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KAJIAN CIRI-CIRI HUJAN-AIR LARIAN BANDAR DI MALAYSIA: KAJIAN 
KES SUNGAI KAYU ARA, DAMANSARA, SELANGOR 

 
 

ABSTRAK 
 
 

Pengetahuan dalam agihan hujan yang berubah mengikut ruang dan masa 

serta respon hujan-air larian amat diperlukan dalam aplikasi kejuruteraan untuk 

kawasan pembangunan beriklim tropika lembap. Kajian ini lebih berfokus kepada 

respon air larian disebabkan kuantiti hujan yang berubah dalam kawasan tadahan 

bandar. Rekod hujan taburan harian dan data sela 10 minit untuk hujan serta air larian 

mulai tahun 1996 hingga 2004 telah dianalisa. Keputusan menunjukkan bahawa 

kuantiti hujan adalah lebih tinggi di kawasan bandar berbanding kawasan sub-bandar 

atau pedalaman. Sebahagian besar hujan tahunan didapati disumbangkan oleh ribut 

sewaktu musim perantaraan monsun. Berikutan itu, hubungan antara air larian dan 

hujan telah diterbit dan ditentusahkan dengan menggunakan model statistikal (SPSS®). 

Untuk mengenal pasti tahap perwakilan respon hujan-air larian tersebut, kesan 

tumpuan hujan antara kawasan yang telah dibangunkan dan kawasan sub-

bandar/pedalaman ditentukan. Analisis kadar kehilangan tetap menunjukkan bahawa 

air larian kumulatif boleh berlaku melalui keamatan hujan yang tetap. Korelasi antara 

pemalar air larian dengan keamatan hujan telah dikaji. Ini bertujuan untuk menilai Carta 

Rekabentuk 14.3 dalam Manual Saliran Mesra Alam Malaysia (MSMA) yang digunakan 

untuk menganggar puncak kadar alir. Peratusan taburan nilai kajian atas jenis 

penggunaan tanah yang diklasifikasikan dalam carta rekabentuk tersebut didapati 

berhubung-kait dengan tahap litupan atas tanah yang dianggarkan melalui informasi 

topografi digital. Ini menyatakan bahawa, untuk takat tertentu, carta dengan pemalar air 

larian melawan keamatan hujan yang diguna pakai daripada Australian Rainfall and 

Runoff 1977 masih sesuai untuk diaplikasi dalam keadaan perbandaran di Malaysia. 

Untuk memastikan bahawa kriteria rekabentuk saliran bandar yang lebih tinggi 

diperlukan untuk masa akan datang, respon kawasan tadahan terhadap urbanisasi 

 xiv 



telah ditentukan. Merujuk kepada faktor seperti agihan hujan mengikut ruang dan 

masa, puncak kadar alir yang meningkat dan waktu ke puncak berkenaan akibat 

urbanisasi selama tujuh (7) hingga lapan (8) tahun telah berjaya dikenal pasti. 
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 STUDY ON MALAYSIAN URBAN RAINFALL-RUNOFF CHARACTERISTICS: 
CASE STUDY OF SUNGAI KAYU ARA, DAMANSARA, SELANGOR 

 
 

ABSTRACT 
 
 

Knowledge on the rainfall spatial and temporal distribution, as well as the 

rainfall-runoff response, is vital in engineering practices for developing area in the 

humid tropics. Nevertheless, this study will primarily discuss the runoff response due to 

varying rainfall within small urban catchment in Malaysia. Daily totals rainfall and 10-

min intervals rainfall and runoff data from year 1996 to 2004 had been analysed. The 

result shows that greater rainfall volume fell on developed area, compared to 

suburban/rural area. This is proven that most of proportion of annual rainfall extent is 

contributed by strong convective storm during the inter-monsoon season. The 

relationship between direct runoff and mean areal rainfall was developed and validated 

using statistical model (SPSS®). To verify the representativeness of rainfall-runoff 

response, rainfall concentration between the developed area and suburban/rural area 

was determined. Analyses of constant loss rates indicate that the generation of 

cumulative direct runoff can be attributed to the constant rainfall intensities. The 

correlation between the derived runoff coefficients and rainfall intensities was made. 

This was to assess the Design Chart 14.3 for peak flow estimation in the Malaysian 

Urban Stormwater Management Manual (MSMA). The distribution percentage of 

observed data among classified land uses in the relevant design chart is found to have 

corresponded quite well with the degree of land use covers, estimated from digital 

topographic information. This implies that, the runoff coefficient versus intensity chart 

adopted from the Australian Rainfall and Runoff 1977 is still in the suitable range for 

use in Malaysian urban condition. To ensure a future need for higher design 

requirement in urban stormwater control facilities, the catchment response subjected to 

development was determined. Factors such as rainfall volume and its temporal and 

spatial distribution of rainfall were taken into account for this purpose. The increasing 

 xvi 
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peak flow with corresponding time-to-peak resulted from seven (7) to eight (8) years’ 

urbanization had been successfully identified. 

 

 



CHAPTER 1 
INTRODUCTION 

 
 

1.1 Research Background 
 

An extreme rainfall event with long duration and high frequency is common in 

Malaysian urban cities, especially in the West Coast area. This phenomenon is formed 

mostly through convective process (Embi and Dom, 2004), followed by monsoon 

seasons. The occurrence of three devastating flash floods in three continuous years 

(i.e. 26 April 2001, 11 June 2002 and 10 June 2003) within urban cities and town areas 

(DID, 2004) has created the awareness of designing better urban stormwater 

management system for the future. According to a study by Desa et al. (2005) in 

urbanized Kerayong catchment near Kuala Lumpur, the highest 5-min point intensity in 

the greatest storm event in year 2003 was 222 mm/hr and the rain lasted for 114 

minutes. Since the high volume of stormwater rapidly disposed from urban area will 

cause inundation in the downstream area, control at source concept is hence, 

introduced in the Malaysian Urban Stormwater Management Manual (DID, 2000).  

 

To overcome these flash flood problems, the Hydrological Procedure No.16 (HP 

16): Flood Estimation for Urban Areas in Peninsular Malaysia had actually been 

published since the year 1980. Among the important issues discussed is the modified 

Rational Method which is suitable in designing urban drain system for large catchment 

whenever its rainfall spatial and temporal variations are significant. This is the reason 

why the standard Rational Method is only recommended to be used for urban 

catchment which is smaller than 25 km2 (IEA, 1987). Realizing the fact that standard 

runoff coefficient is incapable to account for the storage effect in large catchment, 

therefore in the HP 16, the storage coefficient ( ) is developed. It is served as the 

multiplier to runoff coefficient in the computation of peak flow rate using standard 

Rational formula (Fricke et al., 1980). 

sC
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                  Table 1.1: Runoff coefficient for Malaysian urban areas  
       (Fricke et al., 1980) 

 

 

 

 

 

 

 

 

 

 

 
                    

 

The runoff coefficients, as shown in Table 1.1 are proposed in the HP 16 for 

Malaysian urban area based on different types of land use. Series of sources had been 

referred to determine the most suitable runoff coefficient in Malaysian urban catchment. 

This includes the design values recommended by the American Society of Civil 

Engineers (ASCE), The Ministry of Environment Singapore, Proctor and Redfern 

International Ltd. as well (Fricke et al., 1980). Nevertheless, runoff coefficient may 

change due to the impact of urbanization over the years.  

 

Findings by Salleh (1998) show that the urbanization rate in year 1990 at 

Peninsular Malaysia had reached 54 per cent. There is as high as 14 per cent 

increment compared to the year 1980. Besides the increasing numbers of impervious 

area by 0.56, 0.82 and 0.83 % per year at Damansara, Penchala and Klang 

respectively (Ruzardi et al., 1999), rainfall intensity particularly over these urban zones 

also shown an increasing trend. It is most probably due to the more significant urban 
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heat island effect (Embi and Dom, 2004). Therefore a new approach in determining the 

runoff coefficient has been vindicated. In line with this, the Malaysian Urban 

Stormwater Management Manual (MSMA) was introduced by the Department of 

Irrigation and Drainage Malaysia (DID) in year 2000. The MSMA had superceded the 

foregoing guidelines in HP 16 with sets of runoff coefficient that change with varying 

intensity according to different land uses. The design chart as shown in Figure 1.1 was 

adopted from the Australian Rainfall and Runoff 1977 and is stipulated in Chapter 14 in 

the MSMA.  

 

 
   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
                   
                  Figure 1.1: Runoff coefficients for urban catchments (DID, 2000) 
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The MSMA guidelines, particularly in the aspect of peak flow estimation, are 

mostly based on the standard codes of practice in the Australian Rainfall and Runoff 

(1977). The design curves in Figure 1.1 for various land uses were formed based on 

rainfall and runoff records in Australian cities of different regions. In contrast to 

Australia with 60 per cent of total area belonging to temperate climate 

(http://www.worldtravelguide.net, 2007), the intensity and frequency of rainfall in 

Peninsular Malaysia is relatively higher. Occurrence of long duration rainfall with high 

intensity due to monsoon seasons (i.e. December to March, June to September) in 

transition with convective rainfall season may have raised the soil moisture content, in 

most of the time (Desa and Niemczynowicz, 1996). In order to justify the applicability of 

such design curves in Malaysia, an urban rainfall-runoff study which complies with local 

humid tropical condition is urgently needed.  

 
 
1.2 Objectives 
 

The study is only part of the Intensification Research of Priority Area (IRPA) 

project endorsed by the Ministry of Science, Technology and The Environment 

Malaysia (MOSTI) under The 8th Malaysian Plan. MOSTI has appointed a researcher 

from the Universiti Sains Malaysia to conduct this study based on the data source 

provided by the DID Malaysia. Therefore, the research findings would be served as an 

intellectual property between the Universiti Sains Malaysia and the DID Malaysia. 

Further, completed study could be used as a guideline to water-related agencies in 

designing the best proper urban drainage facilities. The study findings can also be 

transferred to other countries in the South-East Asia which have difficulties in 

managing urban runoff. Here are the four (4) main objectives to be reached in this 

study: 

 

1. to study the spatial and temporal distribution of rainfall within urban catchment, 
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2. to develop the rainfall-runoff relationship for urban catchment, 

3. to assess the MSMA Design Chart using derived hydrological parameters, and 

4. to determine the catchment response over years. 

 
 
1.3 Scope of Study 
 
 

Desk study was the preliminary step to be carried out for better understanding 

in the study process. Research design had been worked out to spell out all the study 

requirements and the steps. The hydrological data and digital topographic data were 

acquired from the DID Hydrology Unit and the JUPEM , Malaysia. Besides, the material 

and software model for analysis were set up before the following four (4) sections of 

researching works were commenced. 

 
 
1.3.1 Chapter 2 – Literature Review 
 
 
 In this section, a variety of literature material is needed in order to determine 

whether there is any similar research had been conducted. The significance of rainfall 

distribution, rainfall-runoff response, as well as the change in runoff response due to 

urbanization are focused into detail. Different types of approach for instance, the 

testing of data consistency, estimation of mean areal rainfall and direct runoff, and loss 

rate analysis are evaluated. This is important to choose a proper approach with strong 

backup of literature sources.  

 
 
1.3.2 Chapter 3 – Methodology 
 
 
 This section will discuss on how the baseline data was utilized for various 

quantitative analyses. The analysis of rainfall distribution pattern, rainfall-runoff 

response and loss rate are described with regard to the information obtained in 

Chapter 2. This chapter explains the step-by-step analysis model and statistical 

 5 
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approach. Besides, the method of analysis criterions such as the selection of effective 

rainfall-runoff events and formation of catchment properties are clearly stated. Example 

of the application of analysis model is also provided for a better illustration. 

 
 
1.3.3 Chapter 4 – Results and Discussion 
 
 
 Among those being discussed in this chapter are the differences in rainfall 

distribution between urban and suburban/rural zone, the development of urban rainfall-

runoff relationship as well. In addition, the validation of analysed hydrological 

parameters is used to assess the MSMA Design Chart 14.3. The degree of runoff 

changes in terms of peak discharge and time-to-peak within seven (7) to eight (8) years 

of urbanization is the final part of the study.  

 
 
1.3.4 Chapter 5 – Conclusion 
 
 
 The first part in this chapter will initially outline the brief work frame of the study 

in brief. It concludes the results of study through the most comprehensive form. The 

aspect being concluded is related to the four (4) main anticipated objectives as 

discussed in the preceding section. The following part will suggest some of the 

constructive ideas to make the future rainfall-runoff study to be more efficient.  



CHAPTER 2 
LITERATURE REVIEW 

 
 

2.1 Rainfall Characteristics 
 

Generally, Peninsular Malaysia receives the highest precipitation during the 

transition period between the northeast (i.e. December to March) and southeast 

monsoons (i.e. June to September). The most intense rainfall usually occurs in the 

month of April, then followed by October and November (DID, 2000). However, January 

(northeast monsoon) is the driest month whereby it only covers 4.57 per cent of the 

long term mean annual rainfall (Desa and Niemczynowicz, 1996).  

 

To compare the two (2) monsoon seasons, the southwest monsoon draws less 

precipitation, especially in the month of July (Goh, 1974). Wind flows below 15 knots in 

the southwest monsoon while for the northeast monsoon is within 10 to 20 knots. 

However, wind system during inter-monsoon season tends to result in lower pressure 

zone with moist air from the higher pressure zone will reach and form the thick cloud 

(http://www.kjc.gov.my, 2006). In view of the Malaysian rainfall characteristics, it is 

shaped by maritime exposure. The monsoon season is caused by the differences of 

land-sea temperature, resulting from the extensive sun’s heating of averagely six (6) 

hours per day (http://www.kjc.gov.my, 2006).  

 

The monsoon seasons do not impose much significant impact on the West 

Coast of Peninsular Malaysia, if compare to the East Coast. However, during the inter-

monsoon season, the convective rain is frequently occurred, which is associated with 

thunderstorm, lightning, and strong wind. Chang (1993) found that the number of 

thunderstorm days in Malaysia exceeds 60 per year whereas Nieuwolt (1982) reported 

over 80 days in tropical climate. This indicates that inter-monsoon season does 

contribute most of the annual precipitation. The convective process occurs when the 
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moist air arises due to the heat that stored by land mass and then being cool in a very 

short time before the condensation process begins. In general, convectional rain which 

occurs mostly at afternoon or early evening is in short duration. It sometimes may last 

for within one (1) to two (2) hours (Nieuwolt and McGregor, 1998). Rainfall intensity of 

such event may vary significantly from one event to another. In comparison, monsoon 

rain is equally distributed and widely spread rather than inter- monsoon rain as 

discussed by Ong and Liam (1986).  

 

In comparison to rainfall of convective type, precipitation due to orographic 

effect whereby there is more rainfall at windward slope and mountainous area is less 

significant at urban area in the West Coast of Peninsular Malaysia. Moreover, its 

intensity is typically low or moderate. Barstad et al. (2007) found that orographic effect 

is associated with two (2) mechanisms, namely airflow dynamics and cloud 

microphysics. Airflow dynamics controls the lifting to form cloud while cloud 

microphysics controls the evolution of water droplets and hydrometeors (Bras et al., 

2007). The occurrence of orographic rainfall is subject to the elevation of barrier, rate of 

rise and moist air moving direction, too.  

 

 Intense urbanization may lead to significant changes on microclimate 

(Changnon, 1984). Local atmospheric zone with climate different from the surroundings 

may range from a size of garden to even square miles of area (http://en.wikipedia.org, 

2007). Difference in road surface properties and low wind velocity in fully developed 

urban area may cause a higher temperature, compared to rural area (Takahashi et al., 

2004). A major city is warmer than rural area because of dense and high-rise buildings 

that are hard to release the heat storage by blocking the wind flow. This urban heat 

island intensity results in up to 10 K temperature difference between the urbanized 

area and its surrounding rural zones (Santamouris et al., 2001). 
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With the help of condensation nuclei, for example the particles emitted from 

vehicle, rainfall due to convective effect is easily formed (Toebes and Goh, 1975). The 

rainfall within city area will become relatively frequent than that in the surrounding 

suburban or rural area. To prove this phenomenon, study by Landsberg (1956) had 

stated that the increase of rainfall in cities is mainly due to the extra 10 per cent or 

higher occurrence of thunderstorm events. However, another source claims that rainfall 

extent over the entire area subjects to urbanization will decrease over years as the 

consequence of decreasing evapotranspiration capacity (Savenije, 1996). This is true if 

the relevant developing area is located in continental region whereby the climate is 

belongs to semiarid type. 

 

Rainfall event is considered if precipitation in a particular area that drops to the 

ground is at least in the range of 0.5 mm to 3 mm (Chin, 2000). Many previous studies 

had shown that rainfall depth is decreasing from the storm center. In Malaysia, in areas 

where thunderstorm is frequent, large variation of rainfall depth will occur even in a 

short distance (Dale, 1959). Therefore, the adequacy of raingauge is important if the 

rainfall depth over a particular catchment is to be investigated in detail. Further, the 

intensity of frequent rainfall in Malaysia is known to be much higher than that of the 

temperate country (DID, 2000). The antecedent moisture content should therefore be 

considered during the analysis of runoff response. A study by Abustan (1997) at 

Centtennial Park catchment in Australia showed that the rapid drying effect is 

significant at impervious area. An urban catchment is only considered to become wet if 

there is rainfall exceeding 5 mm within 24 hours (Abustan, 1997). However, in 

Malaysian equatorial climate, corresponding rainfall volume may be higher and the 

drying time would be then shorter. 
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2.1.1 Lost Data and Data Consistency 
 

 Missing data orand inadequacy of data are among the major problems 

encountered in hydrological studies. Precipitation record from a particular raingauge is 

not 100 per cent complete throughout the year. It may have some missing gap in 

between a short period or totally without any record in relatively long period. Moreover, 

some records are not reliable as all the data exhibits same value for a long period. 

These may due to the failure of instrument or human error while collecting or 

downloading the data. To remedy the problem, a number of methods were developed 

to figure out the missing portion of data. These consist of the station average method, 

the normal ration method, the quadrant method and the isohyetal method as suggested 

by McCuen (1989). 

  

The station average method is the easiest to apply as it does not account for 

the density of raingauge network. In addition, this method had been proven to be not 

accurate if the difference between annual precipitation reading of the raingauge of 

interest and total annual precipitation of other raingauge varies more than 10 per cent 

(McCuen, 1989). If this occurs, normal ration method is preferred. Similar to the normal 

ration method, the quadrant method is based on the weighted mean. However, there is 

a minor difference of weighted mean used by these two methods. The normal ration 

method is based on annual precipitation of related neighbouring raingauge, however 

quadrant method utilizes the distance between neighbouring raingauge (McCuen, 

1989). The disadvantage of using quadrant method is too much time consumed for 

determining missing rainfall data, and yet its predicted value is not necessary will be 

accurate.    
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The double mass curve, which is mainly for the purpose of detecting raingauge 

consistency, can be used to correct the annual precipitation record. The computation 

process is brief. Correction is determined merely through the slope adjustment of 

cumulative precipitation of interested raingauge for consecutive years versus 

cumulative precipitation of neighbouring raingauge (McCuen, 1989). Therefore, the 

trend of precipitation variation over years or namely changes of gauge consistency is 

easily noticed from the abrupt change of slope in double mass curve (Wilson, 1984). 

The slope adjustment may drive every subsequent of annual precipitation records to be 

the true representatives of the storm morphology of the area where the raingauges are 

sited.  

 

 Some data recorded by raingauges may be not representing the actual rainfall 

once they are statistically inconsistent with other nearby gauges (Damant et al., 1983). 

Therefore, it is vital to exclude such gauges or patch its data with the aid of covariance 

biplot. The covariance biplot provides graphical interpretation between the data of 

different gauges and shows the possible outliers (Pegram and Zucchini, 1992). This 

biplot, however, does not incorporate any physical properties of the gauges, such as 

spatial location and elevation (Pegram, 1993). It is because these factors may impose 

significant impact on rainfall and should be taken into consideration when interpreting 

the biplot. 

 

2.1.2 Mean Areal Rainfall 
 

 There are three (3) common ways to estimate mean areal precipitation, namely 

the station average method, Theissen polygon method and isohyetal method. Every 

method has its own advantage and constraint. For example, the station-average 

method is only recommended for a very small catchment of up to one (1) km radius 

(Vaes et al., 2004) with evenly installed with raingauges. It is a simple method by just 
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merely averaging all recorded precipitation to obtain the mean areal precipitation 

(Linsley et al., 1992). The Theisen polygon, indeed, is also a convenient way. A 

perpendicular bisector is to be drawn between two nearby raingauge points before 

converging to a point, together with two other bisectors, and form a polygon for each 

representative point (Linsley et al., 1992). This method provides weights proportional to 

the size of polygon area, pivoted by each raingauge. In fact, this method is widely used 

because of its practicability and less time consuming with relatively high accurate 

estimates (Damant et al., 1983).   

 

The isohyetal method has now become more widely used, especially after 

surface mapping software and digitization of surveying data using GIS technology are 

available. It takes into account the orographic effect and storm morphology into weights 

calculation in the analysis (Gupta, 1989). This estimation will be more accurate and 

reliable, compared to other methods. This method is versatile because it will 

incorporate records of all raingauge without discarding any of them, as what may occur 

in the Theissen method.  

 

Study by Pegram (1993) indicated that by excluding any raingauge will lower 

the accuracy of estimates due to the forfeited weight that had been relocated to other 

raingauges. Nevertheless, when the density of raingauge is low, then it will be difficult 

to draw the isohyets. Manual drawing is subjective and hence, surface mapping model 

such as Surfer, is vital in this case. With the aids of model, estimation of annual 

precipitation, monthly precipitation, weekly precipitation or even daily precipitation for 

any raingauge point of interest has become easier. Therefore, isohyetal method is also 

very useful in recovering data loss both in long term and short term at any raingauge. 
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Nowadays, isohyetal line plotted using surface mapping software is mostly 

based on numerical fitting technique such as the Kriging technique, reciprocal distance 

and multiquadratic equation (Balascio, 2001). Kriging type is the most intensive 

geostatistical technique to determine high estimate of areal precipitation, especially in 

areas with complicated topography where the rainfall variation is significant (USEPA, 

2003). In other words, it enhances the isohyetal mean method (Bras and Rodrigez-

Iturbe, 1985) through the application of computer plotting model. Study by Sarangi et 

al. (2006) reported that the geostatistical interpolation method (i.e. Kriging type) is a 

more reliable technique than deterministic method (i.e. inverse distance weighting) for 

generating the spatial variability of hydrologic response.  

 

In Kriging technique, analysis of spatial structure through variogram is 

performed (Sarangi et al., 2006). Averaged squared difference between the data as a 

function of separation distance is estimated by the following (Deutsch and Journel, 

1992). 

 

∑
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where: γ is a semivariance as a function of both the magnitude of the lag distance 

or separation vector and its direction α ; is the number of observation pairs 

separated by h used in each summation; is the random variable at location, . 

Thus, selection of method is important because a 10 per cent bias in rainfall may cause 

a 35 per cent variation in estimated runoff (Mein and Nandakumar, 1997). 
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2.2 Runoff Characteristics 
 

In general term, surface runoff starts when there is not sufficient time for soil to 

soak up the rainfall volume during a storm. This condition will be exacerbated during 

heavy downpour. Flash flood occurs when rainfall intensity exceeds soil infiltration rate 

and typically at catchment smaller than 259 km2 (Davis, 1998). Besides loss of lives 

and properties, flash flood also causes non-point source pollution to the receiving water 

bodies. In urban area, more than 60 % of the Malaysian inland waters are polluted due 

to non-point source during excessive direct runoff (Mokhtar, 1998). 

 

River discharge at any point is made up of direct runoff and subsurface runoff 

which comprises interflow and groundwater flow. The direct runoff contributes more to 

flood flows because it produces large concentration of flow in a shorter period, if 

compared to subsurface runoff. Ponce (1989) suggested that interflow moves within 

unsaturated soil layers under ground surface while groundwater flows vertically deep 

into alluvial deposits and water bearing formation below water table. In hydrological 

studies, a baseflow which is defined as the water discharged from groundwater storage 

is an important indicator to separate between direct runoff and indirect runoff (McCuen, 

1989). In the humid tropics, when there is no rainfall, a river baseflow will only 

constitute of groundwater flow (Ponce, 1989). This is because perennial type of river is 

common in that region. It will be advantageous to use remotely-sensed data and GIS 

for runoff estimation when the catchment is large and in-situ data are not available 

(Melesse et al., 2003). 

 

2.2.1 Rainfall Abstraction 
 

Rainfall abstraction is the component of rainfall that does not turn to direct 

runoff. This hydrological abstraction generally comprises the following: interception, 

infiltration, depression storage, evaporation and evapotranspiration. After the initial 
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abstraction is fulfilled, any excess rainfall will become direct runoff (Melesse et al., 

2003). However, in urban catchment, interception, evapotranspiration and evaporation 

do not serve as important factors for study on runoff and river discharge (DID, 2000). 

This is mainly because of its less significant impact.  

 

Infiltration is the dominant process of hydrological abstraction (Chin, 2000), and 

yet a complicated process whereby its rate is normally to be empirically judged. 

Infiltration depends upon factors such as tillage, soil structure, antecedent moisture 

content, soil exchangeable sodium, infiltrating water quality and the soil air status 

(Grismer et al., 1994). There is a variety of model used to explain the infiltration 

process at instantaneous rate, namely Horton model (Horton, 1939), Green-Ampt 

Model (Green and Ampt, 1911), and NRCS Curve-Number Model (USCS, 1972). On 

the other hand, to determine the average infiltration rate, the constant loss rate method 

that makes use of infiltration index (Cook, 1946) is recommended. During infiltration, 

abstracted water will move either laterally as interflow into the receiving waters, or 

vertically until it percolates into the aquifers to give way to groundwater recharge 

(Rétháti, 1983).  

 

At the early stage, initial abstraction is caused by infiltration. It is commonly 

known as the rainfall that is absorbed by the soil prior to the start of direct runoff; while 

some assume that it is the extent of water that penetrates before the infiltration reaches 

a constant rate. Earlier studies by Viessman (1968) had found that the initial 

abstraction for small urban catchment is about 0.1 inch (2.54 mm). Thus, it is believed 

that for rural catchment, this figure will be higher because of more pervious area than 

urban catchment. The approaches to determine initial abstraction are very subjective. It 

may be determined using the specifically fixed volume or just by examine the rainfall 

extent before the occurrence of direct runoff (McCuen, 1989).   
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Until today, there is no definite way to compute the initial abstraction. In 

common practices, the initial abstraction is just construed as a part of rainfall losses 

computed through various models. Despite that, in many hydrological studies, 

especially in the humid tropics, initial abstraction is usually estimated through the linear 

regression model (Wilson, 1984). The initial abstraction can then be predicted through 

the x- intercept of the runoff versus rainfall chart (Harremöes and Ambjerg-Nielsen, 

1996). However, if there is less rainfall event which yields runoff depth which is small 

enough until nears zero, the initial abstraction predicted from the foregoing equation 

may not be representing the actual value. 

 

Depression storage is the precipitation accumulated on the land surface, such 

as puddles, ditches, and others (DID, 2000). In most of the time, when urbanization 

commences, the infiltration rate is reduced; the depression storage will also decrease. 

The water stored in such way will then either evaporate or infiltrate into deeper ground. 

Common consensus had been achieved that depression storage will increase if the 

catchment slope is lower. According to Tholin and Keifer (1960), depression storage for 

paved area ranged from 1.3 to 2.5 mm. The estimated depression storage is found to 

be similar to the initial abstraction in small urban catchment discovered by Viessman 

(1968). Therefore, in order to trigger the direct runoff within urban catchment, a 

minimum value of 2.5 mm (≈ 3.0 mm) rainfall depth is needed. 

  

 There are five (5) models of rainfall excess proposed by the Institution of 

Engineers, Australia as well as the Department of Irrigation and Drainage, Malaysia. 

They are illustrated in Figure 2.1 and described as below. 

 

a) Constant fraction of loss rate in each time interval. It follows the runoff 

coefficient concept 
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      b)  Constant loss rate, where the rainfall excess is the residual left after the loss 

c) Initial loss and continuing constant loss, where no runoff is assumed to occur 

except when the initial loss of rainfall is fulfilled.  

d) Infiltration curve, where loss rate is decreasing with time 

e) Standard rainfall-runoff relation generated by the U.S. Soil Conservation 

Service 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                  Figure 2.1: Loss models (DID, 2000) 
 

 
Among the many infiltration models, the constant loss rate method is the most 

convenient and practicable way (Gupta, 1989). The infiltration index (φ  index) which 

tends to underestimate high initial infiltration rate and overestimate the low latter 

infiltration rate (Ponce, 1989) attributes to the use of this approach in the humid tropics. 

This is owing to its rainfall frequency and moisture content which are always higher 

than the temperate or arid region. In addition to the statement above, constant loss rate 
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model, initial loss and continuous loss model are recommended when the Horton 

overland flow is dominant and runoff is likely to occur over the entire catchment (IEA, 

1987). This means that the constant loss rate method is also suitable to be applied on 

urban catchment with low infiltration rate (Horton, 1933).  

 

Studies had been carried out by Pilgrim (1966) to quantify the infiltration rate on 

temperate catchments in United States, Australia and New Zealand. The constant loss 

rate approach was used. The finding had been compared with the study result obtained 

by Taylor and Toh (1980) over Malaysian local catchments. There might have some 

subjective judgement due to ways of study by different parties, as the whole, it is 

believed that the accuracy of techniques used would not differ much. In Figure 2.1, it is 

clearly shown that the φ  index recorded in Malaysian catchment, is higher than that of 

the three (3) foregoing countries. 74 per cent of data observed in local catchment 

exhibits loss rate exceeding 0.25 in. /hr (6.35 mm/hr); compared to United States at 14 

per cent, Australia and New Zealand with 10 per cent and 13 per cent respectively. 

One possible reason is that the local study areas were not as well developed as those 

western countries, during when the data was collected of at least 30 years ago. 
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   Figure 2.2: Comparison of loss rates between Malaysia and foreign countries  
   (Taylor and Toh, 1980) 
     

 
 
Based on the basic infiltration rate (also known as ultimate infiltration rate) of 

three (3) major soil; clay, loam and sand, the type of soil that may resemble the 

constant loss rate of catchment can be determined. However, this is merely a general 

indicator, as to the degree where the imperviousness of entire catchment lies. Range of 

the basic infiltration rate for various soils, as shown in Table 2.1, had been identified 

through the field test conducted by Brouwer et al. (1988). For well developed 

catchment, most of the soil had been compacted during construction period. Analysis 

by Akram and Kemper (1979) indicated that the changes of pore size distribution in 

sandy loam after compaction by heavy machinery will reduce its infiltration rate from 15 

mm/hr to 3 mm/hr. In other words, this implies that the constant loss rate estimated 

from the studied catchment most probably is rarely signify the true infiltration rate of its 

original soil and allowance has to be made for better estimation.  
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            Table 2.1: Basic infiltration rate for different soil types 
            (http://www.fao.org/docrep/S8684E/s8684e0a.htm, 2006) 
 

Soil Type Basic Infiltration Rate ( mm/hr ) 
Sand Less than 30  

Sandy Loam 20 – 30  

Loam 10 – 20  

Clay Loam 5 – 10  

Clay 1 – 5  

 

 
 

2.2.2 Direct Runoff  
   

 There are three (3) major techniques for baseflow separation, namely the 

straight line separation, constant slope separation, and concave separation (McCuen, 

1989) as shown in Figure 2.3. Hewlett and Hibbert (1967) had generated an empirical 

equation for constant slope separation: Constant slope = 0.00055 A (m3/s)/hr in which 

A is the catchment area in km2.  For concave separation, separation line is constructed 

between the point prior to the rise of discharge and the recession point where both of 

them meet at the time-to-peak (McCuen, 1989). However, there is no conclusive rule 

on how to separate baseflow accurately. This is due to the fact that, all the methods 

were devised based on the observed data from different types of catchment throughout 

the world. Runoff response is hence, varied from one to another catchment. No matter 

which method to be used, baseflow must be separated in such a way that it will ease 

the computation of direct runoff.  
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 Straight line method 

e 
  
                                      Figure 2.3: Common types of baseflow separ

                                

 For different catchment hydrologic response, appropriate 

separation should be selected for the convenience of a study. For

most of the areas are paved and this has raised the degree o

Consequently, rainfall water that infiltrates into the soil to form interfl

recharge will become scarce, if compare to rural area. Forest and 

and flatten for urbanization, regardless of the fact that upland slope

groundwater recharge is taking its own course (Ponce, 1989). Thus, 

groundwater storage and the low flow level drops gradually. Th

subsurface flow will only start to contribute to direct runoff o

groundwater storage has been fulfilled. The effect of groundwater to

negligible in urban catchment (Abustan and Ball, 2000), especially 

event. 

 

 Unlike the straight line separation, both the constant slo

separation are based on the assumption that the recharged ground

contribute to the direct runoff before the total runoff hydrograph eq

rate. In the view of low groundwater recharge rate in urban catchm

slope and concave baseflow separation may under-estimate the dir

catchment study. With reference to Figure 2.3, in the straight line ba
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a line that divides direct runoff and indirect runoff is drawn from the point of discharge 

point prior to the rise until the recession limb of runoff hydrograph at a constant rate 

(Chow et al., 1988). However, in reality, this is rarely possible to do so in most of the 

times. Though the recession of hydrograph has ceased, but it will not fall as the same 

level as before the rainfall event owing to the interference by subsurface flow. To 

overcome this uncertainty, Gupta (1989) had proposed that the starting point and 

ending point of baseflow separation can be arbitrarily selected by logical engineering 

judgement.      

 
 
2.2.3 Stage-Discharge Data  
  

 Water level record at certain time interval, for instance, 1-min, 5-min, 10-min 

and 15-min intervals are usually needed in the analysis of streamflow data. Provided 

with such records, flow rate can be estimated using the rating curve. Selection of rating 

curve in transforming the water level to discharge unit is more recommended than the 

application of Manning’s Equation which is more time-consuming. Nevertheless, a river 

cross section may change in urban catchment when the river is either canalized or 

widened. This includes a river that is susceptible to souring and silting effect (Wilson, 

1984). Thus, it is suggested to acquire the latest stage-discharge curve developed for 

particular study area from the related water authority. 

 

In the event of extreme rainfall, rating curve sometimes is incapable to measure 

the discharge rate above its upper limit. Thus, extension of rating curve is needed. This 

rare event usually leaves some useful evidence, such as the highest water level ever 

happens can be recorded based on lines of debris at the river bank. In line with this, 

there are three common ways to extend the rating curve. This includes the conversion 

of rating curve equation into logarithmic form, Steven’s method and slope-area method 

(Wilson, 1984). During extreme rainfall, there may be an abrupt increase of high flow 
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resulted from the cross-sectional changes and this is beyond estimation using the first 

method. For the latter two methods, both provides erroneous estimation when the flood 

scour and subsequent low water decomposition occurs (Wilson, 1984). Every method 

has drawbacks and hence precaution should be taken during the practical application. 

 

2.3 Hydrological Response  
 
 
 There was a rainfall-runoff study done by Chong et al. (2000) for Taman 

Mayang catchment (i.e. 2.316 km2) in Damansara, Selangor. However, the results were 

inconclusive due to the lack of hydrological data. Similar studies had been carried out 

by Taylor and Toh (1980) and the results were published in the design flood 

hydrograph guideline proposed by the DID Malaysia. Based on 97 records observed 

throughout the year 1964 until 1973, one linear regression formula was derived. 

Moreover, one empirical formula was proposed by Chow (1964) ; 

 
 
Direct runoff, Q                (2.2)….… for rainfall depth less than 3 inches (76.2 
mm) 

P33.0=

Direct Runoff, 
)(

2

IP
PQ
+

=            (2.3)…… for rainfall depth more than 3 inches (76.2 

mm) 
 
 

where,  Total rainfall subtracted from initial loss =P

             Potential infiltration at 6 inches (152.4 mm) =I
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e 2.4: Rainfall-runoff relationship at local catchments (Taylor and Toh, 1980)               

ll the data as plotted in Figure 2.4 was observed from 19 catchments in 

Penins

Selection of catchment with appropriate size is an important factor because it 

resemb

        Figur
 

 

A

ular Malaysia (Taylor and Toh, 1980). It is noticeable that the direct runoff depth 

increased drastically after three (3) inches (i.e. 76.2 mm) of rainfall. This might be due 

to that the soil had become saturated and not capable to infiltrate excess rain water. 

Another possible reason is that the high proportion of direct runoff depth per unit rainfall 

resulted from the subtraction of initial loss. Further, the fitting of the two regression 

formulas were done with visual inspection (Taylor and Toh, 1980) without validating 

their prediction accuracy using statistical approach. Therefore, further statistical 

analysis is vital before the developed rainfall-runoff relationship is applied. 

 

les the rainfall-runoff response in different manner. According to Ponce (1989), 

there are three (3) types of such hydrological response as follows. Rainfall on small 

catchment which is normally less than 25 km2 (IEA, 1987) is uniformly distributed with 
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