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DEVELOPMENT OF A MULTICOMPONENTS DEGRADABLE PLASTICS, 
THROUGH THE COMBINATION OF THE SAGO STARCH AND 

POLYETHYLENE/POLY (ε-CAPROLACTONE) BLENDS 
 

ABSTRACT 

 

 In this research, sago starch (SS), poly(ε-caprolactone) (PCL) were incorporated 

into low density polyethylene (LDPE). Poly(ethylene-co-acrylic) acid (EAA) was added 

into the blend to study the effect on thermo-oxidative ageing (TOA). Pro-oxidants such 

as manganese stearate (MnS) and elastomers, epoxidized natural rubber with 50 mol% 

epoxidation (ENR-50) and styrene butadiene rubber (SBR) were added to increase the 

degradability of the blends. The compounding of the blend was done by using Brabender 

Plasticorder internal mixer at 160oC and 30 rpm for 6 minutes. The blends were then 

compressed into 1 mm thick film using Kao Tieh Go Tech moulding machine. Dumb-bell 

shape samples were cut and used throughout the whole research. TGA shows that the 

decomposed temperature was shifted lower as the pro-oxidants were added intbo the 

blends. This shows that the pro-oxidant helped to increase the degradability of the 

blends. Tensile strength (TS) and elongation at break (EB) decreased as SS and pro-

oxidants were added into LDPE/PCL. This was due to the agglomeration of SS 

(supported by Scanning Electron Microscope) and incompatibility of the PCL, SS and the 

additives added (supported by Dynamic Mechanical Analyzer). This is supported by 

using Dynamic Mechanical Analyzer (DMA) and scanning electron microscope (SEM). 

Young’s modulus increased as SS was added into LDPE/PCL. This is because SS is 

stiffer that LDPE and PCL. LDPE/PCL/SS blends samples were immersed in water for 

24 weeks. Reduction in TS and EB were observed after the water absorption test. This is 

due to the swelling effect of the SS leading to voids and cracks were observed after 

water absorption by using SEM. Increased in TS and EB was observed after drying the 



 xviii

immersed samples in oven for 24 hours. This is due to less plasticizing effect as there 

was no moisture in the blends.Ultra-violet (UV) ageing test was performed by using QUV 

Accelerated Weathering Tester. Reduction in TS, EB and melt flow index (MFI) were 

observed. Fourier transform infra-red (FTIR) spectrum shows increment in carbonyl 

index which indicating increment in carbonyl group formed in samples. SEM micrograph 

shows that cracks in the form of mosaic pattern were formed on the surface of the 

LDPE/PCL/SS blends which explain the dramatically reduction in EB. TOA test shows 

reduction in TS, EB and MFI. FTIR spectrum shows increased in carbonyl index 

indicating increased in carbonyl group formed as the duration of TOA increase. Two 

types of soil burial tests were done. LDPE/PCL/SS blends were incubated in soil and in 

oven at 50oC for 3 months. Increment in carbonyl index was observed. Voids were 

formed on the surface of the LDPE/PCL/SS blends after 3 months of incubation showed 

attack of micro-organisms to the SS and PCL particles. The other type of soil burial test 

was done in the natural environment where LDPE/PCL/SS blends were buried in the soil 

at natural environment. Reduction in TS and EB were also observed after the natural soil 

burial test due to the voids formed after the assimilation of PCL and SS particles on the 

surface of LDPE/PCL/SS blends.  
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PEMBANGUNAN PENGHASILAN PLASTIK TERBIODEGRADASI YANG 
PELBAGAI KOMPONEN MELALUI KOMBINASI KANJI SAGO, 

POLIETILENA/POLI(ε-CAPROLACTONE) 
 

ABSTRAK 

 

 Pencampuran fizikal merupakan satu cara yang pantas dan menjimatkan dalam 

penghasilan polimer terisi kanji. Dalam kajian ini, kanji sago, poli(ε-caprolacton) (PCL) 

telah dicampuradunkan dengan polietilena berketumpatan rendah (LDPE). Poli(etilena-

co-acrylic) asid (EAA) telah ditambah ke dalam komposit tersebut untuk mengkaji 

kesannya terhadap degradasi terma. Manganese stearate (MnS) dan elastomer seperti 

getah asli terepoksi (ENR-50) dan getah stirena butadiena (SBR) juga dicampurkan ke 

dalam formulasi tersebut untuk meningkatkan kesan kemerosotan komposit tersebut. 

Proses pencampuran komposit dilakukan dengan menggunakan pencampur dalaman 

Brabender Plasticorder pada suhu 160oC, 30rpm dalam masa 6 minit. Komposit tersebut 

akan diproses dengan menggunakan mesin Kao Tieh Go Tech bagi meghasilkan filem 

dengan ketebalan 1.00 mm. Sampel berupakan bentuk Dumbell disediakan dan 

digunakan dalam seluruh kajian ini. Keputusan Thermogravimetry analyzer (TGA) 

menunjukkan penurunan dalam suhu pemerosotan apabila MnS dan elastomer 

dicampurkan ke dalam komposit tersebut. Ini menunjukkan bahawa MnS dan elastomer 

membantu meningkatkan pemerosotan dalam komposit tersebut. Kekuatan tensil (TS) 

dan pemanjangan takat putus (EB) menurun apabila kanji sago dan additif dicampurkan 

ke dalam komposit LDPE/PCL. Ini kerana sifat ketidakboleh campuran PCL dan 

agglomerasi dalam kanji sago. Keputusan ini disokong oleh keputusan yang diperolehi 

oleh Dynamic Mechanical Analyzer (DMA) dan Scanning electron microscope (SEM). 

Modulus Young meningkat apabila kanji sago ditambah ke dalam LDPE/PCL. Komposit 

LDPE/PCL/SS telah direndamkan dalam air selama 24 minggu. Penurunan dalam TS 



 xx

dan EB diperolehi akibat pembengkakan kanji sago. Retakan kecil berlaku selepas 

rendaman dalam air menyebabkan penurunan dalam TS dan EB. Peningkatan TS dan 

EB berlaku apabila sampel yang direndamkan dalam air dikeringkan semula dalam oven 

selama 24 jam. Walau bagaimanapun, peningkatan TS dan EB adalah sedikit akibat 

penggurangan sifat pemplastikan. Ujian pancaran ultraviolet (UV) dijalankan ke atas 

komposit LDPE/PCL/SS dengan menggunakan mesin “QUV Acclerated Weathering 

Tester”. Penurunan dalam TS, EB dan “melt flow index (MFI)” berlaku. “Fourier 

Transform infra-red (FTIR)” menunjukkan peningkatan dalam karbonil index selepas 

ujian pancaran UV. Retakan berbentuk mosaik telah berbentuk di atas komposit 

LDPE/PCL/SS selepas pancaran UV. Retakan tersebut menyokong penurunan 

mendadak dalam EB selepas menjalankan ujian pancaran UV. Ujian pemerosotan terma 

(TOA) dijalankan ke atas sampel komposit LDPE/PCL/SS dan penurunan dalam TS, EB 

dan MFI diperhatikan. Peningkatan dalam karbonil index turut didapati. Dua jenis ujian 

penanaman dalam tanah telah dijalankan. Komposit LDPE/PCL/SS yang ditanam dalam 

tanah pada suhu 50oC selama 3 bulan menunjukkan peningkatan dalam index karbonil. 

Bagi sampel yang ditanam dalam tanah secara semulajadi pula menunjukkan 

penurunan dalam TS dan EB selepas 3 bulan. Lubang kecil telah ditemui pada 

permukaan sampel selepas 3 bulan dan ini menunjukkan terdapat aktiviti mikro-

organisma terhadap kanji sago dan PCL. 
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CHAPTER ONE 
INTRODUCTION 

 
 

1.1 Plastics and the Environment 
 

Plastics have become one of the most important materials in our lives and also 

one of the greatest innovations of the millennium (Danjaji I.D., 2000). The usage of 

plastic materials was started in 1930 when major thermoplastics such as polystyrene, 

poly(vinyl chloride), the polyolefins and poly(methyl methacylate) were developed 

(Brydson J.A. ,1989). Since then, plastics have been found useful in applications 

ranging from transportation, packaging, building, medical appliances, agricultures and 

communication. The break-up of these applications is shown in Fig. 1.1. 

Packaging (29%)

Building (15%)

Consumer Products (14%)

Transportation (5%)

Furniture (4%)

Electrical (4%)

Exports (13%)

Others (16%)

 

Figure 1.1: Uses of Plastics produced in United States (Stevens E.S., 2002) 

 

 Plastics are one of the major polymer materials used in packaging. The main 

reasons why plastics have been chosen are that plastics are cheap, not susceptible to 

loss of strength when wet, they improved product protection and do not contribute to 
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land subsidence or methane gas production (Andrady L. A., 2003). In addition, plastics 

have good mechanical properties and transparency. Polystyrene, poly(vinyl chloride), 

polyethylene terephatalate and the polyolefins such as polyethylene and polypropylene 

are the major plastic resins used in the packaging industries (Susan E.M.S., 2003).  

HDPE (39.2%)
LDPE/LLDPE (27.4%)
PET (16.8%)
PP (9.5%)
PVC (4.3%)
PS (2.1%)
Others (0.7%)

Figure 1.2:  Plastics resin in packaging in U.S. municipal solid waste stream (Susan 
E.M.S., 2003) 
 

 Polyethylene (PE) is the most used plastic resin in plastic packaging as shown 

in Figure 1.2. Polyethylenes are so widely used because of their wide range of physical 

properties, suitability to most of the commercial thermoplastics fabrication process. The 

most important properties found in PE resin is because of the cheaper price that can 

give them a competitive edge compared to other materials (both polymeric and non 

polymeric) (Peacock A.J., 2000).  

Plastics are prevalent in almost every human activity. However, the resistance 

to natural biodegradation has becoming more and more problematic especially where 

they are use only a short period of time (Vert M. et al., 2002). In agriculture, plastic 

films in soil have caused a significant drop in yield. Plastics waste, especially plastics 
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packaging that float in rivers, seas and lakes are endangering the animals that live in 

those habitats. Not only that, they are also threatening the operation of hydropower 

plants and other public works. (Ren X., 2003) 

World wide, about one half of all discarded plastic come from packaging. Out of 

this, almost one-third of them come from single-used-packaging which are discarded 

soon after use (Stevens E.S., 2002). Plastics create so much pollution and landfill crisis 

that various attempts have been made to solve these problems. One of these attempts 

is to create a biodegradable plastic by adding natural biodegradable materials into the 

plastics. 

 

1.2  Degradable Polymers 

 Biodegradable polymers are an alternative replacement for traditional 

petroleum-based non biodegradable polymer. After the useful life of the degradable 

plastics, they will simply fall apart and get assimilated by microorganisms. They return 

to the natural ecosystem without causing any pollution or harm to the nature 

environment (Stevens E.S., 2002).  

 Biodegradable polymers can be divided to naturally occurring biodegradable 

polymers and synthetic biodegradable polymers.  Starch is a naturally occurring 

biodegradable polymer which is cheap, abundant, renewable and can be added as a 

filler in blends with other polymers. Examples of synthetic biodegradable polymers are 

polycaprolactone, poly(lactic acid) and poly(vinyl alcohol).  In the degradation of 

polymers, there are a lot of factors need to be considered. Sunlight, heat, oxygen, 

humidity, microorganisms are some of the agents that work synergistically towards the 

degradation of polymers. A photodegradable polymer can be obtained when 

chromophores or photosensitive materials are added into the polymers. Starch, natural 

fillers which contain hydrolysable groups, is cheap and readily biodegradable. It has 

been mixed into the thermoplastics to increase the biodegradability (as starch is 
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biodegradable and ready be consumed by mico-organisms) and reduce the cost of the 

material (Shah P.B. et al., 1994). 

 In the early 1970s, Griffin used granular starch as filler in polyethylene to 

increase biodegradability (Bikiaris D & Panayiotou C., 1998). Microorganisms 

enzymatically hydrolyzed the starch granules leaving voids and pits on the surface of 

the LDPE/starch blends. The mechanical properties of the blends also determined 

(Chandra R., & Rustgi R., 1998) 

 

1.3 Problem Statement 

 Normal commodity resins are used in packaging are resistant to degradation 

thereby causing to a lot of pollution and landfill problems. There is a need to find 

degradable plastics resin to overcome pollution and landfill crisis problems. However, 

the price of raw biodegradable plastic resins in the market is very high compared to 

normal commodity plastic resins. Petroleum based commodity resins cost only an 

average of $0.50 per pound (Douglas B.E. et al, 1995). The most common 

thermoplastics used in packaging, low density polyethylene (LDPE) cost less than 

$0.90 per pound.  

Table 1.1 shows the price of biodegradable materials and their major 

producers. As can be seen, biodegradable plastics cost at least twice the normal 

commodity plastics. Another reason why polyolefins were initially selected for 

development as degradable polymers rather than natural products such as cellulose is 

that although cellulose is known to be slowly biodegradable, it suffers from a number of 

technical deficiencies. Other than that, the extraction of cellulose from natural products 

is both energy intensive and polluting. Furthermore, the modification of cellulose by 

acetylation to give technologically acceptable products sharply reduces the 

environmental biodegradability of the base polymer (Scott G., 2002) 
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Table 1.1: Major biodegradable materials producers (Narayan R., 1993). 

Company  Base polymer  Feedstock  Cost, USD/lb
Cargill, 
Minneapolis, MN 

Polylactide acid(PLA) Renewable resources, 
corn 

1.00-3.00 

Ecochem, 
Wilmington, PE 

Polylactide copolymers Renewable resources, 
cheese whey, corn 

<2.00 proj’d 

Flexel, Atlanta GA Cellophane 
(Regenerated cellulose) 

Renewable resources 2.15 

Zeneca (Business 
unit of ICI) 

Poly(hydroxybutyrate-
co-hydroxyvalerate), 
PHBV 

Renewable resources-
carbohydrates 
(glucose), organic 
acids 

8.00-10.00 

Novamont/Ferruzzi-
Montedison, New 
York, NY & Italy 

Starch synthetic 
polymer blend 
containing approx. 60% 
starch 

Renewable resources 
+ petrochemical 

1.60-2.50 

Novon Product 
(Warner-Lambert 
Div), Morris Plains, 
NJ. 

Thermoplastic starch 
polymer compounded 
with 5-25% additive 

Renewable resources, 
starch 

2.00-3.00 

Union Carbide, 
Danbury, CT 

Polycaprolactone (Tone 
polymer)  

Petrochemical  2.70 

Air Products & 
Chemicals, 
Allentown. PA 

Polyvinyl alcohol 
(PVOH) and 
thermoplastic PVOH 
alloys (VINEX) 

Petrochemical  1.00-1.25 
(PVOH) 
2.50-3.00 
(VINEX) 

National Starch & 
Chemical, 
Bridgewater, NJ 

Low ds starch ester Renewable resources, 
starch 

2.00-3.00 

Planet Packaging 
Technologies, San 
Diego, CA. 

Polyethylene oxide 
blends (Enviroplastic) 

petrochemical 3.00 

  

Starch was used as filler in polyethylene in 1977 by Griffin. Starch is 

inexpensive, abundant and renewable biopolymer (Liu W. et al., 2003; SE-Pierre N. et. 

al., 1997; Psomiadou E. et al., 1997). However, starch is not suitable to be used on its 

own due to its hydrophilic behavior. Native starch will swell when absorbed water with 

their free hydroxyl groups. As a result, it will become very brittle and it supports the 

growth of mold. Due to these reasons, native starch alone is not suitable to be used as 

a packaging material. The introduction of granular starch into plastics via melt-mixing 

has become the simplest and cheapest way for preparing starch-plastics composites 

(Danjaji I.D et al., 2002).  
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1.4 Objectives  

The primary objectives of this study are: 

1. To determine the optimum loading, reinforcement efficiency and mechanism of 

sago starch in the LDPE/PCL blends. Malaysia produces tonnes of sago starch per 

year and mostly this sago starch is used as food resources. The incorporation of sago 

starch in LDPE/PCL blends is expected in lower the cost and increases the 

degradability of the LDPE/PCL blends. The optimum loading of sago starch needs to 

be determined so as to improve the degradability of the material without adversely 

affecting the mechanical property too much. 

2. To study the effects of pro-oxidants on the properties of the LDPE/PCL/SS 

blends. A previous study had shown that pro-oxidants such as epoxidised natural 

rubber (ENR), styrene butadiene rubber (SBR) and manganese stearate (MnS) 

increased the degradability of LDPE/starch blends. The incorporation of pro-oxidants 

into the LDPE/PCL/SS blends is hoped to increase the degradability of the current 

blends too. 

3. To study the effect of adding ethylene acrylic acid (EAA) to the blends. Previous 

studies had shown that EAA can act as a compatibilizer or pro-oxidant in LDPE/starch 

blends. It is now hoped that the incorporation of EAA into the blends will increase the 

in mechanical strength but at the same time also increase the degradability of the 

blends. 

4. To study the (bio)degradability of the LDPE/PCL/SS blends. Several tests such 

as thermo-oxidative ageing, soil burial and ultra-violet radiation will be done to 

determine the (bio)degradability of the LDPE/PCL/SS blends. Previous studies had 

shown that incorporation of starch increased the degradability of the LDPE/starch 

blends. 
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1.5 Outline of Thesis structure 

Chapter 1 starts with an introduction of the usage of commodity plastics and its 

impact on the environment. Related issues, which help to generate this research work, 

are also stated. The objectives and the general flow of the whole research program 

are outlined. 

 

Chapter 2 discusses the issues of pollution and landfill problems caused by 

commodity thermoplastics. Waste management and the degradable plastics materials 

are discussed as possible solutions to the pollution and landfill problems. This is 

followed by a literature survey on various published works on degradable polyethylene 

and starch filled thermoplastics, particularly those related to this work.  

 

Chapter 3 describes the materials, experimental procedures, equipments and tests 

to generate data in the present study. 

 

Chapter 4 reports the effects of adding SS, EAA and various pro-oxidants on the 

LDPE/PCL composites. Data, graphs and charts of the mechanical, degradation and 

thermal properties of these composites are presented here. Discussion based on the 

data analysis is presented in this chapter as well.  

 

Chapter 5 presents some concluding remarks on the present research study as 

well as some suggestions for future research. 
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CHAPTER TWO 
LITERATURE REVIEW 

2.1 Effect of Plastics to Environment  

2.1.1 Plastics Waste 

 Human is the only species in the world to developed technologies to access the 

Earth’s fossil fuel, petroleum. Plastic is the greatest invention from petroleum 

resources. Since plastics have started been used in 1930, it has become one of the 

most important part in our daily life. Fig. 2.1 shows the production of thermoplastics 

resins is increasing year by year.  

World And U.S. Production Of Thermoplastics Resins
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Fig. 2.1. World and U.S. production of thermoplastics resins (Anthony L. A., 2003). 

 

 People have started to concern about the impact of plastics wastes to the 

environment when the usage of the plastics increased year by year. Worries about the 

plastics waste was started since 1960s. Over 60 billion pounds of plastics are 

discarded into the waste stream each year in U.S. (Stevens E.S., 2002). Many 
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countries have the “landfill crisis” due to the shortage of landfill space and the increase 

of the municipal solid waste.  Plastics take up a large volume of municipal solid waste 

leading plastics industries to come under severe attack in the last few years (Ehrig R.J. 

& Curry M.J.,1992). 

Plastics are manufactured and designed to resist the environmental 

degradation. Plastics are economical than metal, woods and glasses in term of 

manufacturing costs and energy required (Samuel J.H.,1995). Due to these issues, 

plastics resins have become one of the most popular materials used in packaging. 

Plastics packaging has a life cycle less than a year and continuously enter the waste 

stream on a short turnout of time. The continuous growing of plastics industries have 

lead to the increase volume of plastics wastes going to the landfills (Ehrig R.J. & Curry 

M.J., 1992). To overcome this problem, a properly plan waste management is needed.  

 

2.1.2 Plastics Waste Management 

 In the early stages, “Reduce-Reuse-Recycle” is the motto of overcome the 

plastics waste problems. Source reduction refers to the reduction of the amount of 

materials entering the waste stream by redesigning patterns of production or 

consumption. There are proposals to replace plastic packaging with other materials 

such as metals, papers or glasses but they are environmentally or economically less 

attractive (Stevens E.S., 2002). 

 Reuse strategy also has its limitation. Many plastic applications are not 

designed to reuse because of the impurities and contamination. Food packaging, 

disposable diapers, medical appliances and agricultural covers are the most common 

ones. These examples are the plastic wastes that enter the waste streams quickly 

(Stevens E.S., 2002). 

 Plastics manufacturers have long been recycling internal scraps generated 

during production. However, recycling of plastic wastes also has limitation. Technology 

of sorting, collecting and recycling the plastic wastes is still being developed. Plastics 
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wastes that enter the waste stream were normally contaminated by dirt, food scraps 

and waste. Cleaning of the plastics has become one of the major problems in plastics 

recycling. Furthermore, deterioration of the materials during recycling also leads to 

reduction in mechanical properties of the plastics itself. Not all plastics can be recycled. 

For examples, thermosetting plastics which cannot be softened and reshaped through 

heating are not suitable for plastic recycling. Plastics recycling suffered from 

unfavorable economical factors; unsteady market and development of the plastics 

recycling technology which lead to limitation in plastics recycling (Stevens E.S., 2002). 

 When the 3R motto cannot meet the requirement, another idea was created by 

the scientist. Incineration or sometimes referred as energy recycling was introduced to 

overcome the landfill problems. Energy generation by incineration of plastics waste is a 

way to recovered plastics waste since hydrocarbon polymer is made of fuel and can be 

replace fossil fuel and reduce CO2 burden in the environment (Scott G., 2000). Japan 

is expected to take care up to 70 percents of the polymer waste by incineration 

(Samuel J.H.,1995). Although incineration look more benefit to harm, incineration is still 

not acceptable to most of the voting residents in a community. They worried about the 

toxicity of the pollutant include hydrogen chloride, heavy metals and dioxins. With the 

help of the latest technology, it can deal safely with such chemicals but the fund to 

maintain and provide the adequate equipment is very high (Stevens E.S., 2002). 

 An alternative way to incineration is pyrolysis. In pyrolysis, waste materials are 

heated in the absent of oxygen, and possibly under pressure as well. The process 

drives out volatile components and generate usable fuel, other chemical as well as 

heat. It preserves some materials value of the waste. One of the newest technologies 

in pyrolysis is directed at cracking waste materials. In this process, the long polymer 

chains of the plastics are broken into smaller chains and convert the waste plastics into 

the hydrocarbon building blocks from which the plastics were originally made. It is a 

form of feedstock recycling as these hydrocarbons will then be reused as polymer 
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feedstock. However, the technology has not yet been fully developed and the price of 

the reactors or plant is very expensive (Stevens E.S., 2002). 

 Finally, the waste plastics will be ended up in the landfills. Again, plastics waste 

take up a large of space in the landfill even the plastics been compacted. As landfill 

become full, the problems of finding a new landfill, establishing disposable fees and 

getting the site approval have become majoring problems in most of the developing 

countries (Stevens E.S., 2002). Fig. 2.2 summarizes the polymer waste management 

options. 

 Although plastics are not to be blame for responsible for the entire waste 

management problem, however they are part of it. To prevent this problem to get worst, 

ideas of creating a more environmental friendly plastic emerged.  

 

 

 

        

 

           

           

           

           

            

   

 
Fig 2.2 Polymer waste management options (Scott G., 2000).  
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2.1.3 Environment Friendly Plastics 

 Environmentally degradable polymers can be generally divided into 

biodegradation, hydrolytic degradation, photodegradation and oxidative degradation. In 

the American Society of Testing and Materials (ASTM), the definitions of the 

environmentally degradable polymers are as below: 

 A degradable polymer is designed to undergo a significant change in its 

chemical structure under specific environmental conditions, resulting in a loss of 

properties that may vary as measured by standard tests methods appropriate to the 

polymer and the application in a period of time that determines its classification. 

 A biodegradable polymer is a degradable polymer in which the degradation 

results from the action of natural-occurring micro-organisms such as bacteria, fungi and 

algae (Swift G., 1995). Enzymes produced by the micro-organisms will degrade the 

plastic under aerobic or anaerobic conditions. Microbial population, moisture 

temperature and oxygen are the key elements that control the rate of the degradation 

(Wool R.P. et al., 2000). 

 A hydrolytically degradable polymer is a degradable polymer in which the 

degradation results from hydrolysis (Swift G., 1995). 

 An oxidative polymer is a degradable polymer in which the degradation results 

from oxidation (Swift G., 1995). Oxidants and peroxides catalyzed oxidation of the 

double bonds, produce peroxides which decompose into highly active free radicals and 

thus attack the polymer chains. This will cause chain scissoring follow by polymer 

degradation (Wool R.P. et al., 2000). 

 A photodegradable polymer is a degradable polymer in which the degradation 

results from the action of natural daylight (Swift G., 1995). The ultraviolet (UV) from the 

sun will leads to the decompositions of the plastic molecules. Incorporation of 

photoactive chemical groups into the polymer chain or by adding the photoactive 

additives will enhance the photodegradation. By reducing the molecular weight and 
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introducing oxygen groups on the polymer chain will help to increase the chemical 

degradation and thus, lead to biodegradation of the polymer (Wool R.P. et. al., 2000) 

 Fig. 2.3 shows the schematic pathways and further events beyond initial 

degradation may occur in the environment. The degradation will initially produce 

fragments which remain in the environment as recalcitrant pieces or completely 

biodegraded (Swift G., 1995). 

 

           

           

           

           

           

           

            

 

Fig 2.3 Pathways for environmentally degradable polymers (Swift G., 1995). 

 

2.2 Biodegradable Polymers 

 Biodegradable polymers are an alternative to the petroleum based non-

biodegradable polymers. It decreases the solid waste problems created by plastics 

waste. Biodegradable polymers can be divided to two main categories which are 

naturally occurring biodegradable polymers and synthetic biodegradable polymers.  

 Naturally occurring biodegradable polymers including polysaccharides such as 

starch, cellulose, chitin/chitosan, pullulan, levan, konjac and elsinan. In this compound, 

simple sugar such as glucose, fructose and maltose are the basic units (Danjaji I.D, 

2000).  Some polyester such as polyhdroxyalkanoates is also naturally occurring 

biodegradable polymers. Others naturally occurring biodegradable polymers include 
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proteins – collagen/gelatin, casein, albumin, fibrinogen, silks, elastins, natural rubbers, 

lignin, shellac, and poly(gamma-glutamic acid).   

 Synthetic biodegradable polymers are normally polymers with hydrolysable 

backbone or polymers that are sensitive to photodegradation. Polyesters are the 

polymer with hydrolysable backbone. Examples of polymers that in the family of 

polyesters are poly(glycolic acid), poly(glycolic acid co-lactic acid), polycaprolactone, 

polyether-polyurethane (I), polyether-polyurethane (II) and poly(amide-enamide)s. 

Plastics that allegedly biodegradable are listed in Table 2.1. 

 

Table 2.1: Biodegradable materials 

Commercial 
name 

Composition  Producer  

BIOMER polyhydroxyalcanoate Biomer 

BIOPOL* Poly(β-hydroxybutyrate-co-β-
hyroxyvalerate) 

Monsanto Europe S.A 

AEROMYL-
Chips 

starch Südstärke 

BIOPAC starch Franze Haas 
Waffelmaschinen 
Indutriegesel. GmbH 

BIOPUR starch Biotech GmbH 
GREEENPAC starch Folag (Nasional Starch and 

Chemical Comp. USA 
FRAMFILL starch Hubert Loick vnR gmbH 

NOVON starch Ecostar GmbH 
PARAGON starch Avebe 
RENATUR starch Storopack Hans Rechenecker 

GmbH & Co 
Paragon  starch Avebe 
Evercorn  starch modified  Japan Corn Starch Co Ltd. 

Vegemat  Corn + natural additives  Vivadour Group  
FASAL saw dust binder  Ifa  
Ecoplast  saw dust starch + binder  Groen Granulat 

Coffi-
Colagenfolie  

protein  Naturin GmbH & Co  

ACEPLAST RT 
ACEPLAST LS 

cellulose acetate DS=2.25 
cellulose acetate DS=2.40 

Acetati 
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BIOCETA cellulose acetate DS=2.00 Mazucchelli 1849 Spa (Prod.: 
Tubize Plastics)  
Franz Rauscher GmbH (Prod.: 
Tubize Plastics  

SCONACELL starch acetate DS>2 BSL-Olifinverbund 
Cohpol starch ester VTT Chemical Technology  
Ecoplast  poly(lactic acid) Cargill 
LACEA poly(lactic acid) Neste Chemicals 
BIOPLAST 
BIOFLEX 

starch+poly(-caprolactone)  Biotec  

MATER-BI Z-
grade 

starch+poly(-caprolactone)  Novamont  

MATER-BI Y-
grade 

starch+celluloseacetate Novamont  

MATER-BI N-
grade 

starch+copolyester Novamont  

Greenpol starch+aliphatic polyester SK Corporation  

BIONOLLE poly(butylene adipate-co-
butylene succinate-co-ethylene 
adipate-co-ethylene succinate  

Showa Denko (Europe) 

SKY GREEN  poly(butylene adipate-co-
butylene succinate-co-ethylene 
adipate-co-ethylene succinate  

Sunkyong Ind. 

CAPRA 650 poly(-caprolactone) Solvay 
TONE P787 poly(-caprolactone) Union Carbide  
Lunare SE aliphatic polyester Nippon Shokubai CO,LTD 
EASTAR BIO 
14766 

aliphatic -aromatic copolyester   Eastman Chemical Europe 

ECOFLEX aliphatic -aromatic copolyester   BASF 
BIOMAX poly(ethylene terephtalate) 

derivative 
Dupont PET Resins and 
Chem. 

BAK 1095*   
BAK 2195* 

poly(ester-amide) Bayer 

PETROCOMP poly(-caprolactone)+Estane Petroplast 
AQUANOVON PVA/NOVON Ecostar  
ELVANOL 71-30 PVA insol. high DH Du Pont 
Hydrofilm  PVA Hydroplst 
BIOSOLO polyethylene+starch  Indaco manufacturing Ltd 
DEGRA-NOVON 
ECOSTAR + polyethylene+starch+additives Ecostar 
EPI CP530 
EPI CP560 
EPI CP590 

polyethylene+starch+additives Technicoat Ltd (EPI Envir. 
Prod. Inc) 

* The production has stopped; the material is not available on the market anymore. 

(Resources are taken from www.nf-2000.org/publications/SMT4-2187FinalSynthesis 

.pdf, 2002)  
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2.2.1 Factor Effect The Biodegradability Of Polymers 

 Biodegradation is defined as process carried out by biological systems (bacteria 

or fungi) wherein a polymer chain is cleaved via enzymatic activity.  It might involve 

hydrolysis and oxidation process (Kaplan D.L et. al., 1993). Polymer structures, 

morphology, radiation and chemical treatments and molecular weights are the factors 

that affecting biodegradation.  

 Natural macromolecules such as starch and cellulose are generally degraded 

by hydrolysis and followed by oxidation. The hydrophilic-hydrophobic character of 

synthetic polymers will affect the biodegradability of the polymer. This is due to the 

enzyme-catalyzed reactions mostly occurring in the aqueous media.  Polymer that has 

both hydrophobic and hydrophilic segments seems to have a higher biodegradability 

than those polymers that containing only hydrophobic or hydrophilic structures 

(Chandra R. & Rustgi R., 1998). 

 Morphology will bring effect to the biodegradability of the polymer. Synthetic 

polymers that have short repeating units which enhance the crystallization will make 

the hydrozable groups inaccessible to enzymes. Size, shape and number of the 

crystallites will pronounced effect on the chain mobility of the amorphous regions and 

thus affect the rate of biodegradation (Chandra R. & Rustgi R., 1998). 

 Photolysis, irradiation and oxidation will cause effect to the biodegradability of 

the polymers by chain scission and decrease in molecular weight. The rate of the 

biodegradation increase until most of the fragment polymer is consumed. A lower rate 

of degradation should be occurred due to the crosslink of the polymer (Chandra R. & 

Rustgi R., 1998). 
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Fig 2.4 : Pathways for polymer biodegradation (Chandra R. & Rustgi R, 1998).  
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and the influence of inhibitors or inducers in the process are the factors to determine 

the rate of the biodegradability of the polymers (Kaplan D.L et. al., 1993). 

Temperature, moisture (liquid or vapor), salts (concentration and type), oxygen 

(aerobic to anaerobic), availability of alternative electron acceptors, trace metals trace 

nutrients, pH, redox potential, environmental stability or flux, pressure, predators (e.g., 

protozoa), inhibitors, alternate carbon, and light (intensity, energy range, cycle) are the 

factors on environments that  determine how fast is the biodegradable process can be 

occurred. All these elements have to be present within the window of acceptability for 

the organisms to produce the enzyme to degrade the polymer (Kaplan D.L et al., 

1993). 

 For the substrate, at the lowest level of the hierarchy, the polymer chain must 

contain chemical bonds susceptible to hydrolysis or oxidation by enzymes for 

biodegradation process to initiate. The degree and type of branching, rate of 

hydrophobicity or hydrophilicity, stereochemistry and molecular weight distribution will 

bring impact to the depolymerization of the polymer and thus affect the 

biodegradability. At a higher hierarchy, degree of crystallinity and morphology will affect 

the accessibility of the enzymes and affect the degradation of the polymer. At the 

higher level of complexity, coating and interaction of the polymers (blends) will bring 

into the consideration. Coating and polymers blend might prevent the moisture and 

permeability of the oxygen to the organisms and thus making the biodegradation 

impossible (Kaplan D.L et al., 1993). The summary of the elements that affect the 

biodegradation is stated at Fig. 2.5. 
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Fig. 2.5: Key elements in the biodegradation process (Kaplan D.L et al., 1993). 

 

2.2.4 Ways To Increase The Biodegradability Of Polymers. 

 Most of the synthetic polymers contain only carbon-carbon bonds and have 

very high molecular weights. These types of polymers show little or no susceptibility to 

enzyme-catalyzed degradation reactions. ‘Weak links’ was attached or insert within the 

polymer that are not readily biodegradation. These ‘weak links’ are designed to control 

the degradation of an initially high molecular weight, hydrophobic polymer into a lower 

molecular weight oligomer that can be consumed by the microorganisms through the 

biodegradation process (Chandra R. & Rustgi R, 1998). Inserting main chain ester 

groups into vinyl type polymers is shown in Fig. 2.6.  
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Fig. 2.6 Insertion of ester group into vinyl polymer (Chandra R. & Rustgi R, 1998). 
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Preparations of the photodegradable copolymer follow by oxidation are shown 

in Fig. 2.7 and Fig 2.8. These are some of the methods to insert the ‘weak links’ into a 

high molecular weight and hydrophobic polymers (Chandra R. & Rustgi R., 1998). 
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Fig. 2.7 Insertion of ketone group into vinyl polymer (Chandra R. & Rustgi R., 1998). 
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Fig. 2.8 Norrish I and Norrish II reaction mechanisms for the degradation of copolymers 
of ethylene (Chandra R. & Rustgi R., 1998). 
 

 Blending of biodegradable polymers such as poly(ε-caprolactone) and starch 

with inert polymers such as polyethylene is another method of producing a degradable 

polymers. The idea in this principle is if the biodegradable component is present in 
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sufficient amounts and it is removed by the microorganisms, the plastics or film 

containing the remaining inert will lose its integrity, disintegrate and disappear 

(Chandra R. & Rustgi R., 1998). 

 

2.2.5 Starch Filled Polymers 

 Incorporation of starch into the synthetic polymer is hoped to increase the 

biodegradability of the synthetic polymer when the starch is consumed by 

microorganisms. It is believed that under a rapid enzymatic hydrolysis, starch will be 

degraded leading to a void-containing matrix, the reduced of mechanical properties and 

might be promote the biodegradation of the synthetic polymer due to the increased 

surface area available for interaction with microorganisms as the molecular weight 

decrease (Chandra R. & Rustgi R., 1998). 

 Amylase and amylopectin were the two major components in starch. The linear 

amylose portion represents about 30% of common cornstarch and has a molecular 

weight of 200,000-700,000, whereas the amylopectin molecules have molecular weight 

ranging at 100-200 million. The particles sizes of selected starches were shown in 

Table 2.2 (Iman S.H. et al., 1999). 

 

Table 2.2 Particles size of selected starches (Iman S.H. et  al., 1999). 

Starch types Average diameter, m Shape 
Potato 50 Prolate, ellipsoid and small spheres 
Sago 30 Prolate, some truncation 
Maize 15 Facetted spheres 

Casava 15 Smooth spheres 
Rice 5 Heavily facetted spheres 
Tairo 2-6 Heavily facetted spheres 

Cowcockle 0.5-1.6 Facetted spheres 
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2.2.5.1Starch Filled Polyethylene (PE) 

 The idea of incorporation starch to LDPE was first introduced by Griffin. The 

degradation of starch/polyethylene was observed in composting municipal solid waste 

(MSW) and this led to the realization that some of the component in the MSW was 

responsible to the degradation of starch/LDPE. The chain breaking and followed by the 

biological attack on the fragments of LDPE/starch was caused by unsaturated cooking 

oil; which selectively absorbed by the LDPE under warm condition (Chandra R. & 

Rustgi R., 1998). 

 Normally, there have been three basic approaches of preparing starch filled 

polymer in lab. The first approach was to prepare a polymer blend consists of starch 

and synthetic polymers and then formed a films or injection molded articles. An 

example was the blending of LDPE and starch. On the second approach, starch was 

blend with other biodegradable polymers such as polyhydroxybutyrate-

polyhydroxyvalerate (PHBV) to develop a 100% biodegradable polymer. Thermoplastic 

polymer chain was grafted on starch or starch was chemically modified in the second 

approach.  Example of starch graft copolymers was starch-poly(methyl acrylate). 

Recently, the third approach of starch filled polymer was immerged when starch itself 

has been proposed as a solitary thermoplastic material that can be cast into films or 

extruded with low molecular weight plasticizers (Gordon et al., 1999). 

 Starch has been used as filler in thermoplastics since 1977. Griffin is the first 

who incorporation of starch into synthetic plastic resin. Fatty acid was used as an auto-

oxidizable substance to promote the degradability. Griffin claimed that starch filled 

thermoplastics can achieved the degradability when the starch particles on the surface 

of the thermoplastics degraded or leached out, thus creating a cellular structure which 

is readily attacked by the processes of oxidation, hydrolysis, direct enzyme action or 

combinations of these processes (Griffin, 1977). In Nakamura et. al., different starches 

such as native, adiapate, acetylated and cassava starch was incorporated in LDPE 

matrix to obtain a partially biodegradable product, with the aim to decrease the plastics 
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wastes in the environment. High shearing mixer was used to guarantee the 

homogeneity of the formulations. Studies on mechanical, morphological and 

biodegradation properties have been done in this study (Nakamura E. et al., 2005). 

 In Shah et al., the degradation mechanism of starch filled LDPE have been 

study. LDPE was compounded with native, dry starch using two-roll mill. Strips of 

LDPE filled starch was obtained by Brabender extruder. Accelerated degradation tests 

such as thermo-oxidation, enzyme hydrolysis and UV radiation tests were done and the 

degradation mechanism of the composite has been study (Shah P.B. et al., 1995). 

Study on using vegetable oil as a compatibilizer in PE-starch blends has been done by 

Sastry and co-worker. Degradation tests such as thermo oxidative, soil burial, UV light 

exposure and etc. In this study, it was found that vegetable oil not only acted as 

plasticizer that can improve the films quality but also acted as pro-oxidant that 

accelerated the degradation of the PE-starch film (Sastry P.K. et al., 1998). 

Arvanitoyannis et. al. studied the gas/water permeability, mechanical properties and 

degradability of LDPE and rice or potato starch blends before and after storage.  The 

blends were extruded in the presence of varying amounts of water and hot pressed. On 

higher starch contents (>30% w/w) there was an adverse effect on the mechanical 

properties.  When starch contents increased, the gas permeability and water vapor 

transmission rate were increased proportionally. Theoretical and semiempirical 

calculations for mechanical properties and gas permeability were carried out and 

possible interpretations were provided for the occasionally observed deviations 

between the experimental and theoretical values. When the starch content exceed 10% 

w/w, the biodegradability rate of the blends was enhanced (Arvanitoyannis et al., 

1998). 

 Danjaji et al. studied the degradation and moisture uptake of sago-starch filled 

LLDPE composites. After the hydrolysis enzymatic degradation, only the surface starch 

granules were involved in the hydrolysis, whereas the embedded granules were not 

easily accessible due to the poor moisture absorption of the matrix. Discoloration, 
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embrittleness and dimensional changes were observed to the samples after the natural 

weathering exposure. Soil burial led to a drop in the pH and presence of holes. 

Mechanical properties decreased with time in the first four months of soil burial and 

decreased gradually after that. Moisture uptake increased with the increased of starch 

content and immersion time. Three months were needed for the composites to 

equilibrate even completely immersed in water. Decreased in mechanical properties 

were observed with the increasing moisture uptake (Danjaji I.D. et al., 2002). 

Hakkarainen et al. analyzed the susceptibility of starch-filled and starch-based PE to 

oxygen and air. LDPE containing 7.7% starch and a pro-oxidant formulation in the form 

of masterbatch (LDPE-MB) was compared to the pure LDPE, LDPE with 7.7% starch 

(LDPE-starch) and a blend with 70% starch and 30% ethylene maleic anhydride 

(starch-EMA). Molecular weight changes, formation of carbonyl groups and 

degradation products were analyzed by FTIR and gas chromograph mass 

spectrometer (GC-MS) after the samples were subjected to thermal ageing at 80oC in 

air and water. LDPE-MB has the fastest degradation rate in both environments, 

although the degradation was faster in air than in water. Etching out or deactivation of 

pro-oxidant in water explained the slower degradation of LDPE-MB in water. 

Degradation of pure LDPE and starch-EMA was faster in water.  LDPE/starch was the 

only material that did not degraded during 11 weeks in water at 80oC. Addition of starch 

to LDPE made the materials even more stable to ageing in air.  Molecular weight 

distribution of LDPE-MB narrowed during the ageing in air but broaden during the 

ageing in water. Same result was also observed in LDPE-starch samples. This might 

due to the lower oxygen concentration in water increased the probability for molecular 

enlargement reactions compare the case in air (Hakkarainen M. et al., 1997). 

 Yabannavar and Bartha studied the degradability of photosensitized PE, PE-

starch, extensively plasticized polyvinyl chloride (PVC) and PP films in aerobic soil for 3 

months. Carbon dioxide evolution, residual weight recovery and loss of tensile strength 

were observed along the degradation duration. Photosensitized PE resulted 
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