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A1(LO) optical mode of the of AlxGa1-xN (0 ≤ x ≤ 1) thin 
films is indicated by the open triangles ( ). 
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Fig. 7.12 (a): The E2(L) optical phonon mode behaviour of AlxGa1-xN (0 

≤ x ≤ 1). The solid line indicates the non-linear 
interpolation of the GaN-like E2(L) data. 
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Fig. 7.12 (b): The E2(H) optical phonon mode behaviour of AlxGa1-xN (0 

≤ x ≤ 1). The solid line and the dashed lines represent the 
non-linear interpolation of the GaN-like and AlN-like E2(H) 
data, respectively. 
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Fig. 7.12 (c): The A1(LO) optical phonon mode behaviour of AlxGa1-xN 

(0 ≤ x ≤ 1). The solid line represents the non-linear 
interpolation of the data. 
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Fig. 7.12 (d): The E1(TO) optical phonon mode behaviour of  AlxGa1-xN 

(0 ≤ x ≤ 1). The solid line and the dashed lines represent 
the non-linear interpolation of the GaN-like and AlN-like 
E1(TO) data, respectively. 
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Fig. 7.13: Raman line width of (a) E2(L), (b) GaN-like E2(H), (c) AlN-

like E2(H) and (d) A1(LO) modes of AlxGa1-xN thin films as 
a function of the Al composition. The solid lines indicate 
the non-linear interpolation of the data. 

183 

   
Fig. 7.14: Room temperature p-polarized IR ATR spectra for AlxGa1-

xN (0 ≤ x ≤ 1) thin films grown on sapphire substrate. The 
ATR spectrum for sapphire substrate is also shown for 
comparison. The measurements have been repeated at 
two different areas on the sample and the average values 
of these spectra are calculated. The positions of the 
absorption dips are determined by means of second 
order derivative method. 
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Fig. 7.15: The surface polariton (SP) theoretical dispersion curves 

for AlxGa1-xN (0 ≤ x ≤ 1) thin films. The vacuum light wave 
and the light wave in ATR crystal are indicated by dash 
line and dash-dot-dot line respectively. The intersections 
of the ATR crystal line and the branches of the SP 
dispersion curve correspond to the SPP mode. 
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Fig. 7.16: The SPP mode of the AlxGa1-xN (0 ≤ x ≤ 1) thin films as a 

function of Al composition. The full circles and the 
triangles are respectively the theoretical and experimental 
data. The SPP theoretical data for x = 0.2, 0.3, 0.4, 0.5, 
0.6, 0.7, 0.8, and 0.9 are also included. The solid line and 
the dash line are the best fit of the theoretical and 
experimental data, respectively. 
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Fig. A3.1: A single absorption band IR spectrum and its second 

derivative spectrum (Stuart, 1996). 
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Fig. A3.2: Typical single resonance IR reflectance spectra  for 

(a) an ideal case (phonon damping, 
)(wR

0=γ ) and (b) for 
non-ideal case ( 0≠γ ). The spectra of the real refractive 
index and the extinction coefficient are also 
shown (Ng, Hassan and Abu Hassan, 2006). 
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KAJIAN CIRI STRUKTUR DAN OPTIK BAGI SEMIKONDUKTOR 
BERJURANG TENAGA LEBAR AlxGa1-xN (0 ≤ x ≤ 1) 

 
ABSTRAK 

 
 

Tujuan projek ini ialah untuk mengkaji ciri struktur dan optik bagi 

semikonduktor-semikondutor berjurang tenaga lebar AlxGa1-xN (0 ≤ x ≤ 1) dengan 

pelbagai peralatan pencirian yang tak bersentuhan dan tak memusnahkan. Ini 

termasuklah mikroskopi imbasan elektron (SEM), serakan tenaga sinar-x (EDX), 

mikroskopi daya atomik (AFM) dan pembelauan sinar-x (XRD) untuk pencirian struktur, 

dan teknik pemantulan spectrum, spektroskopi ultraungu-cahaya nampak (UV-VIS), 

fotoluminesen (PL), spektroskopi Raman, spektroskopi pantulan inframerah (IR) 

terkutub dan pantulan penuh inframerah (IR) terkutub yang dilemahkan (ATR) untuk 

pencirian optik. 

Kerja-kerja awal ke atas ciri struktur dan optik bagi filem-filem nipis GaN yang 

telah ditumbuhkan di atas pelbagai substrat, seperti substrat silikon (Si), batu nilam 

(Al2O3), gallium arsenida (GaAs), dan silikon karbida 6H (6H-SiC) telah dijalankan. 

Walau bagaimanapun, kajian-kajian ini telah difokuskan kepada pencirian PL dan 

Raman, kajian mendalam bagi asal-usul puncak berpantulan tinggi di dalam spektrum 

pantulan IR yang terkutub p, dan kajian XRD dan pantulan IR yang terkutub mengenai 

penghabluran bagi filem-filem nipis GaN yang ditumbuhkan atas substrat Si pada suhu 

substrat yang berlainan. Keputusan telah menunjukkan bahawa kualiti hablur yang 

lebih baik dapat diperolehi jika lapisan GaN ditumbuhkan atas substrat 6H-SiC. 

Tambahan pula, keputusan telah mendedahkan bahawa asal-usul puncak berpantulan 

tinggi di dalam spektrum pantulan IR yang terkutub p ialah mod fonon TO⊥. Satu 

kolerasi di antara penghabluran dan bentuk jalur reststrahlen IR juga telah diperolehi. 

Untuk semikonduktor-semikonduktor AlxGa1-xN, ketebalan dan komposisi aloi 

bagi filem-filem nipis AlxGa1-xN telah ditentukan terlebih dahulu. Kajian-kajian terperinci 

ke atas kesan-kesan komposisi aloi, x, terhadap morfologi permukaan, kekasaran 
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permukaan, pemalar kekisi c dan kualiti hablur telah dijalankan. Tambahan pula, 

kesan-kesan pengaloian terhadap jurang tenaga asas Eg, mod-mod fonon optik pada 

pusat Brillouin zon (BZ) dan mod fonon polariton permukaan (SPP) telah disiasat 

dengan terperinci. Melalui kajian-kajian ini, keputusan-keputusan terhadap kelakuan 

dan kebersandaran terhadap komposisi bagi ciri-ciri asas struktur dan optik telah 

diperolehi atau diterbitkan. Bagi mod SPP, kelakuan satu-mod dan satu faktor 

lengkung ke atas (bagi persamaan kebersandaran terhadap komposisi) telah 

diperolehi. Adalah penting disebutkan bahawa ini merupakan kali pertama kelakuan 

dan kebersandaran terhadap komposisi bagi mod SPP aloi AlxGa1-xN (begitu juga 

untuk aloi-aloi terner yang berstruktur wurtzit) diperolehi. 

Secara keseluruhan, keputusan-keputusan telah mendedahkan bahawa 

pengaloian mempunyai satu impak yang besar ke atas ciri-ciri struktur dan optik bahan. 

Banyak ciri bagi aloi AlxGa1-xN telah berubah dengan sepenuhnya dan berkelakuan 

dengan cara lain berbanding dengan bahan-bahan induk mereka, iaitu GaN (x = 0) dan 

AlN (x = 1). Akan tetapi, ciri-ciri bahan bagi aloi-aloi yang terbentuk adalah bergantung 

kepada komposisi aloi dan secara biasa dapat diwakilkan dengan satu interpolasi 

secara linear atau tak-linear antara unsur-unsurnya. 
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STRUCTURAL AND OPTICAL STUDIES OF WIDE BAND-GAP AlxGa1-xN 
(0 ≤ x ≤ 1) SEMICONDUCTORS 

 
ABSTRACT 

 
 

The aim of this project is to study the structural and optical properties of wide 

band gap AlxGa1-xN (0 ≤ x ≤ 1) semiconductors by means of various non-contact and 

non-destructive characterization tools. These include the scanning electron microscopy 

(SEM), energy dispersive x-ray (EDX) analysis, atomic force microscopy (AFM) and x-

ray diffraction (XRD) for structural characterization, and spectral reflection technique, 

ultraviolet-visible (UV-VIS), photoluminescence (PL), Raman, polarized infrared (IR) 

reflectance and polarized IR attenuated total reflection (ATR) spectroscopy for optical 

characterization. 

Initial works on the structural and optical properties of the GaN thin films grown 

on various substrates, such as silicon (Si), sapphire (Al2O3), gallium arsenide (GaAs), 

and 6H-silicon carbide (6H-SiC) substrates have been carried out. Studies are, 

however, focused on PL and Raman characterization and in-depth polarized IR 

reflectance study on the origin of the high reflection peak in the p-polarization spectrum 

as well as XRD and polarized IR reflectance studies on the crystallinity of GaN thin 

films. The results showed that a better crystalline quality can be achieved if the GaN 

layer is grown on 6H-SiC substrate. In addition, the results revealed that the origin of 

the high reflection peak in the p-polarization IR reflectance spectrum is the TO⊥ phonon 

mode. A correlation between the crystallinity and the IR reststrahlen band shapes has 

also been obtained. 

For AlxGa1-xN semiconductors, the thickness and the alloy composition of the 

AlxGa1-xN thin films are first determined. Thorough studies on the influence of the Al 

composition, x, on the surface morphology, surface roughness, lattice constant c and 

the crystalline quality are conducted. In addition, alloying effects on the fundamental 

band gap energy Eg, the Brillouin zone (BZ) centre optical phonon modes and the 
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surface phonon polariton (SPP) mode are investigated thoroughly. Through these 

studies, a number of results on the behaviour and composition dependence of the 

fundamental structural and optical characteristics have been obtained or derived. For 

the SPP mode, a one-mode (OM) behaviour and an upward bowing factor (for the 

composition dependence equation) have been obtained. It is important to note that this 

is the first time the behaviour and the composition dependence of the SPP mode of the 

AlxGa1-xN alloy (as well as the wurtzite structure ternary alloys) are obtained. 

Overall, the results revealed that the work of alloying has a great impact on the 

structural and optical characteristics of the materials. Many properties of the AlxGa1-xN 

alloy have been completely changed and behave differently as compared to their 

parent materials, namely, the GaN (x = 0) and the AlN (x = 1). However, the material 

properties of the alloy materials formed are dependent on the alloy composition and 

typically can be represented by a linear or non-linear interpolation between its 

constituents. 
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CHAPTER 1 

INTRODUCTION 

 

 

1.1 Introduction 

 

Owing to the outstanding optical properties such as wide range band-gap 

energy and high emitting performance, group-III nitride semiconductors such as 

aluminium nitride (AlN), gallium nitride (GaN), indium nitride (InN) and their alloys have 

attracted both academic and technological extensive research in recent years. As a 

consequence, efficient green-blue-ultraviolet light emitting diodes (LEDs), blue-violet 

laser diodes (LDs) and ultraviolet (UV) detectors as well as high voltage, high 

temperature and high frequency electronic devices have been successfully realized 

(Nakamura, 1999; Kung and Razegui, 2000; Asif Khan et al., 1994; Shur et al., 1999).  

Group-III nitride ternary alloys, particularly aluminium gallium nitride (AlGaN) 

have been recognized to have the potential for applications in semiconductor light 

emitting devices and solar-blind UV detector as well as sensor devices, particularly for 

operating under harsh environment conditions (Shur et al., 1999; Gotthold and Guo, 

2003; Razeghi, 2002; Allerman et al., 2003; Munoz et al., 2001; Mukai et al., 2001). 

Besides that, it also has the capacity to cover the spectrum from visible (VIS) to deep 

UV spectral range. These are strongly driven by their superior physical properties such 

as excellent thermal, mechanical and chemical stability, and unique optical properties 

such as direct and tuneable band gap energy (ranging from 3.4 to 6.2 eV).  

Although great progress has been achieved in the fabrication of AlGaN-based 

devices, little is known about their fundamental materials properties. As compared to its 

family, the physical properties of III-V nitrides binary semiconductors have been 

reviewed in-depth and summarized in many books (Adachi, 2005; Ruterana, Alberecht 
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and Neugebauer, 2003; Levinshtein, Rumyantsev and Shur, 2001; Pankove and 

Moustakas, 1999; Morkoc, 1998; Pearton, 1997) as well as technical papers 

(Reshchikov and Morkoc, 2005; Jain et al., 2000; Pearton et al., 1999; Ambacher, 

1998; Mohammad and Morkoc, 1996; Strite, Lin and Morkoc, 1993).  

For AlGaN alloys, many attentions have been paid to the device applications. 

For the fundamental material properties, most of the works are devoted to the 

determination of the band gap energy bowing parameter b as well as the behaviour of 

the optical phonon modes as a function of Al composition. Despite these findings, there 

is no consensus between the literature results concerning these subjects. This is 

mainly due to the differences in the sample quality and the narrow range of the alloy 

compositions that are explored. Apart from that, many basic physical properties still 

remain unclear or unexplored. For instance, knowledge on the surface phonon 

polariton (SPP) modes, which is crucial for understanding the behaviour of the coupling 

effect between the photon and surface phonon, is still rare and has not received 

sufficient attention. Hence, from both the fundamental physics point-of-view and the 

potential application of the nitrides semiconductor, there is an absolute need for 

thorough studies on the fundamental properties of these materials.  

In order to contribute to the understanding of the fundamental properties of this 

advanced material as well as the advancement of knowledge in the condensed matter, 

the influences of the Al composition on the structural and optical as well as surface 

properties of this ternary alloy will be investigated.  

 

 

1.2 Research objectives 

 

In this work, initial investigation is focused on the detailed studies of the 

structural and optical properties of the GaN thin films. The aims of these studies are to 

characterize the optical properties of the GaN thin films grown on various substrates 

2



and to perform an in-depth study of the origin of the high reflection peak in the p-

polarization infrared (IR) reflectance spectrum. The objective of these studies also 

includes the investigation of the correlation between the crystalline quality and the 

variations of IR reststrahlen band of a set of GaN thin films (with a variety of structural 

or crystalline quality) grown on silicon (Si) substrates at various substrate 

temperatures. 

In general, these preliminary works eventually provides a better understanding 

on the fundamental properties for the subsequent study of the wide band gap AlxGa1-xN 

(0 ≤ x ≤ 1) semiconductors, and hence facilitates the characterization research as well 

as the analyses of the obtained results. 

Thorough studies on structural and optical characteristics of AlxGa1-xN (0 ≤ x ≤ 

1) semiconductors have been carried out by means of various non-contact and non-

destructive characterization tools. These include the scanning electron microscopy 

(SEM), energy dispersive x-ray (EDX) analysis, atomic force microscopy (AFM), x-ray 

diffraction (XRD), spectral reflectance technique, ultraviolet-visible (UV-VIS) 

spectroscopy, photoluminescence (PL) spectroscopy, Raman spectroscopy and 

polarized IR reflectance spectroscopy as well as polarized IR attenuated total reflection 

(ATR) spectroscopy. The main research objectives are to investigate the effects of the 

alloys composition, x, on the surface morphology, the surface roughness, the lattice 

constant c, and the crystalline quality of the AlxGa1-xN (0 ≤ x ≤ 1) thin films. Besides 

that, the research objectives also included investigations of the alloying effects on the 

fundamental band gap energy Eg, the behaviour of the Brillouin zone (BZ) centre optical 

phonon modes, particularly the E2(L), E1(TO), E2(H) and A1(LO), and the behaviour of 

the SPP mode of the AlxGa1-xN (0 ≤ x ≤ 1) thin films. Determinations of the composition 

dependence equation of these characteristics in the entire Al composition range are 

carried out in parallel with the above characterization studies. 
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1.3 Originality of the research works 

 

 The main originality of this research work lies in the experimental and 

theoretical studies of the influences of the alloy composition, x, on the SPP mode of the 

AlxGa1-xN (0 ≤ x ≤ 1) thin films. Through this research study, the composition 

dependence and the behaviour of the SPP mode of the AlxGa1-xN (0 ≤ x ≤ 1) thin films 

are reported for the first time. 

Apart from that, the alloying effects on the surface morphology and the surface 

roughness, the lattice constant c and the crystallite quality, the fundamental band gap 

energy Eg, and the behaviour of the BZ optical phonon modes of the AlxGa1-xN thin films 

have been investigated thoroughly over the entire Al composition range (0 ≤ x ≤ 1). 

Through this sequential study, many previously reported experimental results have 

been confirmed or verified. Moreover, some new findings, mainly the composition 

dependence equation for the optical phonon modes, have been derived. 

On the other hand, the results of this research project have also led to new 

explanations of the origin of the optical phonon modes that can be obtained through the 

oblique incident polarized IR measurements on the wurtzite nitrides. In addition, an 

alternative technique to determine the crystallinity of the deposited films based on the 

IR reflectance measurements has also been proposed.  

 

 

1.4 Organization of dissertation 

 

Generally, the content of this dissertation is organized as follows. 

In Chapter 2, early studies on the structural and optical properties of the AlGaN 

semiconductor are reviewed. However, emphasis will be placed on the band gap 

energy bowing parameter b, the behaviour of the BZ optical phonon modes and the 
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SPP mode. Apart from that, an overview of the assignment of the IR optical phonon 

modes will be presented in this chapter. 

Chapter 3 is devoted to the fundamental properties of the GaN and the AlN as 

well as the AlxGa1-xN semiconductors. Theoretical models used to fit/generate the PL, 

the Raman, the polarized IR reflectance and the SPP spectra of the AlxGa1-xN 

semiconductors are also included.  

In Chapter 4, the general principles underlying the operation of the 

characterization tools and the experimental details for each characterization work are 

discussed. These include the samples details, experimental set-up and the operating 

conditions as well as the resolution. 

In Chapter 5, the results and discussion for the PL and Raman characterization 

of the GaN thin films grown on various substrates, namely, sapphire (Al2O3), 6H-silicon 

carbide (6H-SiC), gallium arsenide (GaAs) and Si are presented. In-depth polarized IR 

reflectance analyses, with emphasis on the GaN thin film grown on 6H-SiC substrate, 

are also given.  

Chapter 6 discusses the results of the XRD and polarized IR reflectance 

characterization of a set of GaN thin films grown on Si substrate at various substrate 

temperatures.  

Chapter 7 contains the structural and optical studies of the AlxGa1-xN (0 ≤ x ≤ 1) 

semiconductors. The results and discussion is mainly devoted to the influence of 

alloying on the structural and optical properties of the AlxGa1-xN semiconductors. 

Finally, in Chapter 8, conclusions on the characterization results covered in this 

dissertation and recommendations for future research are given.  
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CHAPTER 2 

LITERATURE REVIEW 

 

 

2.1 Introduction 

 

In this chapter, the overview of the IR active optical phonon modes of wurtzite 

GaN thin films in the polarized spectra will be discussed briefly. Next, the present 

status of the characterization studies of the AlxGa1-xN semiconductor will be reviewed. 

Emphasis will be placed on the band gap energy bowing parameter b, the behaviour of 

the BZ optical phonon modes, and the SPP mode of the AlxGa1-xN semiconductor. In 

the final section of this chapter, a concluding remark of these literature reviews is 

presented. 

 

 

2.2  Overview on IR active optical phonon modes of wurtzite GaN thin 

films in the polarized spectra 

 

Up to now, a number of studies on the optical properties of the GaN in the IR 

region have been carried out by measuring the reflectivity of the thin films for radiation 

at normal or oblique incidence (Perlin et al., 1995; Perlin et al., 1996; MacMillan et al., 

1996; Yu et al., 1998; Iller et al., 1999; Hou et al., 1999; Deguchi et al., 1999; Li et al., 

1999; Frayssinet et al., 2000; Hou et al., 2000; Feng, Yang and Hou, 2001; Feng et al., 

2002; Zhang et al., 2001). Since wurtzite structure GaN is a uniaxial crystal, two sets of 

phonon parameters are required to describe the dielectric function, namely, one set to 

model ⊥ε  and another set to model ||ε  (Barker and Ilegems, 1973). As a result, these 

experimental data provided fairly little information as compared to polarized 
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measurements. According to Dumelow et al. (1993), the materials parameters can be 

determined more accurately if the reflectance measurements are performed by means 

of the oblique incidence polarized light. This is owing to purely transverse-optic (TO) 

and longitudinal-optic (LO) phonon modes can be observed for phonons propagating in 

the direction perpendicular (⊥) and parallel (||) to the crystal axis, C, respectively; 

hence, more strongly marked features can be obtained. Consequently, more 

informative and accurate results can be obtained through the polarized measurements. 

To date, detailed investigations of the polarized IR reflectance on GaN have 

been reported by Barker and Ilegems (1973), Manchon et al. (1970), Sobotta et al. 

(1992), Hao et al. (1999), Wetzel et al. (1996), Mirjalili et al. (1996, 1998) and Yu, 

Rowell and Lockwood (2004) research groups. Besides that, there are numerous 

polarized IR ellipsometry (IRE) measurements on GaN thin films, however, the 

interpretation of the spectra and the ways to extract the lattice vibrational parameters 

are different as compared to typical polarized IR reflectance analysis. Thus, it will not 

be discussed here.  

The early investigation of the GaN thin films (most probably of poor quality) by 

Barker and Ilegems (1973) and Manchon et al. (1970) resulted in the determination of 

the optical parameters with large uncertainty. Sobotta et al. (1992) measured GaN 

samples with crystallographic C-axis along the plane of the layers. Consequently, they 

were able to determine the optical parameters from the reflectivity spectra exactly for 

the polarizations perpendicular (E ⊥ C) and parallel (E || C) to the C-axis. (It is important 

to note here that, the results obtained both in this study and in all the IR studies quoted 

here are different from Sobotta et al. (1992) because the GaN samples with the C-axis 

oriented along the growth direction have been used.) Hao et al. (1999) had studied on 

the polarized transmission and reflection measurements of bulk GaN, but their 

analyses were mainly on the determinations of absorption coefficient and refractive 

index. Wetzel et al. (1996) studied the polarized IR reflection of heterostructures of 

GaN and AlGaN thin films with AlN buffer layers. However, their studies were mainly 
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focused on the LO phonon modes of the GaN and AlN. Polarized IR measurements of 

GaN films with various structures, which were deposited on various substrates, were 

reported by Mirjalili et al. (1996, 1998). However, as commented by Huo et al. (1999), 

the simulated spectra do not exactly fit the experiment well enough. For Yu, Rowell and 

Lockwood (2004), a study was done on the polarized IR reflection of GaN epilayer 

grown on sapphire substrate at three different angles of incidence (18°, 45° and 75°). 

Their studies were mainly focused on the fitting of numerical first differential reflectance 

by using a factorized model of dielectric constant and more attention was paid to the 

sapphire. For GaN thin films on sapphire, they were unable to observe and fix the 

A1(TO) phonon mode (as quoted by the authors); hence, an A1(TO) mode with a large 

uncertainty was obtained. 

Commonly, all these polarized IR studies are able to determine a set of TO (⊥ 

and ||) and LO (⊥ and ||) phonon modes for both E ⊥ C and E || C. Principally, the TO⊥ 

and the LO|| are first obtained from the best fits of the theoretical model to the 

experimental curve, then Lyddane-Sachs-Teller (LST) relation (Lyddane, Sachs and 

Teller, 1941) is applied to calculate the corresponding LO⊥ and TO||. Up to now, good 

agreement has been obtained between these reported results and there are no doubts 

about the reported results. However, it seems that the fundamental principle of the IR 

phonon coupling has not been taken into consideration. It is well known for typical IR 

measurements that the wave-vector (q) of the radiation may be taken as zero (q = 0). 

This is often referred to as the “long-wavelength limit” or “zone-centre” approximation 

(Houghton and Smith, 1966; Moller and Rothschild, 1971). Consequently, the optical 

phonon modes that can be detected are those coming from the BZ centre only, namely, 

the TO⊥ and the LO||; while the BZ edge modes of LO⊥ and TO|| are forbidden. Note 

that the condition  holds also for Raman scattering (Moller and Rothschild, 1971). 

As a result, there is a need to look into the details of the interpretation of the polarized 

IR reflectance spectra and the use of the LST equation for determinations of the LO⊥ 

0=q
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and the TO|| phonon modes. Furthermore, through the in-depth studies, it is found that 

the origin of the transverse-optic (TO||) phonon mode in the p-polarized spectrum thus 

far is inappropriate. Based on Balkanski IR theory for thin films (Balkanski, 1972), 

Fresnel formulae for the oblique incidence polarized IR reflectivity, and vector analysis 

of the polarized IR incident beam, it can clearly confirm that this mode actually has the 

same origin as the TO mode in s-polarized spectrum and can be attributed to the TO⊥ 

optical phonon mode. A detailed discussion will be given in Chapter 5. 

 

 

2.3 Overview on the characterization studies of AlxGa1-xN 

semiconductor  

 

As mentioned in Chapter 1, much of the works on the AlGaN alloys are devoted 

to the device applications. For the fundamental material properties, although there are 

a number of studies, it is found that there is no consensus among the literature results 

concerning the band gap energy bowing parameter b and the behaviour of the BZ 

optical phonon modes. For SPP mode of the AlxGa1-xN semiconductor, the research in 

this field is still rare and has not received sufficient attention. This is even true for the 

case in GaN (x = 0) and AlN (x = 1). Therefore, in this section, a brief review of the 

above issues will be given. For simplicity, the discussion will be presented separately.  

  

 

2.3.1 Band gap energy bowing parameter b 

 

 As mentioned in Chapter 1, a unique characteristic of AlGaN ternary alloy is its 

tuneable band gap energy, namely, ranging from 3.4 to 6.2 eV. Since a precise 

knowledge of the dependence of the band gap on the material composition is crucial 

9



for band gap engineering in order to realize device applications; many studies on 

AlGaN have been devoted to the determination of band gap energy bowing parameter 

b. Note that the bowing parameter b represents the deviation from a linear interpolation 

between the two forming binary semiconductors. Detailed description of the bowing 

parameter b will be given in Chapter 3. 

Up to now, a number of investigations (experimental or theoretical) have been 

carried out to determine the values of the bowing parameter of AlxGa1-xN alloy. An 

overview of these studies is summarized in Table 2.1. In spite of huge efforts, a 

consensus concerning the bowing parameter value is not yet reached owing to the 

results obtained by different researchers are quite diverging, as shown in Fig. 2.1. 

Nevertheless, the bowing parameter values reported are in the range of -0.8 to +1.56 

eV, as evident from Table 2.1. 

In order to explain the uncertainties of these bowing parameter values, many 

explanations have been proposed. It is supposed that the uncertainties are stemming 

from the uncertainties and peculiarities of the various techniques used to grow and to 

measure the band gap energy as well as to determine the alloy composition of the 

AlxGa1-xN alloys (Ozgur et al., 2001; Ochalski et al., 1999; Teofilov et al., 2002). In other 

words, the derivations of b seem to be technique-dependent.  

In addition, it is found that the derivations of b seem to be also growth 

dependent, which is a consequence of variations in growth conditions. Correlation 

between the measured band gaps and the methods used for epitaxial growth of the 

AlGaN has been investigated by Lee et al. (1999). They have found that directly 

nucleated or buffer growths of AlGaN initiated on sapphire at temperatures T > 800°C 

usually lead to stronger apparent bowing (b > 1.3 eV); while growths initiated using low-

temperature buffers on sapphire, followed by high-temperature, lead to weaker bowing 

(b < +1.3 eV). 

10
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Fig. 2.1: Band gap energy of AlxGa1-xN (0 ≤ x ≤ 1) versus the deviation from the zero 
bowing. The symbols represent the experimental data (band gap energies) from 
published works. (Adapted from Yun et al., 2002.)  
 

 

Besides that the dispersion of bowing parameters reported by various 

researchers is mostly emanating from the quality (e.g., strain, uniformity of the alloy 

composition, defects, etc.) of the AlGaN samples (Shan et al., 1999; Katz et al., 2001; 

Yun et al., 2002). For instance, Vurgaftman, Meyer and Ram-Mohan (2001) have 

presented a brief review on the variation of band gap energy bowing parameter for 

AlGaN thin films due to the strain. 

Other factors that cause the uncertainties in the determination of the b value are 

the range of alloy compositions explored being narrow (x < 0.5), structural effect, i.e., 

the composition-induced disorder in the bond lengths (Ferhat, Furthmuller and 

Bechstedt, 2002), compositional inhomogeneities (Steude et al., 1999), concentration 
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of free carriers (Brunner et al., 1997), non-uniformity in the energy band gap (Koide et 

al., 1987) and uncertainty for band gap energy of its constituent binary materials (Dridi, 

Bouhafs and Ruterana, 2003). Again, despite these factors, the essential factor that 

affects the accuracy of bowing parameter value is still not yet definitely concluded.  

To summarize, it is difficult to determine an absolute bowing value which is 

growth- and technique-dependent. Nevertheless, through a systematic study and the 

utilization of various independent methods in the determination of the composition and 

the energy band gap of the alloys, more reliable bowing parameter with wide 

consensus can be attained. 

 

 

2.3.2 Brillouin zone (BZ) optical phonon modes 

 

There have been many experimental and theoretical studies on the BZ optical 

phonon modes of AlxGa1-xN thin films. Basically, the behaviour and the composition 

dependence of the optical modes of AlxGa1-xN alloy are subjects of considerable 

theoretical and experimental research interest because it reflects the lattice vibration 

properties, disorder in atomic arrangements, electronic properties, carrier 

concentration, strain and atomic composition as well as homogeneity of the alloy 

(Harima, 2002). In some cases, behaviour of the Raman line width, particular the line 

width of the E2(H) peak, of the AlxGa1-xN is of interest because such an investigation 

provides insight into the alloy microstructure (Bergman et al., 1997). An overview of 

literature results on the BZ optical phonon modes of AlxGa1-xN thin films is shown in 

Table 2.2.  
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In general, most of the studies are performed by using Raman methods. This is 

because Raman spectroscopy is a direct technique for the observation of optical 

phonons as compared to the IR and IRE spectroscopy. Unlike the Raman approaches, 

a fitting procedure is normally needed to extract the phonon frequencies from the IR 

and IRE spectra. The work of extraction may become complicated if the reststrahlen 

band (IR absorption band) of the concerning layer is superimposed with that from the 

underlying layer. Nevertheless, in some aspect, the IR or IRE spectroscopy is preferred 

than the Raman scattering. For instance, they are sensitive to the IR-active lattice 

vibration modes as compared to Raman scattering measurement. 

There have been several reports/reviews on the behaviour and the composition 

dependence as well as the line width of the optical modes of AlxGa1-xN alloy (Harima, 

2002; Haboeck et al., 2003; Kuball, 2001; Wetzel and Akasaki, 1999). However, only a 

brief description is given because most of the attention is paid to its constituent 

materials, namely, the GaN and AlN. A comprehensive Raman scattering and 

theoretical study has been reported by Davydov et al. (2002) and Grille, Schnittler and 

Bechstedt (2000), respectively. Therefore, the following discussion mainly refers to the 

results given in the cited literature. 

For wurtzite structures of GaN and AlN, there are six BZ centre optical phonon 

modes which are IR or Raman active, or active under both investigations, namely, 

A1(TO), A1(LO), E1(TO), E1(LO), E2(L) and E2(H). Like its parent, wurtzite structure 

AlGaN also consists of these sets of BZ centre optical phonon modes, however, the 

situation is more complicated. In some aspect (depends on the alloy composition), 

these optical phonons may exhibit either a “one-mode” (OM), a “two-mode” (TM) or a 

“mixed-mode” (MM) behaviour. Note that detail descriptions of the behaviour of these 

modes will be given in Chapter 3. 

A general picture of the behaviour of some BZ centre optical phonon modes as 

a function of alloy composition has been obtained through the theoretical study by 

Grille, Schnittler and Bechstedt (2000), as shown in Fig. 2.2. The composition 
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dependence of the phonon frequencies of all the six BZ centre optical phonon modes 

of wurtzite AlxGa1-xN obtained through the Raman scattering study by Davydov et al. 

(2002) is shown in Fig. 2.3. It important to note here that Fig. 2.2 and Fig. 2.3 given 

here are used for reference purposes only, because there may be some discrepancies 

between these results.  

 

 

 
 
Fig. 2.2: Behaviour of the BZ centre phonons in wurtzite AlxGa1-xN as a function of alloy 
composition with the phonon propagation direction perpendicular to the C-axis. The 
vertical axis represents the density of states (DOS) for the BZ centre phonons. 
(Adapted from Grille, Schnittler and Bechstedt, 2000.) 
 

22



 

 
 
Fig. 2.3: Composition dependence of the BZ centre optical phonons in wurtzite AlxGa1-

xN. (Adapted from Davydov et al., 2002.) 
 

 

Based on the literature results in Table 2.2 the behaviour of the BZ centre 

optical phonon modes of the AlxGa1-xN alloys is evaluated and summarized in Table 

2.3.  
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Table 2.3: An evaluation (based on the literature results) of the behaviour of the BZ 
centre optical phonon modes of the AlxGa1-xN alloy over the entire 
composition range (0 ≤ x ≤ 1). 

 

Phonon mode Behaviour Remark 

A1(TO) OM 

 No consensus is reached concerning the behaviour of this 
mode. 

 This conclusion is made after considering the theoretical 
results. 

A1(LO) OM  A consensus is reached in all the reported results. 
E1(TO) TM  A broad consensus is reached. 
E1(LO) OM  A broad consensus is reached. 
E2(L) TM  There is only one reported result on this mode. 
E2(H) TM  A broad consensus is reached. 

   
OM – One-mode behaviour. 
TM – Two-mode behaviour. 
 

 

For A1(LO) mode, all the reported results reveal a OM behaviour. In contrast, 

the behaviour of the A1(TO) mode still remains a controversial issue and is a subject of 

ongoing debate in the literature. This is because both OM and TM have been observed 

and no consensus is attained among the reported results. An explanation of this issue 

has not yet been reported. Note that the conclusion, of OM behaviour, is made after 

taking into account the theoretical results. 

A broad consensus is reached between the literature results on the behaviour 

of the E1(LO) and E1(TO) modes, where OM and TM behaviour are, respectively, 

concluded. Last but not least, a TM behaviour for both E2(L) and E2(H) modes is 

deduced. It is interesting to point-out here that there is only one paper that reported the 

behaviour of the E2(L) mode.  

On the subject of the composition dependence equation of the optical phonon 

modes, it can be concluded from Table 2.2 that less attention is paid on this subject. 

Moreover, it is found that there are no consensuses between the reported results on 

the derived composition dependence equations.  

Another subject of interest on the Raman scattering results of AlGaN alloy is the 

behaviour of the Raman peak line width. An earlier Raman analysis on the E2(H) mode 
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of AlxGa1-xN by Bergman et al. (1997) revealed that the Raman line shape exhibit a 

significant asymmetric broadening for x > 0.6. This Raman line broadening is then 

attributed to the activation of phonons wave vector q ≥ 0 arising from the disordered 

state of the alloys. In addition, they found that the maximum line broadening of the 

E2(H) mode at composition x ≈ 0.5 is an indicator for the disorder state. Cros et al. 

(1997b), however, observed a maximum line broadening at x ≈ 0.8. This discrepancy 

arises most probably due to the difference in the samples quality. 

Recently, the composition dependence of the Raman lines [A1(TO), A1(LO), 

E1(TO), E1(LO) and E2(H)] broadening has been investigated theoretically and 

experimentally by Davydov et al. (2002) and the results are shown in Fig. 2.4. They 

found that all the lines exhibit an asymmetry broadening with respect to the point x = 

0.5, however, the asymmetric broadening pattern for the A1(LO) and E1(LO) modes is 

skewed to the left, while that for the A1(TO) and E1(TO) modes is skewed to the right. 

The line width of the E2(H) mode has a less asymmetrical composition dependence. 

The alloy composition at which these lines exhibit a maximum line width are different, 

namely, at x ≈ 0.65 to 0.7 for A1(TO) and E1(TO), x ≈ 0.35 for A1(LO) and E1(LO), and x 

≈ 0.75 for E2(H). However, no explanation is given on these phenomena. Hence, there 

is a need for more research on these phenomena. 

 From the brief review above, one can conclude that the behaviour and 

composition dependence as well as the line width of the BZ optical phonon modes 

(except the A1(LO) mode) of the AlxGa1-xN is still unclear. More work is needed to 

address these issues. 
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