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Abstract:-The Goursat problem, associated with hyperbolic partial differential equations, arises in several areas
..a( applications. These include mathematical modeling of reacting gas flows and supersonic flow. Recent
~erical studies of the problem have focused on the implementation and accuracy aspects of various finite
difference· schemes. ~eoretical considerations such as· ~abi1ity, consistency and convergence have not
received much attention. In this paper we consider the theoretical aspects.ofa numerical scheme widely used to
solve the problem by considering its application to model linear problem . We obtain results relating to the
stability (using Von Neumann stability analysis), consistency and convergence of the scheme. We verify these
theoretical results with data from computational experiments.
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1 Introduction

The Goursat problem, associated with hyperbolic
partial differential equations, arises· in several areas of
physics and engineering. An and !Ida (1981) and Chen
and Li (2000) describes in detail how this equation
arises and is used in the mathematical modeling of
&ting gas flows and supersonic flows respectively.
~ investigate these mathematical· models in greater
detail, we need to resort to numerical techniques and in
this regard the finite difference method is often used.
The standard· finite difference scheme for the Goursat
problem is a method .based on arithmetic averaging of
function values and a recent study (Ismail et. aI., 2004)
has reaffinned the advantages of this method (" the
AM scheme").

What a~surance is there that the solution obtained by a
numerical method is close to the exact solution? One
way would be to check that the computed results

converge when the grid sizes are reduced. However..
clearly it would .be better if convergence can be
guaranteed beforehand. It is well-lmown in numerical
analysis that for linear .problems this guarantee can be
given if the numerical method is stable and consistent.
The concept of stability is concerned with the growth, or
decay, of errors (produced because the computer cannot
give answers to an infinite number of decimal places) at
any· stage of the computation (Fletcher, 1990). The
system of algebraic equations generated by the
discretisation process is said to be consistent with the
original partial differential equation if, in the limit that the
grid spacing tends' to zero, the system of algebraic
equations is equivalent to the partial differential equarior.
at each grid point (Fletcher, 1990). Consistency is
concerned with how well the algebraic equations
approximates the partial differential equation.

Recent studies of numerical methods for the Goursar

problem ( Ismail et.a!., 2004 ; Wazwaz, 1993 ) ha\'e
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focused on implementation and accuracy of various
tinite' difference schemes. In this paper we will
Ulvestigate the stability, consistency and convergence
of. the AM' scheme when applied to a model linear
Goursat problem. .

., The Goursat Problem and the.-

AM Scheme

I The Goursat problem is of the form rv.razwaz, 199~):

U lty =f(x,y,u,u,pu y )

u(x,O) = cp(x), u(O, y) =\V(y), 4>(0) =weO)

°S x S a,O ~ y S b
... (1)

The established finite difference scheme is based on
I arithmetic mean averaging of function values and is

given by (Ismail et.a12004):

±(fi+1,j+l + fi,j + fi+1,j + fi,i... l ) ..

·... (2)

. j denotes the grid size. As was mentioned earlier, we
shall refer to the finite difference scheme (2) as the M1
scheme. For the AM scheme, .the function value at 'grid
:ocation (i + 1/ 2, j +1/ 2) is given by :

The analytical solution of (4) is e HY (Wazwaz, 1995)

the AM scheme for the partial differential equa~on in (4
is:

'U i+1,j+J +,Ui,j - Ui+l,j - Ui,j+-l _

h2 -

±(~i+I.;'1 +ui.J +Ui+I.J +Ui•J+1)
...(5J

Equation (5) can be rewritten as:

...(6)

l+r ' h 2

where A=-- with r=->O.
1-r 4

~ Stability

The stability of a fmite difference scheme can be
investigated using the Von Neumann method (Fletcher,
1990). In this method, the errors distributed along grid
lines at one time level are expanded as a finite Fourier
series. If the separate Fourier components of the error
distribution amplify in progressing to the next time level,
then the sch~me is unstable.

The error equation for equation (6) is:

where <;i,i is the error at the (iJ) grid point. We write

C; i,j as }} e.He.i where A. is the "amplification factor

for" the rnth Fourier mode of the error distribution as it·
propagates one step forward in time and em = m1th. For

linear schemes it is. sufficient to consider the propagation
of the error due to just a single term of the Fourier series
representation i.e. the subscript m can be dropped. ""

... (3)

-\\"e shall investigate the stability consistency and
~onvergence of the A...\1 scheme for linear Goursat
~roblems by considering the model linear Goursat
~roblem: "

Ux.y =u

C;i...l.j...l =A(Si+l,j + C;i,j+r) - <;ij ...(7)

u(x.O) =e''(

u(O. y) =e Y

o::; x S 2. 0 ~ y::; 2
... (4)

Substituting <;i.j =')e.j:j8i into equation (7) gives;
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.(9)

Substituting the exact solution into (5) leads to:

[note:.- all terms involving u in equation (10) are
evaluated at (Xi' Yj)]

5 Convergence

.- .(101.

As h~ 0, equation (10) becomes U x..j = u. Thus _the

condition for consistency is satisfied.

A solutio~ of the algebraic equations which approximate
. a' given partial differential equation is said to be.

convergent if the approximate solution approaches the
exact solution for each value of the independent variables
as the .grid spacing tends to zero. The Lax Equivalence
Theorem- (Richtmyer and Morton, 1967) states that given

. a· properly (well) posed linear initial value problem and a
finite :difference equation that satisfies the -consistency
condition, stability is the necessary and sufficient
condition for convergence. .

required that

which implies

Ae..H9 -1
A=~=--­

e.r::ie - A

...(8)

"J1-~ e ..[.Tl)(iTl) = A ())e.r::i 9(iTl) + A(jTl) e .r::iei )

. ..,) e.J:i 6ii.e.

4 Consistency

To test for consistency) the exact solution of the parti~l
differential equation is substituted into the fmite

Ofference scheme and values at grid points· expan~ed
as a Taylor· series. For consistency, the exp~esslOn

obtained should tend to the partial differential equation
as the grid sIze tends to zero (Twizell, 1984)..

Squaring both sides and after some manipulation we

obtain that for IAI ~ 1va) A must'satisfy A '1. ;;:; 1 . Since

.•= 1+ r and r > '0) we obtain that the scheme is
l-r

stable Vr (except r =1)

For stability . it .isq Ae.f=ie -1AI ~ I'Ve i.e../=iI ::;1"1'6
e -19 -A.

Ie.r::ie - AI ~ IAeJ=ie ~ 1\

Expanding as a Taylor series about (xj'Yj) gives:
That the Goursat problem -is wen posed was established
by Garabedian (1964)' by transforrrung it into ar
integrodifferential .equation and then solving by .. the
teclmique of successive approximations. We: have
established that the AM scheme for the linear Goursat

. problem (4) is both stable and consistent. Thus fro~ t~~
·Lax .Equivalence Theorem we can conclude It l~

convergent.
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6 Computational Experiments

A computer program using the AM scheme to solve (4)
was developed and the computed results are as follows:

- absolute errors ·at grid points
h (0.25.0.25) (0.5.0.5) (0.7S.0.7S) ..{I.0.1.0)

0.500 6.923387Se- 6.9233875e- 2.0437S96e- 2.0437S96e-
003 003 002 002

0.150 S.lSS7520e- 1.7070573e- 3.24933S4e- 4.9962137e-
004 003 003 003

0.\00 5.5301 S66e- 2.7212902e- S.7076620e- 7.9460331 e-
005 004 004 004

- v.OSO 2.068406Se- 6.799709ge- 1.2925661 c- 1.9848210e-
OOS 005 ·004 004·

-0.025 5.17056Se· 1.6997083e- 3.230.&63Se- 4.9610004e-
006 005 005 005-

.abs·olute errors at grid points
h (1.25.1.25) ·(L5~l.S) (1.75,1.75) (2.0,2.0)

0.500 3.6461034e- 3.6461304e- S.3882494e- 5.3882494c-
~ 002 002 002 . 002

·'0.150 6.8729164e- 8.8393041 e- 1.087220ge- 1.2957280e-
003 003 002 002

0.100 1.1530440e- 1.402621ge- 1.7883943e- . 2.0515447e-
003 003 003 003

0.050 . 2.7267983e- 3.502.446ge- 4.3025 I04e- 5.121255ge-
004 . 004 004 004

0.025 6.8 152731e- 8.7535555e- 1.0752707e- 1.2798397e-
005 OOS 004 004

Table 1: h values and absolute errors at various grid
points.

Although tesults at only ,eight points are displayed,
numerical experiments indicate that the absolute error
becomes smaller as· his decreased for all grid points
tested. '

7 Conclusions

aevious studies of the finite difference solution of the,
"oursat problem· have focused on the accuracy and

:mplementation aspects. In'this paper we have studied
the theoretkal aspects of the finite difference solution'

.of a linear Goursat problem .using the Mf scheme.
l'sing the Von Neumann method we have sho\\TI that it
IS unconditionally stable and we have also sho'Wn it is
consistent. Invoking the Lax Equivalen.ce Theorem we
deduce that· the scheme is convergent. Numerical
experiments that we have conducted verify that the
sd'.eme is convergent
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