results

are also obtained.

In 1975, Silverman [98] studied the class of analytic functions whose Taylor co-

efficients are negative. Several other authors (see for example, Al-Amiri [3], Attiya [9],

Srivastava and Attiya [102], Owa and Srivastava [72], as well as Owa and Nishiwaki [68])

have studied several classes of analytic functions with negative coefficients. These results

are shown to be special cases of our main results in Chapter 5. For a fixed analytic func-

tion g(z) = z+
∑∞

n=2 gnz
n defined on the open unit disk and γ < 1, let Tg(γ) denote the

class of all analytic functions f ∈ A of the form (1.1.1) satisfying
∑∞

n=2 |angn| ≤ 1− γ.

For functions in Tg(γ), a subordination result is derived involving the convolution with a

normalized convex function.

In 1992, Ma and Minda [54] obtained sharp distortion, growth, rotation and cov-

ering theorems for the classes C(ϕ) and S∗(ϕ). In addition, they obtained some sharp

results for coefficient problems, particularly, the sharp bound on the coefficient func-

tional |a3 − µa2
2|, −∞ < µ <∞, which implies sharp upper bounds for the second and

third coefficients. They also studied some convolution properties. Also, several authors

[1, 23, 39, 40, 43, 82, 89] have studied the coefficient problems for various classes

of univalent functions. In Chapter 6, sharp upper bounds for the coefficient function-

als |ap+2 − µa2
p+1| and |ap+3| are derived for certain p-valent analytic functions. These
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are then applied to obtain Fekete-Szegö like inequalities for several classes of functions

defined by convolution.
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CHAPTER 2

SUFFICIENT CONDITIONS FOR JANOWSKI STARLIKENESS

2.1. INTRODUCTION

For the class S∗[α] = {f ∈ A : zf ′(z)/f(z) ≺ (1 + αz)/(1− αz) (0 < α ≤ 1)},

Parvatham proved the following:

Theorem 2.1.1. [74, Theorem 1, p. 438] Let c ≥ 0, 0 < α ≤ 1 and δ be given

by

δ := α

[
2 + α+ c(1− α)

1 + 2α+ c(1− α)

]
.

If f ∈ S∗[δ], then the function F (z) given by the Bernardi’s integral as defined in (1.2.8)

belong to S∗[α].

It is well-known [10] that the classes of starlike, convex and close-to-convex func-

tions are closed under the Bernardi’s integral operator. Since δ ≥ α, Theorem 2.1.1

extends the result of Bernardi [10].

Parvatham also considered a similar problem for the class R[α] of functions f ∈ A

satisfying

|f ′(z)− 1| < α |f ′(z) + 1| (z ∈ U, 0 < α ≤ 1),

or equivalently

f ′(z) ≺ 1 + αz

1− αz
(z ∈ U, 0 < α ≤ 1),

and proved the following:

Theorem 2.1.2. [74, Theorem 2, p. 440] Let c ≥ 0, 0 < α ≤ 1 and δ be given

by

δ := α

[
2− α+ c(1− α)

1 + c(1− α)

]
.

If f ∈ R[δ], then the function F (z) given by the Bernardi’s integral (1.2.8) is in R[α].

17



The class R[α] can be extended to the general class R[A,B] consisting of all

analytic functions f(z) ∈ A satisfying

f ′(z) ≺ 1 + Az

1 +Bz
, ( −1 ≤ B < A ≤ 1),

or the equivalent inequality,

|f ′(z)− 1| < |A−Bf ′(z)| (z ∈ U, −1 ≤ B < A ≤ 1).

For 0 ≤ α < 1, the class R[1− 2α,−1] consists of functions f ∈ A for which

<f ′(z) > α (z ∈ U, 0 < α ≤ 1),

and R[1− α, 0] =: Rα is the class of functions f ∈ A satisfying the condition

|f ′(z)− 1| < 1− α (z ∈ U, 0 ≤ α < 1).

When 0 < α ≤ 1, the class R[α,−α] is the class R[α] considered by Parvatham [74].

Silverman [99], Obradovič and Tuneski [64] and many others (see [61, 62, 63,

85, 88]) have studied properties of functions defined in terms of the quotient

1 + zf ′′(z)
f ′(z)

zf ′(z)
f(z)

.

In fact, Silverman [99] have obtained the order of starlikeness for functions in the class

Gb defined by

Gb :=

{
f ∈ A :

∣∣∣∣∣1 + zf ′′(z)
f ′(z)

zf ′(z)
f(z)

− 1

∣∣∣∣∣ < b, 0 < b ≤ 1, z ∈ U

}
.

Obradovič and Tuneski [64] improved the result of Silverman [99] by showing

Gb ⊂ S∗[0,−b] ⊂ S∗(2/(1 +
√

1 + 8b)).

Later Tuneski [109] obtained conditions for the inclusion Gb ⊂ S∗[A,B] to hold. If we

let zf ′(z)/f(z) =: p(z), then Gb ⊂ S∗[A,B] becomes

(2.1.1) 1 +
zp′(z)

p(z)2
≺ 1 + bz ⇒ p(z) ≺ 1 + Az

1 +Bz
.

Let f ∈ A and 0 ≤ α < 1. Frasin and Darus [26] have shown that

(zf(z))′′

f ′(z)
− 2zf ′(z)

f(z)
≺ (1− α)z

2− α
⇒
∣∣∣∣z2f ′(z)

f 2(z)
− 1

∣∣∣∣ < 1− α.
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By writing z2f ′(z)/(f(z))2 as p(z), we see that the above implication is a special case

of

1 + β
zp′(z)

p(z)
≺ 1 +Dz

1 + Ez
⇒ p(z) ≺ 1 + Az

1 +Bz
.

Another special case of the above implication was considered by Ponnusamy and Ra-

jasekaran [81].

Obradovič et. al. [60] have shown that if p(z) is analytic in U , p(0) = 1 and

1 + zp′(z) ≺ 1 + z, then p(z) ≺ 1 + z.

Using this, they have obtained a criterion for a normalized analytic function to be univa-

lent.

In this chapter, we extend Theorems 2.1.1 and 2.1.2 to hold true for the more

general classes S∗[A,B] and R[A,B] respectively. In fact a more general result for

functions p(z) with p(0) = 1 satisfying

p(z) +
zp′(z)

βp(z) + γ
≺ 1 +Dz

1 + Ez
implies p(z) ≺ 1 + Az

1 +Bz

is obtained and by applying this result, we investigate the Bernardi’s integral operator

on the classes S∗[A,B] and R[A,B]. Similar results are obtained by considering the

expressions 1 + βzp′(z), 1 + β zp′(z)
p2(z)

and 1 + β zp′(z)
p(z)

. These results are then applied to

obtain sufficient conditions for analytic functions to be Janowski starlike.

2.2. A BRIOT-BOUQUET DIFFERENTIAL SUBORDINATION

Theorem 2.2.1. Let −1 ≤ B < A ≤ 1 and −1 ≤ E ≤ 0 < D ≤ 1. For β ≥ 0

and β + γ > 0, let G := Aβ +Bγ, H := (β + γ)(D −E), I := (Aβ +Bγ)(D −E) +

(BD −AE)(β + γ)− kE(A−B), J := (Aβ +Bγ)(BD −AE), and L := β + γ + k.

In addition, for all k ≥ 1, let

(2.2.1) (L2 +G2)[(H + J)I − 4H|J |] + 4LGHJ ≥ LG[(H − J)2 + I2].

Further assume that

(2.2.2)
[β(1 + A) + γ(1 +B) + 1](A−B)

[β(1 + A) + γ(1 +B)][D(1 +B)− E(1 + A)]− E(A−B)
≥ 1.
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Let p(z) be analytic in U with p(0) = 1. If

p(z) +
zp′(z)

βp(z) + γ
≺ 1 +Dz

1 + Ez
,

then

p(z) ≺ 1 + Az

1 +Bz
.

Proof. Define P (z) by

(2.2.3) P (z) := p(z) +
zp′(z)

βp(z) + γ

and w(z) by

w(z) :=
p(z)− 1

A−Bp(z)
,

or equivalently by

(2.2.4) p(z) =
1 + Aw(z)

1 +Bw(z)
.

Then w(z) is meromorphic in U and w(0) = 0. We need to show that |w(z)| < 1 in U .

By a computation from (2.2.4), it follows that

p′(z) =
(A−B)w′(z)

(1 +Bw(z))2

and using this in (2.2.3),

P (z) =
1 + Aw(z)

1 +Bw(z)
+

(A−B)zw′(z)

(1 +Bw(z))[β(1 + Aw(z)) + γ(1 +Bw(z))]
.

Therefore

P (z)− 1

D − EP (z)
=

(A−B)[(β + γ)w(z) + (Aβ +Bγ)w2(z) + zw′(z)]

[(D − E) + (BD − AE)w(z)][β + γ
+(Aβ +Bγ)w(z)]− E(A−B)zw′(z)

.

Assume that there exists a point z0 ∈ U such that

max
|z|≤|z0|

|w(z)| = |w(z0)| = 1.

Then by [93, Lemma 1.3, p. 28], there exists k ≥ 1 such that z0w
′(z0) = kw(z0). Let

w(z0) = eiθ. For this z0, we have∣∣∣∣ P (z0)− 1

D − EP (z0)

∣∣∣∣ =

∣∣∣∣ (A−B)[L+Gw(z0)]

H + Iw(z0) + Jw(z0)2

∣∣∣∣ = (A−B)[ϕ(cos θ)]
1
2
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where

ϕ(cos θ) :=
|L+Geiθ|2

|He−iθ + Jeiθ + I|2

=
L2 +G2 + 2LG cos θ

[I + (H + J) cos θ]2 + [(J −H) sin θ]2

=
L2 +G2 + 2LG cos θ

I2 + (H + J)2 cos2 θ + 2I(H + J) cos θ + (J −H)2 sin2 θ

=
L2 +G2 + 2LG cos θ

H2 + J2 + I2 + 2HJ cos 2θ + 2I(H + J) cos θ
.

Define the function

(2.2.5) ϕ(t) :=
L2 +G2 + 2LGt

4HJt2 + 2I(H + J)t+ (H − J)2 + I2
.

We shall show that ϕ(t) is a decreasing function. A simple computation using (2.2.5)

yields

ϕ′(t) = −4LGHJt2 + 4HJ(L2 +G2)t+ I(L2 +G2)(H + J)− LG[I2 + (H − J)2]

[4HJt2 + 2I(H + J)t+ (H − J)2 + I2]2
.

The function ϕ(t) is a decreasing function if ϕ′(t) < 0 or equivalently if

4LGHJt2 + 4HJ(L2 +G2)t+ I(L2 +G2)(H + J)− LG[I2 + (H − J)2] ≥ 0.

In view of the fact that

min{at2 + bt+ c : −1 ≤ t ≤ 1} =


4ac−b2

4a
, if a > 0 and |b| < 2a,

a− |b|+ c, otherwise,

the condition (2.2.1) shows that ϕ(t) is a decreasing function of t = cos θ. Thus

ϕ(t) ≥ ϕ(1) =

[
L+G

I + J +H

]2

.

Consider the function

ψ(k) :=
L+G

I + J +H

=
(1 + A)β + (1 +B)γ + k

[(1 +B)D − (1 + A)E][(1 + A)β + (1 +B)γ]− kE(A−B)
.

Since

ψ′(k) =
[(1 + A)β + (1 +B)γ](1 +B)(D − E)

[[(1 +B)D − (1 + A)E][(1 + A)β + (1 +B)γ]− kE(A−B)]2
,
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clearly ψ′(k) > 0 and hence ψ(k) is an increasing function of k. Since k ≥ 1, we have

ψ(k) ≥ ψ(1) and therefore∣∣∣∣ P (z0)− 1

D − EP (z0)

∣∣∣∣ ≥ [β(1 + A) + γ(1 +B) + 1](A−B)

[β(1 + A) + γ(1 +B)][D(1 +B)− E(1 + A)]− E(A−B)
,

which by (2.2.2) is greater than or equal to 1. This contradicts that P (z) ≺ (1 +

Dz)/(1 + Ez) and completes the proof. �

2.3. APPLICATION TO THE BERNARDI’S INTEGRAL OPERATOR

Theorem 2.3.1. Let the conditions of Theorem 2.2.1 hold with β = 1 and γ =

c > −1. If f ∈ S∗[D,E], then the function F (z) given by the Bernardi’s integral (1.2.8)

is in S∗[A,B].

Proof. Differentiation of the Bernardi’s integral (1.2.8) yields

(c+ 1)f(z) = zF ′(z) + cF (z).

Logarithmic differentiation now yields

zf ′(z)

f(z)
= p(z) +

zp′(z)

p(z) + c
,

with p(z) = zF ′(z)/F (z). The result now follows from Theorem 2.2.1. �

Observe that when J = 0, the condition (2.2.1) reduces to the equivalent form

(2.3.1) (LI −GH)(LH −GI) ≥ 0.

Remark 2.3.1. If A = α, B = −α, D = δ and E = −δ (0 < α, δ ≤ 1), then

G = α(1 − c), H = 2δ(1 + c), I = 2αδ(1 + k − c), J = 0 and L = 1 + c + k.

In this case, LI − GH = 2αδk(2 + k) > 0. In addition, LH − GI ≥ 0 becomes

(1 + c)(1 + c + k) ≥ α2(1− c)(1− c + k). Clearly this condition holds when c ≥ 0. In

the case −1 < c < 0, since

(1 + c)(2 + c)

(1− c)(2− c)
≤ (1 + c)(1 + c+ k)

(1− c)(1− c+ k)
,

condition (2.3.1) holds provided α2 ≤ (1+ c)(2+ c)/(1− c)(2− c). Thus Theorem 2.3.1

not only reduces to Theorem 2.1.1 for c ≥ 0, but also extends it for the case −1 < c < 0.
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Corollary 2.3.1. Let −1 < c < 0, 0 < α ≤
√

(1 + c)(2 + c)/(1− c)(2− c),

and δ be as in Theorem 2.1.1. If f ∈ S∗[δ], then the function F (z) given by the Bernardi’s

integral (1.2.8) belongs to S∗[α].

Remark 2.3.2. Let A = 1 − α, B = 0, D = 1 − δ and E = 0 (0 ≤ α, δ < 1).

Then G = 1 − α, H = (1 − δ)(1 + c), I = (1 − α)(1 − δ), J = 0 and L = 1 + c + k.

Since J = 0, the condition (2.3.1) reduces to

(2.3.2) (1 + c)(1 + c+ k)− (1− α)2 ≥ 0.

Since (1+c)(1+c+k)−(1−α)2 ≥ (1+c)(2+c)−(1−α)2, the inequality (2.3.2) holds pro-

vided α ≥ 1−
√

(1 + c)(2 + c). This condition holds for c ≥
[√

4(α− 1)2 + 1− 3
]
/2.

This yields the following result for the class S∗(δ).

Corollary 2.3.2. Let δ := α − (1 − α)/(2 + c − α), f(z) ∈ S∗(δ) and F (z)

be given by the Bernardi’s integral (1.2.8). If α0 ≤ α < 1, then F (z) ∈ S∗(α) for all

c > −1. Here α0 := (3 + c−
√

(3 + c)2 − 4)/2.

Theorem 2.3.2. Under the conditions stated in Theorem 2.2.1 with β = 0 and

γ = c+1, if f ∈ R[D,E], then the function F (z) given by the Bernardi’s integral (1.2.8)

is in R[A,B].

Proof. Since

(c+ 1)f(z) = zF ′(z) + cF (z),

it follows that

(2.3.3) f ′(z) =
zF ′′(z)

c+ 1
+ F ′(z).

The result now follows from Theorem 2.2.1 with p(z) = F ′(z), β = 0 and γ = c+1. �

Remark 2.3.3. For A = α, B = −α, D = δ and E = −δ (0 < α, δ ≤ 1), then

G = −α(1 + c), H = 2δ(1 + c), I = 2αδ(k − 1 − c), J = 0 and L = 1 + c + k. The

condition (2.3.1) becomes

4αδ2k2(1 + c)[(1 + c)(1− α2) + k(1 + α2)] ≥ 0
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which holds for any c > −1. This shows that Theorem 2.3.2 reduces to Theorem 2.1.2

and that the assertion even holds in the case −1 < c < 0.

Remark 2.3.4. For A = δ, B = 0, D = α and E = 0 (0 < α, δ ≤ 1), then

G = I = J = 0, H = α(1 + c), and L = 1 + c + k. In this case the condition (2.3.1)

holds for any c > −1. Thus Theorem 2.3.2 extends the earlier result of Anbudurai [6,

Theorem 2.1, p. 20] even in the case −1 < c < 0.

Remark 2.3.5. For A = 1 − α, B = 0, D = 1 − δ and E = 0 (0 ≤ α, δ < 1),

then G = 0, H = (1− δ)(1 + c), I = 0, J = 0 and L = 1 + c+ k. Theorem 2.3.2 yields

the following:

Corollary 2.3.3. Let c > −1, 1/(2+ c) ≤ α < 1 and δ := α− (1−α)/(1+ c).

If f(z) ∈ Rδ, then F (z) ∈ Rα.

2.4. ANOTHER DIFFERENTIAL SUBORDINATION

Lemma 2.4.1. Let −1 ≤ B < A ≤ 1, −1 ≤ E < D ≤ 1 and β 6= 0. Assume that

(2.4.1) (A−B)|β| ≥ (D − E)(1 +B2) + |2B(D − E)− Eβ(A−B)| .

If p(z) is analytic in U with p(0) = 1 and

1 + βzp′(z) ≺ 1 +Dz

1 + Ez
,

then

p(z) ≺ 1 + Az

1 +Bz
.

Proof. Define the function P (z) by

(2.4.2) P (z) := 1 + βzp′(z)

and the function w(z) by (2.2.4). Then w(z) is meromorphic in U and w(0) = 0. Using

(2.2.4) in (2.4.2), we get

P (z) =
(1 +Bw(z))2 + (A−B)βzw′(z)

(1 +Bw(z))2
,
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