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ANALISA DAN REKABENTUK PANDU GELOMBANG SESATAH UNTUK 
PERAMBATAN DEDENYUT BERKELAJUAN TINGGI DI ATAS PAPAN 

LITAR. 
 

ABSTRAK 
 

Tujuan tesis ini adalah untuk menyelidik struktur pandu gelombang sesatah 

(CPW) yang sesuai bagi kegunaan papan litar (PCB) untuk perambatan dedenyut 

berkelajuan tinggi, untuk menjalankan kajian menyeluruh mengenai ciri-ciri perambatan 

dan juga untuk membandingkan keupayaan dengan talian mikrostrip.  Rumus-rumus 

rekabentuk telah dibangunkan berdasarkan rumus-rumus yang asalnya disyorkan 

kepada MMIC dan silikon CPW.  Kemudiannya, rumus-rumus ini telah digunakan untuk 

mengoptimumkan rekabentuk CPW dimana keputusan-keputusannya menunjukkan 

perbezaan sebanyak 15% dibandingkan dengan keputusan-keputusan simulasi.  

Analisa-analisa domain frekuensi dan domain waktu telah dijalankan secara 

menyeluruh untuk mengenal pasti kesan parameter-parameter CPW ke atas 

keupayaan perambatan dedenyut.  Selepas itu, satu litar prototaip telah dibangunkan 

untuk mengesahkan keputusan-keputusan teori dan simulasi.  Ukuran bacaan 

eksperimen menunjukkan persamaan yang ketara dengan keputusan-keputusan teori 

dan simulasi disamping mengetengahkan beberapa isu lain.  Berlawanan dengan 

pendapat popular yang mengatakan CPW  lebih berkeupayaan dari talian mikrostrip 

berdasarkan pengalaman MMIC, tesis ini menunjukkan berbagai isu-isu bagi aplikasi 

CPW di atas papan litar seperti kejadian salunan (resonance) mendatar dan menegak 

yang kuat.  Menariknya, isu-isu ini tidak dikesan di dalam mana-mana simulasi 

mengunakan model ADS ataupun dari rumus-rumus rekabentuk.  Lalu, tesis ini telah 

berjaya mengesyorkan pendekatan-pendekatan alternatif untuk simulasi ADS dan 

rumus-rumus bagi memberi ramalan yang lebih realistik kepada ciri-ciri litar yang 

sebenar.  Terakhirnya, beberapa topik kajian berkenaan dengan papan litar CPW telah 

disyorkan untuk kajian mendalam bagi menjadikan struktur CPW lebih popular untuk 

kegunaan dedenyut berkelajuan tinggi di atas papan litar. 
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ANALYSIS AND DESIGN OF COPLANAR WAVEGUIDE FOR HIGH-SPEED 
PULSE PROPAGATION ON PRINTED CIRCUIT BOARD 

 
ABSTRACT 

 
 
 The goals of this thesis are to investigate a suitable printed circuit board (PCB) 

coplanar waveguide (CPW) for high-speed signal propagation application, to conduct 

thorough analyses of its propagation characteristic and to compare its performance 

against the mainstream microstrip line.  Design equations are developed by adopting 

expressions that are originally proposed for monolithic microwave integrated circuit 

(MMIC) and silicon CPW.  Then, these equations are employed for optimized CPW 

designs whereby the results are compared to simulations outputs for sanity checks that 

showed 15% differences.  Extensive frequency and time domain numerical analyses 

are conducted to access the impacts of each CPW parameters to signal propagation 

performance.  Subsequently, a prototype circuit is built to verify theoretical and 

simulations results.  Experiment results show excellence correlations to theoretical 

estimates as well as exposed some potential issues.  Contrary to popular beliefs that 

CPW has superior performance than microstrip based on MMIC experience, this thesis 

unveiled various CPW issues for larger scale PCB implementation such as severe 

lateral and longitudinal resonances.   Interestingly, these issues are not detected by 

ADS simulations using the built-in CB-CPW model or by the design equations.  Thus, 

the thesis has successfully proposed alternatives approaches for ADS simulations and 

design equations for more realistic predictions of the actual circuit characteristics.  

Lastly, a few potential research topics on PCB CPW structures were highlighted for 

further researches for making CPW to be more compelling for high-speed PCB 

implementations. 
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CHAPTER 1 
 
 

INTRODUCTION 
 
 
 
 
1.0  Background 
 

Chip level frequency is increasing rapidly following a remarkable progress in 

semiconductor processes and on-chip interconnects technologies (ITRS, 2005).  

However, clearly from Figure 1.1, the off-chip frequency is lagging due to various 

issues related to off-chip interconnects.  One of the issues is contributed by 

transmission line effects that are getting more prevalent at higher frequency as the 

circuit length comparable to the signal wavelength. 

 

Figure 1.2 illustrates a simplified high-speed link consisting of a transmitter, 

transmission mediums and a receiver.  In general, these transmission mediums need to 

provide adequate bandwidth to ensure negligible distortions to the propagating high-

speed signals. Some examples of transmission line mediums are on-chip 

interconnects, package interconnects, socket, via, transmission line and cables.  

Typical issues associate with off-chip interconnects are originated in transitional vias, 

sockets and transmission lines.  For the former two, radiation and crosstalk are the 

main issues originated from impedance discontinuities and crosstalk.  Via impedance 

mismatch can be solved by using stub-less via to avoid opened circuit quarter 

wavelength resonance, micro-via or control impedance via (Antonini et al., 2004; Pillai, 

1997).  Similar approaches have been taken to avoid crosstalk and radiation of the 
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socket by venturing into control impedance socket and shielded pin (Ortega and Elco, 

1999). 
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Figure 1.1: A near term trend for on-chip wiring frequency (ITRS, 2005) 
 

 

 

Figure 1.2: A signal transmission block diagram showing the key components: a 
transmitter, transmission mediums, and a receiver. 

 

There are many transmission lines available to meet various applications.  The 

most popular ones are strip and microstrip lines as shown in Figure 1.3.  Typically, the 

conductors are made of copper and the dielectric materials are based on FR4 dielectric 

material.  Strip and microstrip transmission lines perform well at lower and medium 

frequency range; but may post concerns at high-frequency region.  Reflections and 
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Medium

Transmitter Receiver 
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Mediums
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radiations losses are the main issues for strip and microstrip lines that are induced by 

connecting vias.  In addition, microstrip line presents additional challenges to high-

speed pulse propagation in term of crosstalk susceptibility, radiation emissions and 

signal dispersions.  Crosstalk and radiation are largely caused by poor shielding while 

dispersion is created by inhomogeneous dielectric material interfaces. 

 
   (a)     (b) 

 
Figure 1.3:  Two most common PCB transmission lines:  (a) Stripline and (b) microstrip 
transmission lines. 

 

Another popular transmission line is coplanar waveguide (CPW) which is 

generally assumed performing better than stripline or microstrip.  This advantage is 

mainly attributed to the absent of connecting via, good access to grounding points and 

lower dispersion characteristics (Simon, 2001).  The applications of CPW for high 

frequency MMIC applications has been widely researched and reported in numerous 

literatures (Simon, 2001).  However, limited researches are being done for CPW 

implementation on larger printed circuit board (PCB) circuits except for a noticeable few 

such as from El-Badawy and El-Sharawy (1992) and Bokhari and Ali (2003).  This 

awareness inspires the author to embark on this research topic to investigate the CPW 

signal propagation behavior in details and it prospect for high-speed data transmissions 

on PCB.  Some of the main concerns related to direct proliferations of MMIC CPW 

design rules to PCB design are listed for further investigations: 

 

i)  Physical Differences 

 A 50-Ω FR4 PCB CPW requires a ratio of dielectric height to trace width of 

about the same dimension (i.e. unity).  On the other hand, 50-Ω MMIC CPW requires 
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dielectric to trace width ratio of 2 to 7 times larger (Shih, 1991).  Therefore, significant 

electrical behaviors differences are expected especially on dispersions and parallel 

plate resonance frequencies.  In general, PCB channels are longer than MMIC 

channels by 25mm (1 inch) to 150mm (6 inches) or more.  Apparently, PCB trace 

lengths are a lot bigger than one-half of the maximum wavelength of interest, (i.e. 

>λ/2).  Thus, the transmission line effects are expected to be more prominent on PCB 

compared to MMIC. 

 
ii) Propagation Medium Differences 
 
 PCB material dielectric constants (εr) are within 3.0 to 4.0, while MMIC has 

higher εr of 10 to 15.  As a consequence, different propagation characteristic and 

physical dimensions (trace width, and air gap) are expected to give direct impact to 

propagating signals performance in terms of dispersions and attenuations. 

 
iii) Attenuation Differences 
 
 PCB dissipation factor or loss tangent (tanδ) is higher attributed to bigger 

dissipation factors of 0.005 to 0.023 compared to GaAs of only 0.001 (very low loss).  

Loss tangent (dielectric polarization and imperfections) contributed to the dielectric 

material losses in addition to the conductor losses.  This is particularly important for 

PCB attributed to its larger circuit dimensions that make dielectric loss significant.  

Furthermore, dielectric loss tangent are more dominant on PCB compared to conductor 

losses at higher frequency (Johnson and Graham, 2004).    

 

Thus, these differences warrant thorough analyses for the PCB CB-CPW 

transmission line behavior analyses to ensure performance and stability across the 

intended frequency range. 
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1.1  Thesis Objectives 
 

The objectives of this thesis are:  

i) To investigate a suitable CPW structure for high-speed pulse propagation.    

ii) To study the CPW propagation behaviors through numerical analysis, 

simulations and measurements.   

iii) To compare CPW propagation characteristics and overall performance to 

microstrip transmission line. 

 

The main contributions out of this thesis are: 

i) To present validated transmission line equations for attenuation and 

propagation constant of the chosen CPW variant that is fully backed to correlate 

to simulation and measurement data. 

ii) To propose design rules for the applications of the chosen CPW for PCB high-

speed pulse propagation. 

 

1.2  Thesis Scope of Work 
 
 Since it is impossible to comprise all elements related to the subject under 

study, therefore, this work will focus within the following boundaries.  Firstly, 

mathematical equations and solutions for standard transmission line equations will be 

omitted for brevity with references are given in the bibliography for interested readers.  

Similarly, mathematical problems are solved using look-up tables or computer 

programs without showing the derivation details. 

 

 Secondly, commercial software tools will be used for analytical and numerical 

calculations as well as for structures modeling.  MATLAB® version 7 will be employed 

for numerical calculations and Agilent’s Advanced Design System (ADS) for all linear 

circuit simulations using modeled and measured data.  Ansoft Corporation’s 2D 

Extractor™ electromagnetic (EM) modeling software will be utilized for quasi- 
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transverse electric and magnetic (QS-TEM) analysis and High Frequency Structure 

Simulation (HFSS™) for full-wave modeling.  The genuine intention to minimally 

employ these simulations tools for checking the calculated values.  For information, 

there are other equivalent software packages available for each of the tools other than 

those mentioned above.  For example, Quasi-TEM field solver and full-wave field solver 

alternatives are also available from CST (www.cst.com) and Agilent (www.agilent.com).  

As for numerical analysis, there are many alternatives available including some free 

tools from the internet. 

 

Thirdly, the operating frequency is limited up to 40GHz to facilitate the 

measuring equipment bandwidths and numerical analysis QS-TEM assumption limits.  

Finally, the study will be limited to a typical PCB configuration in term of material 

properties and physical dimensions. 

 

1.3  Thesis Organization 

 This dissertation is divided into eight chapters.   Chapter 1 covers the 

introduction, project objectives, scopes of work and overall thesis organization.   

Chapter 2 reviews general transmission line theories, planar transmission line 

structures and literature survey associated to CPW analysis and analyses 

methodologies to pave the way for subsequent discussions in future chapters.  Chapter 

3 reviews the methodologies to be employed for frequency domain, time domain 

analyses as well as measurement setup.  Chapter 4 illustrates the approaches for 

deriving CB-CPW QS-TEM relations to characteristic impedance (Zo) and effective 

dielectric constant (εeff). 

 

Next, Chapter 5 enhances the QS-TEM formulations from Chapter 4 by 

incorporating the frequency dependent effects.  Then, the derived frequency dependent 

QS-TEM based equations will be validated against data from literatures and full-wave 
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simulation.  Then, analyses on key parameters of the CPW will be performed to 

evaluate their influence to the overall circuit performance for design optimizations 

purposes. 

 

Subsequently, Chapter 6 focuses to review frequency and time domain 

analyses results to measure the overall performance in both worlds.  Frequency 

domain analyses are useful to give the overall design preview highlighting design 

optimization opportunities, whereas, equally important time domain (transient) analyses 

give performance indicator against amplitude and timing specifications in which digital 

systems are typically based upon.  Then, Chapter 7 is devoted to review measurement 

results of the prototype CB-CPW circuits and how well they correlate to the results from 

the developed CB-CPW design equations. 

 

Lastly, Chapter 8 summarizes the projects accomplishments against the set 

objectives and expected contributions.  Chapter 8 also outlines some related topics for 

future explorations. 
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CHAPTER 2 
 
 

REVIEW OF TRANSMISISON LINE THEORY 
 
 
 
2.0 Introduction 

 

Transmission line study is one of the electrical engineering foundations that are 

covered in many engineering text books such as Field and Wave Electromagnetic 

(Cheng, 1989), Fields and Waves in Communication Electronics (Ramo et al., 1993), 

and Fields Theory of Guided Waves (Collin, 1993).  Cheng and Ramo’s describe the 

relationships between plane electromagnetic (EM) waves to the general circuit theory.  

Collin’s explains ample transmission line equation derivations and thorough 

explanations of their relation to EM theories.  The main goal of this chapter is to give a 

brief overview of transmission line theory to facilitate future discussions on transmission 

line equations in later chapters. 

 

2.1 Ideal Transmission Line 

A general ideal transmission line model with microscopic length dz is shown in 

Figure 2.1.   Whereby, L is the inductance per-unit length (p.u.l) (Henry/meter) and C is 

the capacitance p.u.l (Farad/meter).  Voltage (V) and current (I) p.u.l. are given by 

Equation 2.1 and Equation 2.2 famously known as telegraphers’ equations (Ramo et al, 

1993):  

t
IL

z
V

∂
∂

−=
∂
∂

                                                          (2.1) 
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t
VC

z
I

∂
∂

−=
∂
∂

                                                          (2.2) 

 

 

Figure 2.1: An infinitesimal representation of a general ideal transmission line segment.  
(t=time, z=distance, v=volt and i=current). 

 

Next, Table 2.1 summarizes the transmission line equations and their relations 

to the Maxwell’s plane wave equations (Ramo et al., 1993). 

Table 2.1: Comparisons between Transmission Line Equations and Plane Wave 
Equations. 
 

Operation Transmission Line Equations 
(in term of Voltage and Current) 

Maxwell’s plane wave Equations 
(in term of E and H Fields) 

Differentiate with 
respect to z tz

IL
z
V

∂∂
∂

−=
∂
∂ 2

2

2

          (2.3) 
tz

Hy
z
Ex

∂∂
∂

−=
∂
∂ 2

2

2

μ             (2.4) 

Differentiate with 
respect to t 

2
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I

∂
∂

−=
∂∂

∂
        (2.5) 2
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t
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∂
∂

−=
∂∂

∂
− ε            (2.6) 

Substitution 
2

2

2

2

t
VLC

z
V

∂
∂

=
∂
∂
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LC
v 1
= , where v is velocity 

2

2

22
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t
V
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V

∂
∂

=
∂
∂

⇒        (2.7) 

similarly 

2
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I

∂
∂

=
∂
∂

⇒       (2.8) 

2

2
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2
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∂
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=v  

2

2
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∂
∂

=
∂
∂

⇒          (2.9) 

similarly 

2

2

22

2 1
t
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Hy

∂
∂

=
∂
∂

⇒        (2.10) 
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i(z,t) i(z+∆z,t)
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v(z+∆z,t)

∆z
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 All functions inside Table 2.1 are assumed continuous so that they can be 

substituted into each other to yield one dimensional wave equations (in z direction for 

Equations 2.3 to Equation 2.10).  

Equation 2.8 has a general solution in this form (Ramo et al., 1993): 

⎭
⎬
⎫

⎩
⎨
⎧ +−−= )()(1

21
0 v

ztF
v
ztF

Z
I                                   (2.11) 

 
 

Where, F1 and F2 are arbitrary functions and Zo is defined below.  

 

C
L

LC
LL

LC
LLvZ ====

.1
0    (ohm)                           (2.12) 

 
 

The derived constant Z0 is known as characteristic impedance.   Z0 is defined as 

the ratio of voltage to current for any traveling waves at any given points (z) and at any 

given instances (t). 

 

2.2 Non-Ideal Transmission Line 

In reality, transmission lines are non-ideal attributed to various losses that 

present in many forms.   In general, a non-ideal transmission line can be modeled as 

shown in Figure 2.2 below with two additional elements—resistance (R) and 

conductance (G).  These additional terms can be viewed as corrections for the lateral 

ohmic losses (R) and vertical material leakages losses (G) respectively. 

 

R∆z

∆z

v(z+∆z,t)

R∆z R∆zL∆zL∆zL∆z
C∆z C∆z C∆z

v(z,t)

G∆
z

G∆z G∆z

i(z,t) i(z+∆z,t)

R∆z

∆z

v(z+∆z,t)

R∆z R∆zL∆zL∆zL∆z
C∆z C∆z C∆z

v(z,t)

G∆
z

G∆z G∆z

i(z,t) i(z+∆z,t)

 
Figure 2.2:  An infinitesimal representation of a general non-ideal transmission line 
segment. 
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Where, R is the resistance p.u.l (Ohm/meter), L is the inductance p.u.l 

(Henry/meter), C is the capacitance p.u.l (Farad/meter) and G is conductance p.u.l 

(Siemens/meter).  Next, a non-ideal line characteristic impedance (Zo) is given by: 

 

)(
)(

0 CjG
LjR

Y
ZZZ

ω
ω

γ +
+

===     (ohm)                            (2.13) 

 

Apparently, Equation 2.13 suggests that for a non-ideal transmission line case, 

characteristic impedance (Z0) is a complex entity implying that traveling wave’s 

voltages and currents are not necessarily in phase.  When R and G terms are forced to 

zero as in loss-less case, Equation 2.13 reduced to the same form as Equation 2.12. 

Equation 2.13 also introduced a new term γ (“gamma”) which represent another 

important transmission line parameter known as propagation constant.  A complete γ 

expression is shown below (Ramo et al., 1993): 

 

ZYj =+= βαγ                                              (2.14) 

 

Next, substituting Equation 2.11 into Equation 2.13 will yield Equation 2.15, 

where α (“alpha”) signifies the rate of exponential attenuation p.u.l. or commonly known 

as attenuation constant (in Neper/meter), while β (“beta”) represents the amount of 

phase shift per-unit length for each wave or commonly referred as phase constant (in 

radian/meter).   

zjzzjz eeVeeVV βαβα ++
−

−−
+ +=  (V)                         (2.15) 

 

A total attenuation constant (α) for a general transmission line is given by 

Equation 2.16 (Haydl, 1997): 
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 subconderdc _mod αααααα ++++=  (Neper/m)        (2.16) 

 

where αc, αd, αr, αmode, αcond_sub are attenuation constants for conductor, dielectric 

material polarization (dielectric loss), radiation, modes conversion, and non-zero 

substrate conductivity respectively.  

  

Next, the phase constant (β) is defined by Equation 2.17 below (Ramo et al., 

1993):  

c

f eff

g

επ

λ
πβ

..2.2
==      (radian/m)                              (2.17) 

where, λg is the guided wavelength in meter (m), f is the frequency in Hertz (Hz), and c 

is the speed of light in vacuum (approximately 3.0x108 m/s).  General expressions for α 

and β are summarized in table 2.2 below for all the three cases: non-ideal, ideal and 

low-loss line transmission lines (Ramo et al., 1993). 

 
Table 2.2: General α and β expressions for General Transmission Line, Ideal 
Line, and Low Loss Line (from Ramo et al. page 249) 
 

Quantity Non-ideal line Ideal Line Approximation for Low-loss 
Line 

α Real )})(({ CjGLjR ωω ++  0 
22
0

0

GZ
Z
R

+  

β Imaginary )})(({ CjGLjR ωω ++
C
L

 ⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −+

L
R

C
Gj

C
L

ωω 22
1  

 
 
 
2.3 DC and Frequency Dependent Resistance 

Low frequency and high frequency currents behave differently inside the 

conductor.    This section explains the differences between low and high currents 

distributions in detail though theoretical analyses and field solver simulations.  
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2.3.1 DC and Low Frequency Resistance 

Low frequency current density (Jo, A/m2) is evenly distributed inside the 

conductor.  Therefore, low frequency resistance p.u.l. formula is similar to that of the 

standard DC resistance as shown by Equation 2.18 below: 

 

A
Rdc

ρ
=                (Ω/meter)                            (2.18) 

 

where, ρ is the resistivity of the conductor (unit in ohm/m) and A is the cross sectional 

area of the line (unit in m2).   

 

2.3.2 High Frequency Resistance 

High frequency resistance (Rac) is difficult to estimate because of the complexity 

to determine the frequency dependent depth of penetration or commonly known as skin 

effect.  Classical skin effect approximation was developed by Wheeler (1942) in his 

paper “Formulas for the Skin-Effect.”  Wheeler expression was developed based on 

surface resistance (Rs) related to the incremental inductance associated with 

penetration of magnetic flux into the conductor surface (Denlinger,1980).  Over the 

years, various authors have refined Wheeler’s estimations through synthesis methods, 

curve fittings and laboratory experiments (Waldow and Wolff, 1985; Pucel, 1968). 

 

Theoretically, low-frequency currents tend to flow following least resistance 

paths, whereas high frequency currents tend to follow least inductive paths (Johnson 

and Graham, 1993).  As a result, high frequency currents tend to concentrate near the 

surface of the conductor due to internal inductance which subsequently minimizes the 

effective cross-section area of the trace. Subsequently, this will result with increasing 

high frequency resistance following the Equation 2.18. 
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Next, skin depth (δ) is defined as the depth at which the wave is exponentially 

attenuated to e-1 or 37% of the surface wave intensity (where a constant e=2.718).  For 

conductor, the skin effect (δ) depth of the penetration is estimated by Equation 2.19 

(Cheng, 1989): 

μσπ
δ

f
1

=           (m)                                      (2.19) 

 
 

where, f is the frequency, μ is the material permeability and σ is the conductor 

conductivity.  For general non-magnetic materials such as copper, the permeability is 

assumed equal to be a unity (i.e. 1). 

 

 Figure 2.3 shows skin depth plots of two common conductors; copper 

(σ=5.7x107 S/m) and aluminum (σ=3.7x107 S/m) versus frequency.  Evidently, the 

higher conductivity material (i.e. copper) experiences a lower skin depth at lower 

frequency (i.e., 
σ

δα 1
 from Equation 2.19).  This also indicates that higher 

conductivity materials are more effective for electromagnetic (EM) wave shielding by 

providing lower EM waves penetrations.   

 

 Figure 2.3 also unveils significant information linked to conductor loss analysis.  

Skin effect loss is insignificant for thin conductors less than 1μm such as the one used 

on MMICs or silicon interconnects up to 10 GHz since the skin depth is already much 

larger than the conductor thickness, hence, can be assumed similar the DC resistance 

(Braunisch and Grabinski, 1998).  However, for PCB with typical conductor thicknesses 

of 25μm to 50μm the same conclusion is unfounded since the conductor thickness is 

bigger than skin effect depth.  Clearly from Figure 2.3, PCB skin effect losses are 

significant even at low frequency operations (<10Ghz). This is the key difference 
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between MMIC and PCB to be highlighted in this section in relation to the skin effect 

impact to high frequency signals. 

 

After introducing the skin effect theory, Equation 2.18 can now be rewritten to 

include frequency dependent skin depth effect as the following: 

      
eff

ac A
R ρ

=                         (ohm/m)                    (2.20) 

 
where, Aeff is the frequency dependent effective cross-section area.   
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Figure 2.3:  Skin depths of two different conductors (copper and aluminum). 

 

 In general, the effective cross-section area (Aeff ) estimation  is nontrivial since 

depending heavily on the electromagnetic (EM) field patterns that are also dependent 

on transmission line geometry and dimension.  Microstrip’s current density distribution 

estimates, i(x) under the signal line is given below (Pucel et al., 1968; Johnson and 

Graham, 1993).  
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⎥
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⎤
⎢
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+

= 2)/(1
1)(

hxh
Ixi o

π          (A)                                (2.21) 

 

where, Io is the current magnitude, h is the dielectric height and x is distance away from 

the center of the signal trace.  Figure 2.4 below illustrates the current distributions as 

plotted using Equation 2.21 that show the current density is gradually diminished when 

moving away from center of the conductor strip. 

 
Figure 2.4: Reference plane current density estimation underneath a microstrip trace (in 
percentage of Io) using Equation 2.21 for h=127μm, w=200μm and Io=1A. 
 

Equation 2.21 and Figure 2.4 show that current distributions under a signal 

trace can be confined tightly beneath the trace by utilizing a thinner dielectric height (h).  

Crosstalk to adjacent circuits can be avoided by confining return current closer below 

the trace to avoid interfering with currents from neighboring circuits.  Therefore, one of 

the effective and cheap methods to avoid crosstalk is to apply thinner dielectric 

materials whenever feasible in order to minimize crosstalk. 

 

Fortunately, most of today’s field solvers such as from CST, Agilent and Ansoft 

are capable simulating current density effect accurately and timely as shown in Figure 

2.5 below that is produced using a software from Ansoft Corporation called 2D 
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Extractor™.  Figure 2.5 illustrates the currents disperse into a bell-like curve in a similar 

fashion as predicted by Equation 2.21 and Figure 2.4. 

 

Figure 2.5: Microstrip current distribution at 100 MHz (current density Amp/m2 for trace 
and reference plane conductors).  Channel details:  εr = 3.9, trace width, w = 254μm 
and trace thickness, h = 36μm. 
 

Next, Figure 2.6 illustrates 2D Extractor™ plots of the current distributions on a 

microstrip line at different frequency intervals; 10Hz, 1 MHz, 100 MHz and 1 GHz.  At 

lower frequency (10MHz), currents are uniformly distributed across the strip in as 

similar fashion as the DC case.  However, higher frequency currents are concentrated 

beneath the conductor surface.  Figure 2.5 and Figure 2.6 offered powerful visual 

proofs regarding frequency dependent resistance concepts brought forward in this 

section.   

100MHz

1MHz10Hz

1GHz100MHz

1MHz10Hz

1GHz

 

Figure 2.6: Current distribution on microstrip trace at various frequency points.  Darkest 
regions indicate lowest current density for each plot (bottom reference ground current 
density distribution is omitted for brevity). 
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2.4 Review of Planar Transmission Line Structures 

Since this thesis discusses about signal propagation on a planar transmission 

line, this section gives a quick preview of most common planar transmission lines as 

illustrated in Figure 2.7.  Microstrip (MS) is probably the most popular transmission line 

of choice for MMIC, IC and PCB (Figure 2.7a).  MS is formed by a conductor strip on a 

dielectric insulator with a conductor plane at the bottom and typically air at the top 

(Ramo et al., 1993; Pozar, 1998).  MS cannot support a true TEM wave propagation 

since the dielectric materials surrounding the strip are inhomogeneous.  The main 

driver for microstrip popularity is credited to simpler fabrication process using 

conventional processes.  The disadvantages of microstrip are pointed to the 

requirement for a minimum of two metal layer and vertical vias interconnects and 

vulnerable to dispersion and radiation at high frequency region. 

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(a) (b)

(c) (d)

(e) (f)

(g) (h)  

Figure 2.7:  Common planar transmission lines (a) microstrip line (b) stripline (c) slot-
line (d) co-planar stripline (e) conventional coplanar waveguide (f) conductor backed 
coplanar waveguide (g) finite width coplanar waveguide, and (f) finite width conductor 
backed coplanar waveguide. 
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Stripline (Figure 2.7b) is another popular transmission line formed by 

embedding a strip between two conducting planes that are separated by dielectric 

materials (typically of the same material).  Since the material is homogenous, stripline 

is non-dispersive and capable to support TEM wave propagation (Cohn, 1954, Ramo et 

al., 1993; Pozar, 1998).  One big advantage of stripline is on excellent immunity to 

crosstalk and emissions providing by the adjacent planes.  Stripline is highly scaleable 

that make it a natural preference for multilayer interconnects for backplanes and device 

packaging substrates. Stripline disadvantages are pointed to its construction that 

requires multiple conductor layers for signal and power sources along with the 

associated conducting vias to tie them together. 

 

Slotline (SL) was originally introduced by Cohn in 1968 as an alternative to 

microstrip line (Figure 2.7c) (Cohn, 1968; Mariani, 1969).  SL consists of two strips on 

the same layer of dielectric material that is separated by a slot.  Similar to MS, true 

TEM wave propagation is not supported by SL due to inhomogeneous dielectric 

mediums.  Even though slot line is popular on MMIC, it is rarely being implemented on 

PCB because of its strips tend to radiate even at low frequency (i.e. behaving similar to 

patch antenna). 

 

Coplanar stripline (CPS) is another example of two-conductor transmission line 

similar to MS and SL (Figure 2.7d) (Ramo et al., 1993).  CPS does not support true 

TEM mode of propagation as well due to inhomogeneous dielectric materials.  Its uni-

planar design is very versatile and easy to implement on MMIC processes.  CPS has 

been demonstrated to provide excellent signal propagation for very fast pulses (Frankel 

et al., 1992).  Unlike SL, CPS strip widths can be adjusted to control radiation and 

resonance without the need for costly suppression solutions such as stitching vias or 



20 
 

air bridges.  However, due to lack of shielding, CPS is susceptible to high frequency 

crosstalk from neighboring circuits (Goverdhanam et al., 1997). 

 

Coplanar waveguide (CPW) was originally proposed by C. P. Wen from RCA 

Laboratory in 1969 (Figure 2.7e).  The original design assumed the adjacent ground 

strip widths and dielectric thickness were infinite.  Over the years, many inventors 

modified the design to achieve superior attenuation and dispersion characteristics for 

meeting specific applications.  Some designs are revolutionary such as by using an 

elevated center strip or by adding air groove underneath the signal strip (Jeong et al., 

2001; Wu, Xu and Bosisio, 1994) in order to minimize dielectric interface discontinuities 

(i.e. dispersion).  However, mostly of these recommendations are specific MMIC 

applications and not many finds their ways into mainstream PCB implementations.  

 

2.5 CPW Literature Review 

This section covers the literature reviews related to CPW covering its 

applications, propagation characteristics and issues in order for us to narrow down a 

CPW variant that is suitable for PCB applications.  Figure 2.8 depicts the conventional 

CPW envisioned by Wen in 1969.  Since CPW inception, MMIC’s CPW interconnects 

were reported to operate up to 100GHz more than a decade ago (Riaziat, 1989).  

Lately, CPW is no longer exclusively for MMIC, but also has found its application onto 

high frequency 50GHz silicon interconnects as well (Kleveland et al., 1998).  In 

addition, CPW structures were also reported to be used for off-chip interconnects such 

as on high performance flip-chip assembly packaging for MMIC (Wen et al.,1995; Pillai, 

2002; Hirose et al., 1998) and high performance test fixtures (Gronau and Felder, 

1993).  Other applications using CPW structures are micro-electromechanical systems 

(MEMS) based switches, phase shifters, filters, printed circuit antenna (Simons, 2001) 

sensor (Khalid and Hua, 1998) and characterization jigs for material measurements 

(Mbairi and Hesselbom, 1998).  
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Wg=∞Wg=∞

h=∞

 

Figure 2.8: A perspective view of a conventional coplanar waveguide (CPW) showing 
signal trace width (w) of 2a, and air gap distance of (b-a).  Side strip widths and 
dielectric material thickness are assumed extending to infinity. 
 

 However, since this work is intended for a larger scale PCB implementation, a 

configuration as shown in Figure 2.9 below is proposed to provide mechanical 

robustness, power delivery efficiency and natural thermal dissipations paths to the 

reference planes for the active components.  This CPW variant is commonly referred 

as conductor-backed CPW (CB-CPW).  

 

Wg

h

Wg

 

Figure 2.9: A perspective view of CB-CPW showing the critical parameters.  Side 
strip widths (Wg) are assumed extending to infinity for mathematical calculations, 
signal trace width (2a), air gap (b-a), dielectric thickness (h), and dielectric 
constant (εr). 
 

 

εr 

εr 
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2.6 CPW Attributes 

There many advantages of CPW circuits cited by various sources where some 

of the significant ones are listed below.  

2.6.1 CPW Advantages 

i) Immediate access to adjacent power planes provides shorter power delivery 

path (i.e. lower inductance) to boost active devices performance (Wolf, 1993). 

ii) Bottom reference plane provides structural strength (Simon, 2001). 

iii) In some cases, CPW gives lower conductor losses and dispersion (Wolf, 1993; 

Schlechtweg et al.,1994; Jackson, 1986, Shih, 1991) 

iv) CPW enjoys smaller radiation at discontinuities as a result of no connecting via 

(El-Badawy and El-Sharawy, 1992; Jackson, 1989; Görur and Karpuz, 2000) 

v) Adjacent strips provide excellent isolations to minimize crosstalk on the same 

metallization layer (El-Badawy and El-Sharawy, 1992) 

vi) Lower crosstalk improves MMIC layout density between 30% to 50% compared 

to microstrip (Wolf, 1993; Grönau and Felder, 1993) 

vii) Planes provide masses for natural thermal cooling thus avoiding the need for 

external heat sinks for active devices (Simon, 2001). 

viii) CPW is 30% cheaper on MMIC fabrication that is contributed by simpler 

processing steps (Ponchak et al., 1998) 

ix) CB-CPW provides lower impedance transmission lines (Simon, 2001). 

 
2.6.2 CPW Disadvantages 

Likewise, there are also disadvantages of CPW circuits where some are listed 

below. 

 
i) Parallel plate configuration produces zero cutoff frequency mode (Wolf, 1993; 

Magerko, Fan and Chang, 1992) 
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ii) CPW without conducting plane has lower thermal dissipation and lower 

structural strength (Simon, 2001). 

iii) In general, CPW experience higher losses compared to microstrip (Wolf, 1993). 

iv) High frequency losses due to over-moding are more prevailing on CPW than 

microstrip (El-Badawy and El-Sharawy, 1992).  

v) CPW side strips generate both odd and even modes current that can cause 

serious mode coupling (Ponchak, Papapolymerou and Tentzeris, 2005). 

  

2.7 Review of CB-CPW Design Parameters 

Unlike microstrip, CPW has more design parameters that need tweaking in 

order to obtain the desired dispersion and attenuation performances.  It has been 

shown that a conventional MMIC CPW has a better or equal performance compared to 

microstrip line depending on the structure designs (Jackson, 1986).  However, there 

are many issues related to CB-CPW such as surface wave leakages, unexpected 

crosstalk, significant distortion to the guided wavelength (i.e. dispersion), and radiation 

(Shigesawa and Tsuji, 1988).   

 

In addition to these issues, Gopinath (1979) had shown that when the dielectric 

height of the CPW equals to the ground plane spacing, conductor and dielectric losses 

are lowered on microstrip line.  For these reasons, CB-CPW design warrants thorough 

analyses of all parameters to guarantee proper circuit functionality as well as 

performance; otherwise, it can be just comparable or worse than microstrip line (El-

Badawy et al., 1992; Shigesawa et al., 1988).  In other words, blind duplication of 

MMIC rules for PCB design can potentially cause catastrophic failure to circuit 

operations.  These concerns will be answered in this dissertation. 
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CHAPTER 3 
 
 

RESEARCH METHODOLOGY 
 
 
 
3.0 Introduction 

This chapter will highlight methodologies that will be employed in this thesis 

covering all the three major areas namely frequency and time domains analyses as 

well as measurements. 

 

3.1 Frequency Domain Analyses 

3.1.1 Numerical Frequency Domain Analysis Approach 

Closed loop CB-CPW QS-TEM design equations will be derived using the 

available references from Ghione and Naldi (1987) and Simon (2001). Then, the 

transmission line propagation constants will be added into the QS-TEM for frequency 

domain numerical analyses for design optimizations.  These processes are illustrated in 

Figure 3.1. 

Derive Closed Loop Quasi-Static 
CB-CPW Equations for Characteristic 
Impedance (Zo) and Effective 
Permittivity (εeff)

1) Derive the  Frequency Dependent 
CB-CPW Propagation based 
on Quasi-Static Equations; 

2) Compare to Simulations Outputs

CB-CPW Parameters Performance Analyses 
for Design Improvements

 

 
Figure 3.1: Frequency Dependent Equations Development Flows and Performance 
Analysis. 
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