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Abstract:-The Goursat problem, associated with hyperbolic partial differential equations, arises in several areas

applications. These include mathematical modeling of reacting gas flows and supersonic flow. Recent
‘nerical studies of the problem have focused on the implementation and accuracy aspects of various finite
difference schemes. Theoretical considerations such as- stability, consistericy and convergence have not
received much attention. In this paper we consider the theoretical aspects.of a numerical scheme widely used to
solve the problem by considering its application to model linear problem . We obtain results relating to the
stability (using Von Neumann stability analysis), consistency and convergence of the scheme. We verify these
theoretical results with data from computational experiments.
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1 Introduction

The Goursat problem, associated with hyperbolic
partial differential equations, arises in several areas of
physics and engineering. An and Hua (1981) and Chen
and Li (2000) describes in detail how this equation
arises and is used in the mathematical modeling of
ting gas flows and supersonic flows respectively.
O investigate these mathematical models in greater
detail, we need to resort to numerical techniques and in
this regard the finite difference method is often used.
The standard finite difference scheme for the Goursat
problem is a method based on arithmetic averaging of
function values and a recent study (Ismail et. al., 2004)
has reaffirmed the advantages of this method (“ the
AM scheme”).

What assurance is there that the solution obtained by a
numerical method is close to the exact solution? One
way would be to check that the computed results

converge when the grid sizes are reduced. However.
clearly it would be better if convergence can be
guaranteed beforehand. It is well-known in numerical
analysis that for linear problems this guarantee can be
given if the numerical method is stable and consistent.
The concept of stability is concemned with the growth, or
decay, of errors (produced because the computer cannot
give answers to an infinite number of decimal places) 2!
any stage of the computation (Fletcher, 1990). The
system of algebraic equations generated by the
discretisation process is said to be consistent with the
original partial differential equation if, in the limit that the
grid spacing tends’ to zero, the system of algebraic
equations is equivalent to the partial differential equatior
at each grid point (Fletcher, 1990). Consistency 1%
concemned with how well the algebraic equations
approximates the partial differential equation.

Recent studies of numerical methods for the Goursa!
problem ( Ismail etal, 2004 ; Wazwaz, 1993 ) hav¢



WSEAS TRANSACTIONS ON MATHEMATICS

Issue 3, Vol. 3, July 2004 ISSN; 1109-2769 617

focused on implementation and accuracy of various
finite difference schemes. In this paper we will
nvestigate the stability, consistency and convergence
of the AM scheme when applied to a model linear
Goursat problem.

2 The Goursat Problem and the
- AM Scheme

' The Goursat problem is of the form (Wazwaz, 1993):

U, = f(x,_y,u,ux,uy)
u(x,0) = ¢(x),u(0, y) = w(y), $(0) = w(0)
0sx<alsy<b

(D

- The established finite difference scheme is based on
arithmetic mean averaging of function values and is
given by (Ismail et.al 2004):

ui+l.j+l + ui.j —u
hZ
1
:(fi-o-l,j-ﬂ + fi,j + fH-l] |)+l-) ,
~..(2)
" 2 denotes the grid size. As was mentioned earlier, we
shall refer to the finite difference scheme (2) as the AM

scheme. For the AM scheme, the function value at grid
‘ocation (i+1/2,j+1/2) isgivenby:

iel,j " Wiger

1
4(|+1j+1+f +f|+1] l;+1)

.03

"-\'_e shall investigate the stability consistency and
-onvergence of the AM scheme for linear Goursat
sroblems by considering the model linear Goursat
>roblem: -

U, =u
u(x.0)=e"
u0.y)=e
0<x<20syx2

e

The analytical solution of (4) is ¢**” (Wazwaz, 1995)

The AM scheme for the partial differential equation in (4
is:
Ui jor Wi = Wiej ~Wign
h? -

1
4 (u|+l St +u|] +u|+l] +u|_|+l)

...(5
Equation (5) can be rewritten as:
Uy = A (Ui j +U; ) = Uy 5
...(6)
_ 2
where A=2iE with 7= oso,
l-r . ) 4

3 Stability

The stability of a finite difference scheme can be
investigated using the Von Neumann method (Fletcher,
1990). In this method, the errors distributed along grid
lines at one time level are expanded as a finite Fourier
series. If the separate Fourier components of the error
distribution amplify in progressing to the next time level,
then the scheme is unstable.

The error equation for equation (6) is:
Gist ot = A(Gi1j +Gijur) — Gy w(7)

where ¢;; is the error at the (i) grid point. We write

V180 \where A is the amplification factor

Gi; as Me
for the mth Fourier mode of the error distribution as it-
propagates one step forward in time and 6, =mnh. For

linear schemes it is sufficient to consider the propagation
of the error due to just a single term of the Fourier series
representation i.e. the subscript m can be dropped. .

J=Tei

Substituting ¢; ; = Me into equation (7) gives:
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301 @Y T8G+D) =A(ljeﬂ 86+ 4 (v o VT8 )

ie. - gYHei
A= Ae 1
eV _ A
..(8)
For stability it s required that
Ae‘f_ -1 :
“IA<1v8 ie 7 <1ve which implies
-A S

e —A]a|5e*’"—‘° -1|

- Squaring both sides and after some manipulation we
obtain that for [A|<1V8,A must satisfy A’21. Since

Q—lii and

1-r
stable Vr (exceptr=1)

r >0, we obtain that the scheme is

4 Consistency

To test for consistency, the exact solution of the partial
_differential equation is substituted into the finite

jfference scheme and values at grid points expanded
as a Taylor series. For consistency, the expression
obtained should tend to the partial differential equation
as the grid size tends to zero (Twizell, 1984)..

Substituting the exact solution into (5) leads to:

_l_ u(xl:+l!yj+1)+“(xi’yj-)_ =
hz u(xi+1,Yj)'.u(xi_’yj+l)
l u(xi+l:yj+l)+u(xi’yj).
4

+ u(xi+l’Yj)+u(xi’yj+l)

9)

Expanding as a Taylor series about (x;,y ;) gives:

[u+hu, +hu,

+-;_(h2uu +2h%u,, +hiu,)+...
5 o
h® |+u—-(u+hu, +—2—uu +...)

By

. (u +huy-+%—uw +...)

u+hu, +hu,

1
.4 +~;—(h2u,x +2h%u, +Vh2un.)+.
,
+%{u+ hu, +%-uu +}

+l u+hu +£u + +lu
y yt ep Y-
(10

[note:: gll terms involving u in equation (10) are
evaluated at (X, , y;)]

As h— 0, equation (10) becomes u,, =u. Thus the
condition for consistency is satisfied.

S5 Convergence

A solution of the algebraic equations which approximate

a given partial differential equation is said to be
convergent if the approximate solution approaches the
exact solution for each value of the independent variables
as the gnid spacing tends to zero. The Lax Equwalence
Theorem (Richtmyer and Morton, 1967) states that given

-a properly (well) posed linear initial value problem and a

finite .difference equation that satisfies the .consistency
condition, stability is the necessary and sufficient
condition for convergence

That the Goursat problem is well posed was established
by Garabedian (1964) by transforming it into ar
integrodifferential "equation and then solving by the
technique of successive approximations. We :have
established that the AM scheme for the linear Goursal

_problem (4) is both stable and consistent. Thus from the
Lax . Equivalence Theorem we can conclude it 15

convergent.
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was developed and the computed results are as follaws: '

_ absolute errors at grid points References
h (0.25,0.25) (0.5,0.5) (0.75,0.75) | - (1.0,L.OY '
0.500 | 6.9233875e- | 6.9233875¢e- | 2.0437596e- | 2.0437596e- 1. Y.L-An, W.C.-Hua, The discontinuous ivp of ¢
- 003 003 002 002 : T ;
reacting gas flow system, Transactions of the
0.250 | 5.1857520e- | 1.7070573e- | 3.2493354¢- | 4.9962137e- . : :
004 003 003 003 American Mathematical Society, 1981.
0.100 | 5.5301566e~ | 2.7212902e- | 5.7076620¢- | 7.946033]e- L .
005 004 004 004 2. S.Chen and D.Li. Supersonic flow past a
0.050 | 2.0684065¢- | 6.7997099¢- | 1.2925661¢- | 1.9848210¢- " symmetrically curved cone, Indiana University
005 005 004 004 Mathematics Journal, 2000.
0.025 | 5.170565e- | 1.6997083e- | 3.2308635¢- | 4.9610004e-
- e 0 e = 3. C.AJ. Fletcher, Computangmnal Techmques for
— Ty g Dyn Vol. 1 2% ed., Springer V.
- absolute errors at grid points ll:ggg i pringer Verlag,
h 1.251.25) | (1515 T (1.751.75) | (2.0.2.0) )
0.500 | 3.6461034e- | 3.6461304e- | 5.3882494e- | 5.3882494c¢-
\ 002 002 002 002 4 P Garabedlan, Partial Differential Equanons
"0.250 | 6.8729164e- | 8.8393041e- | 1.0872209¢- | 1.2957280e- leey, Ncw York,: 1964
003 003 - 002 002
0.100 | 1.1530440e- | 1.4026219- | 1.7883943¢- | 2.0515447¢-
003 003 003 003 | 5. AlLB. Mld Iismatl I\;_I ﬂi\ SGN331r ]EI}erIHJ 'gilxb
0,050 | 2.7267983¢e- | 3.5024469¢- | 4.3025104¢- | 5.1212550¢- Numerical Solution of the Goursat Problem, Proc.
004 - 004 . 004 004 IASTED. Conference on Applied Simulation and
0.025 | 6.8152732e- | 8.7535555¢- | 1.0752707e- | 1.2798397¢- ‘Modelling, Rhodes, Greece, 2004.
005 005 004 004 : ' v :
Table 1: h values and absolute errors at various grid 6. R. Richtmyer and K.W. Morton, Difference
Jpoints. ‘Methods  for Initial Value Problems, Wiley
. . . Interscience, 1967.
Although results at only eight points are displayed, o
numerical experiments indicate that the absolute error 7. E. H. Twizell, Computational M ethods for Partial
becomes smaller as his decreased for all grid points Differential Equations, Ellis Horwood, 1984,
tested. '.
8. AM.Wazwaz, Onthe Numerical solution for the
Goursat Problems, Applied Mathematics and
7 Conclusions Computation, 1993
9. . AM. Wazwaz, The decomposition method for

‘evious studies of the finite difference solution of the

oursat problem have focused on the accuracy and
implementation aspects. In this paper we have studied

the theoretical aspects of the finite difference solution’

.Of a linear Goursat problem using the AM scheme.
Using the Von Neumann method we have shown that it
's unconditionally stable and we have also shown it is
consistent. Invoking the Lax Equivalence Theorem we
deduce that the scheme is convergent. Numerical
¢xperiments that we have conducted verify that the
scheme is convergent

approximate solution of the Goursat Problem,
Applied Mathematics and Cormnputation, 19_95.
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